广步植物 Guihaia Jan. 2024, 44(1): 43-55

汪雨, 唐露, 邵士成, 等, 2024. 两种珍稀白蝶兰属(兰科)叶绿体基因组比较分析 [J]. 广西植物, 44(1): 43-55. WANG Y, TANG L, SHAO SC, et al., 2024. Comparative analysis of chloroplast genomes of two rare *Pecteilis* species (Orchidaceae) [J]. Guihaia, 44(1): 43-55.

http://www.guihaia-journal.com

两种珍稀白蝶兰属(兰科)叶绿体基因组比较分析

汪雨1,2,唐露1,邵士成1,马长乐2,3,李健4,罗艳1*

 (1.中国科学院西双版纳热带植物园,云南 勐腊 666300; 2.西南林业大学 园林园艺学院,昆明 650224; 3.国家林业和草原局 西南风景园林工程技术研究中心,昆明 650224; 4. 深圳市兰科植物保护研究中心(全国兰科植物种质资源保护中心),深圳市 濒危兰科植物保护与利用重点实验室,兰科植物保护与利用国家林业和草原局重点实验室,广东 深圳 518114)

摘 要:为理解珍稀濒危兰科植物龙头兰(Pecteilis susannae)和景洪白蝶兰(P. hawkesiana)的叶绿体基因组的基本特征,开发用于物种鉴定、保护遗传学和系统发育分析的分子标记,该研究利用二代测序技术对龙头兰和景洪白蝶兰进行浅层基因组测序,采用生物信息学分析方法进行叶绿体基因组的拼接、组装和注释,并与其他近缘物种进行比较基因组分析和系统发育分析。结果表明:(1)龙头兰和景洪白蝶兰的叶绿体基因组大小分别为154 407 bp 和153 891 bp,由一对26 550 bp 和26 523 bp 的反向重复序列(IR)、84 204 bp 和83 756 bp 的大单拷贝区(LSC)、17 103 bp 和17 089 bp 的小单拷贝区(SSC)组成;均注释了111 个唯一基因,包括77 个蛋白质编码基因、30 个 tRNA 基因和4 个 rRNA 基因。(2)在叶绿体基因组中分别鉴定出94 个和92 个简单重复序列(SSRs)。(3)二者之间存在706 个单核苷酸多态性(SNPs)位点和152 个插入缺失(InDels)位点,其中 cpInDel 067 等可以区分 2 个物种。(4)观察到1 个差异较大的基因(accD)和9 个高变区(rps19-psbA、matK-trnQ-UUG、psbM-psbD、trnT-UGU-ndhJ、accD-psaI、ycf4-cemA、clpP-psbB、ndhF-trnL-UAG、rps15-ycf1)。(5)系统发育分析结果显示,龙头兰、景洪白蝶兰和鹅毛玉凤花(Habenaria dentata)的亲缘关系较近。在白蝶兰属 2 种叶绿体基因组研究中获得的 SSR 位点、InDels 和高变区序列可为物种鉴定、开发利用及其资源保护提供有价值的遗传信息。

关键词:龙头兰,景洪白蝶兰,叶绿体基因组,分子标记,系统发育 中图分类号:Q943 文献标识码:A 文章编号:1000-3142(2024)01-0043-13

Comparative analysis of chloroplast genomes of two rare *Pecteilis* species (Orchidaceae)

WANG Yu^{1,2}, TANG Lu¹, SHAO Shicheng¹, MA Changle^{2,3}, LI Jian⁴, LUO Yan^{1*}

收稿日期: 2023-09-01

基金项目:深圳市濒危兰科植物保护与利用重点实验室开放基金(OU202204);中国科学院西双版纳热带植物园园林园艺中心研究基金(E2ZK291B05);国家自然科学基金(32270225)。

第一作者: 汪雨(1997-),硕士研究生,研究方向为园林植物资源与应用,(E-mail)wangyu@swfu.edu.cn。

^{*}通信作者:罗艳,博士,研究员,研究方向为兰科植物多样性与保护,(E-mail)luoyan@xtbg.org.cn。

(1. Centre for Gardening and Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan,

China; 2. School of Landscape Architecture, Southwest Forestry University, Kunming 650224, China; 3. Southwest Landscape Architecture

Engineering Technology Research Center, State Forestry and Grassland Administration, Kunming 650224, China; 4. Orchid

Conservation & Research Center of Shenzhen and the National Orchid Conservation Center of China, Shenzhen Key

Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland

Administration for Orchid Conservation and Utilization, Shenzhen 518114, Guangdong, China)

Abstract: Pecteilis susannae and P. hawkesiana are rare and endangered species with important medicine and ornament value. However, little is known about the genetic information of these two species. In order to understand the basic characteristics of the chloroplast genome of these two Pecteilis species, and to develop molecular markers for species identification, conservation genetic and phylogenetic analysis, the genome skimming approach using next-generation sequencing methods was used to generate chloroplast DNA sequences in this study. The chloroplast genomes were assembled and annotated by bioinformatics analysis. Simple sequence repeats (SSRs), single nucleotide polymorphisms (SNPs), and insertions and deletions (InDels) were identified. Furthermore, comparative chloroplast genomic and phylogenetic analyses were conducted with closely related species. The results were as follows; (1) The newly sequenced chloroplast genomes of P. susannae and P. hawkesiana were 154 407 bp and 153 891 bp in size. They comprised a pair of 26 550 bp and 26 523 bp inverted repeats (IR) that separated a large 84 204 bp and 83 756 bp single copy region (LSC) and a small 17 103 bp and 17 089 bp single copy region (SSC), respectively. Both chloroplast genomes contained 111 unique genes, including 77 protein-coding genes, 30 tRNA and 4 rRNA genes. (2) Ninety-four simple sequence repeats (SSRs) were identified in the P. susannae chloroplast genome and 92 in that of P. hawkesiana. (3) Comparisons of two chloroplast genomes revealed that there were nucleotide variations including 706 single-nucleotide polymorphism sites and 152 InDels between the two *Pecteilis* species, of which several markers (cpInDel 067) could discriminate the two Pecteilis species. (4) The one most divergent gene (accD) and the nine most divergent intergenic regions (rps19-psbA, matK-trnQ-UUG, psbM-psbD, trnT-UGU-ndhJ, accD-psaI, ycf4-cemA, clpP-psbB, ndhFtrnL-UAG, rps15-ycf1) among genomes were detected. (5) The phylogenetic analysis based on the chloroplast genome sequences revealed that P. susannae, P. hawkesiana and Habenaria dentata are closely related. The molecular markers (SSRs, InDels and hotspots) developed from the chloroplast genomes of two *Pecteilis* species in the present study can be used to identify related species and provide valuable genetic resources in utilizing and conserving natural resources. Key words: Pecteilis susannae, P. hawkesiana, chloroplast genome, molecular markers, phylogeny

白蝶兰属(Pecteilis)为地生兰,隶属于兰科 (Orchidaceae)红门兰亚科(subfamily Orchidoideae) 红门兰族(tribe Orchideae)红门兰亚族(subtribe Orchidinae),全世界约有 10 种,主要分布于亚洲热 带至亚热带地区(Jin et al., 2014, 2017; Teoh, 2021)。长期以来,白蝶兰属与红门兰亚族的玉凤 花属(Habenaria)系统发育关系不清(Pridgeon et al.,2001)。2个属在形态学方面的关键区别在于 合蕊柱的结构:白蝶兰属的花药室具宽的药隔,柱 头无柄附着在唇瓣基部;玉凤花属的花药室的药 隔较窄,柱头与唇瓣基部;玉凤花属的花药室的药 隔较窄,柱头与唇瓣基部;玉凤花属的花药室的药 隔较窄,柱头与唇瓣基部;玉凤花属的花药室的药 临花通常比玉凤花属的大,唇瓣通常有较长的距。 但是,根据最近的分子系统发育分析,白蝶兰属并 非单系,嵌于玉凤花属中(Jin et al.,2014,2017)。 龙头兰(P. susannae)是白蝶兰属的模式种,也称白蝶花,从东喜马拉雅一直到东南亚和马来半岛都有分布(Wah et al.,2021)。在我国,龙头兰广泛分布于南部和西南部各省区,生长于海拔 500~2 500 m 的山坡林下开阔地、沟边和草坡(Wu et al.,2009)。虽然龙头兰在我国分布范围广,但近年来,生境丧失和过度采挖导致野生种群数量急剧下降。我国分布的白蝶兰属植物还包括滇南白蝶兰(P. henryi)、狭叶白蝶兰(P. radiate)和景洪白蝶兰(P. hawkesiana)。景洪白蝶兰分布于东南亚热带地区,2015 年才在我国云南西双版纳自治州发现有分布,个体数量极少,非常稀有(Li et al.,2015)。目前,我国白蝶兰属植物的野生资源的基础调查尚不深入,遗传信息缺乏,极大地阻碍了对该属野生资源的保护和利用。

高等植物的叶绿体基因组(chloroplast genome, cpDNA)较小,通常为典型的环状四分体结构,由大 单拷贝区(large single copy, LSC)、小单拷贝区 (small single copy.SSC)和2个反向重复区(inverted repeats, IRs)构成(Ruhlman & Jansen, 2014)。目前 叶绿体基因组通过高通量的浅层基因组测序 (genome skimming)技术较易获得(Fu et al., 2022; 黎若竹等,2022)。植物的叶绿体基因组较核基因 组更具有保守性和遗传稳定性,进化速率适中,不 存在基因重组现象等特征,在植物系统发育研究中 得到广泛应用。叶绿体基因组序列揭示了许多基 因结构变异,包括简单重复序列(simple sequence repeats,SSRs)、单核苷酸多态性(single nucleotide polymorphisms, SNPs) 和插入缺失 (insertions and deletions, InDels)等。齐丹等(2018)利用南方梨属 (Pyrus)叶绿体基因组的6个片段发现秦岭淮河以 南地区的砂梨和白梨亲缘关系较近,湖南地区的砂 梨遗传多样性更丰富。汤晨茜等(2022)比较了陕 甘花楸(Sorbus koehneana)和爪瓣花楸(S. unguiculata)的叶绿体基因组,探究二者的系统发育 关系。陈模舜和杨仲毅(2022)利用 26 个天台鹅耳 枥(Carpinus tientaiensis)叶绿体基因组的 SNP 进行 分析,揭示天台鹅耳枥的遗传多样性和谱系分化。 植物叶绿体基因组序列经常被用作 DNA 条形码 (DNA barcoding)的分子标记进行物种鉴别,包括 matK, rbcL, psbA - trnH 和 atpF - atpH 等 (Kress & Erickson, 2007; Lahaye et al., 2008)。李镇兵等 (2022)对3个品种木芙蓉(Hibiscus mutabilis)的叶 绿体基因组进行分析后认为,使用 vcf1、ndhB 等基 因可以对木芙蓉品种间及近缘种间进行鉴定。李 冉郡等(2022)对大黄(Rheum spp.)药材基原物种的 叶绿体基因组高变区进行特异 DNA 条形码开发,可 以精准地鉴别3种大黄。姚辉等(2015)认为石斛 属(Dendrobium)的 psbK-psbI 片段可以作为石斛属 的候选分子标记,并成功利用其完成6份样品的鉴 定。潘佳佳(2017)对高变位点进行筛选后,成功找 到霍山石斛(D. huoshanense)的特异性位点,可以高 效地将霍山石斛从各种枫斗类石斛产品中分辨 出来。

本研究基于二代测序技术进行基因组浅层测 序,利用生物信息学软件组装了龙头兰和景洪白蝶 兰的叶绿体基因组,详细比较了2种白蝶兰属叶绿 体基因组的结构差异,并与亲缘较近的玉凤花属植 物进行比较和系统发育关系的分析,拟探讨:(1)龙 头兰和景洪白蝶兰中的叶绿体基因组中有哪些位 点可以作为特征性分子标记;(2)叶绿体基因组是 否能够辨析白蝶兰属和玉凤花属的系统发育关系。

1 材料与方法

1.1 试验材料

龙头兰和景洪白蝶兰(图1)均保存于中国科 学院西双版纳热带植物园保育苗圃中(101°46′E、 21°54′N)。采集2种植物的新鲜叶片放置于硅胶 中干燥保存。

1.2 DNA 的提取和测序

取干燥后的龙头兰和景洪白蝶兰叶片,放入 组织研磨器中充分研磨,按照植物总 DNA 提取试 剂盒 Tiangen DNA 试剂盒(TIANGEN,中国)说明 书使用方法进行叶片 DNA 的提取,并按照 Illumina TruSeq 文库制备试剂盒(Illumina, USA)构建 DNA 文库,测序文库由上海派森诺生物科技有限公司 通过 Illumina HiSeq 2500平台进行浅层基因组测 序,测序读长为 PE150。

1.3 叶绿体基因组的组装和注释

测序所得的原始数据经 fastp 软件(Chen et al.,2018)进行过滤,获得高质量的 HQ data,之后 使用 GetOrganelle 平台进行叶绿体基因组的组装 (Jin et al., 2020), 组装后获得的数据导入 Bandage v0.8.1 检查(Wick et al., 2015), 判断其是否为双 链环状四分体结构。确认组装所得的数据合格可 用后,将其分别上传至 GeSeq(Michael et al., 2017) 和 CPGAVAS2(Shi et al., 2019)平台进行叶绿体基 因组注释。在 NCBI (National Center for Biotechnology Information)数据库中检索兰科红门 兰亚族已发表且注释的狭叶白蝶兰(KX871237)、 线叶十字兰(H. linearifolia, NC_059696)和 H. cruciformis(NC_059695)作为参考序列,将注释后 获得的两组数据使用 Geneious prime 2022.0.2 软 件进行人工校正比对。利用 Organellar Genome DRAW(Greiner et al., 2019)在线工具绘制龙头兰 和景洪白蝶兰的叶绿体基因组图谱。基因组长 度、LSC 区长度、SSC 区长度、IR 区长度、GC 含量 等通过 Geneious prime 2022.0.2 进行统计。

1.4 简单重复序列分析

利用 MISA 程序(Beier et al., 2017) 预测龙头

兰和景洪白蝶兰的简单重复序列(SSRs),单核苷酸的最小重复单位设置为10个,二核苷酸的最小 重复单位设置为5个,三核苷酸的最小重复单位 设置为4个,四核苷酸、五核苷酸和六核苷酸的最 小重复单位设置为3个。

1.5 序列差异分析

使用 Geneious prime 2022.0.2 的插件 MAFFT Alignment 将 2 种白蝶兰属的叶绿体基因组序列进 行比对, 通过 BioEdit 软件编辑整理, 使用 DnaSP v6.12.03 计算单核苷酸变异(SNPs)和插入缺失 (InDels)的数量, 每 100 bp 计算突变率, 并评估 2 种白蝶兰属植物的叶绿体基因组的核苷酸多样性 (*Pi*)值, 当 *Pi* 值高于 0.030 0 时, 将其定义为高 变区。

1.6 比较基因组分析

从 NCBI 上下载已公布的 1 种白蝶兰属和 3 种玉凤花属的叶绿体基因组,包括狭叶白蝶兰、鹅毛玉凤花(H. dentate, OK012095)、线叶十字兰、 H. cruciformis,与本研究组装的龙头兰和景洪白蝶 兰,利用 mVISTA 程序(Frazer et al.,2004))对 3 种 白蝶兰属和 3 种玉凤花属的叶绿体基因组序列进 行比较。通过 R v4.1.3 软件运行 IRscope 脚本 (Amiryousefi et al.,2018),比较 6 个物种中 LSC 区、SSC 区和 IR 区的边界基因。

1.7 系统发育分析

除了已下载的上述 4 种白蝶兰属和玉凤花属 植物以外,再从 NCBI上下载另外 4 种已公布的玉 凤花属植物的叶绿体基因组序列,包括丝瓣玉凤 花(H. fordii, NC_026775)、毛 葶 玉 凤 花(H. ciliolaris, MN495594)、H. chejuensis(NC_046821)、 落地金钱(H. aitchisonii, MW316693),以红门兰亚 族的缘毛鸟足兰(Satyrium nepalense var. ciliatum, MN497244)为外类群(Jin et al.,2017),将龙头兰 和景洪白蝶兰的叶绿体基因组序列与这些近缘物 种进行系统发育关系分析。通过 PhyloSuite v1.2.2 平台(Zhang et al.,2020)查找最适模型后使用 IQ-TREE 构建 Maximum Likelihood(ML)系统发育树。 通过 FigTree v1.4.0 软件编辑系统发育树。

2 结果与分析

2.1 龙头兰和景洪白蝶兰叶绿体基因组的基本特征

在去除低质量 reads 后,分别得到了龙头兰和

景洪白蝶兰 3.37 Gb 和 1.07 Gb 的叶绿体基因组 序列数据。在组装之后通过 Bandage v0.8.1 软件 检查,判断组装后的数据可用。基因组结构为闭 合的环状四分体结构,与典型的被子植物叶绿体 基因组结构相同。

2个白蝶兰属植物的叶绿体基因组的基因图谱 如图 2 所示。龙头兰叶绿体基因组全长 154 407 bp,包含一对 26 550 bp 的 IR 区,由 84 204 bp 的 LSC 区和 17 103 bp 的 SSC 区分开。景洪白蝶兰叶 绿体基因组全长 153 891 bp,包含一对 26 523 bp 的 IR 区,由 83 756 bp的 LSC 区和 17 089 bp的 SSC 区 分开(表1)。龙头兰叶绿体基因组的 GC 含量为 36.5%,景洪白蝶兰的 GC 含量为 36.6%, 二者都是 在 IR 区的 GC 含量最高(43.0%),并且高于基因组 的 GC 含量。龙头兰和景洪白蝶兰的叶绿体基因组 均注释了 111 个唯一基因 (unique genes), 包含 77 个蛋白质编码基因、30个转运 RNA(tRNA)基因和 4 个核糖体 RNA(rRNA) 基因(表 2)。其中.18 个基 因含有1个内含子,2个基因(pafl和 clpP 1)含有2 个内含子(表2)。在所有基因中,有19个基因位于 反向重复区且具有 2 个拷贝 (ndhB、rps7、rps12、 rps19_rpl2_rpl23_rrn4.5_rrn5_rrn16_rrn23_trnA-UGC_ trnH-GUG, trnI-CAU, trnI-GAU, trnL-CAA, ycf2, trnN-GUU、trnR-ACG和 trnV-GAC,表 2)。注释的龙头兰和 景洪白蝶兰的叶绿体基因组信息已提交至 GenBank 上.序列号分别为 OP435916 和 OP435917。

2.2 叶绿体基因组中的简单重复序列特征

在龙头兰的叶绿体基因组中共检测到 94 个 SSRs,包括4种类型的 SSRs,单核苷酸、二核苷酸、 三核苷酸和四核苷酸重复序列分别为 74、16、1、3 个,其中 54 个 SSRs 位于基因间隔区 (intergenic spacer, IGS)、17个 SSRs 位于蛋白质编码区(coding sequence, CDS)、23个 SSRs 位于内含子上(图 3)。 在景洪白蝶兰的叶绿体基因组中共检测到 92 个 SSRs,包括5种类型的SSRs,单核苷酸、二核苷酸、 三核苷酸、四核苷酸和五核苷酸重复序列分别为 72、15、1、3、1个,其中,58个 SSRs 位于 IGS 中,15 个 SSRs 位于 CDS 中, 19 个 SSRs 位于内含子中(图 3)。在单核苷酸 SSRs 中,龙头兰和景洪白蝶兰分 别有3个和4个C/G型,其余均为A/T型。大多数 二核苷酸 SSRs 为 AT/TA 型。这一结果与叶绿体基 因组的 SSRs 通常由 A/T 组成而很少包含 C/G 的观 点一致(Kuang et al., 2011;陈模舜和杨仲毅, 2022)。

A. 龙头兰花; B. 龙头兰植株; C. 景洪白蝶兰。
A. Flowers of *Pecteilis susannae*; B. Plant of *P. susannae*;
C. *P. hawkesiana*.

图 1 龙头兰和景洪白蝶兰

Fig. 1 Pecteilis susannae and P. hawkesiana

2.3 叶绿体基因组中的突变和插入缺失

比对 2 种白蝶兰属植物的叶绿体基因组序列, 发现共有 706 个点突变。其中 IR 区、LSC 区、SSC 区发生点突变次数分别为 48、517、141 次(表 3)。 706 个 SNPs 标记中包括 259 个转换和 447 个颠换 (图 4)。经统计发现,在两条叶绿体基因组序列 中,发生突变频次最高的区域为内含子,每 100 bp 大约会发生 6.238 53 次突变事件。

在 2 种白蝶兰属植物的叶绿体基因组中共检 测到 InDels 152 个,其中 IR 区、LSC 区、SSC 区分 别产生了 8、131、13 个 InDels(表 3)。内含子区域 每 100 bp 会发生 1.743 12 次 InDels 事件。而蛋白 质编码区相对保守,每 100 bp 仅发生 0.013 94 次。 在 LSC 区 *trnL-UAA* 和 *trnF-GAA* 2 个基因之间的序 列中发现了最长的 InDels(104 bp)。另外 3 个较 长的 InDels 也在 LSC 区,分别位于 *trnT-GGU* 和 *psbD* 基因之间(84 bp)、*ndhC* 和 *trnV-UAC* 基因之 间(54 bp)、*trnL-UAA* 基因内(50 bp)。这 4 个较大 的 InDels 可以作为潜在的分子标记开发区域,用 来特异性识别龙头兰和景洪白蝶兰。

2.4 叶绿体基因组序列的核苷酸多样性

通过计算龙头兰和景洪白蝶兰的叶绿体基因

组间的核苷酸多样性(Pi)值可知,基因间隔区的Pi 值为0~0.053 4(图 5: A),编码区的Pi值为0~ 0.018 9(图 5: B),表明二者的编码区序列相对保 守。大多数的高变位点位于LSC 区,其次是SSC 区,IR 区序列的Pi值较低。在非编码区中,petGtrnW-CCA 的核苷酸多样性值最高(Pi=0.053 4),除 此之外,还有5个基因间隔区 rps16-trnQ-UUG、rps14psaB、petD-rpoA、rpl16-rps3、rrn4.5-rrn5(Pi>0.030 0) 可视为高变区。在编码区中,psaJ基因的核苷酸多 样性值最高(Pi=0.018 9),以及其他2个基因 trnS-GGA(Pi=0.011 5)和 rpl32(Pi=0.011 5)的核苷酸多 样性值均大于0.010 0,可视为多样性较高的基因。 这些核苷酸多样性程度高的基因和基因间隔区可 开发为潜在的物种鉴定的特异性分子标记。

2.5 白蝶兰属和玉凤花属的基因组比较

笔者将新测序的2种白蝶兰属植物与其近缘 种狭叶白蝶兰、鹅毛玉凤花、线叶十字兰和 H. cruciformis 共6个种的叶绿体基因组的边界基因进 行了比较分析。叶绿体基因组边界收缩扩张分析 显示(图 6),6个种在 LSC/IRb、IRb/SSC、SSC/IRa 和IRa/LSC 边界都具有相同的基因,包括 rpl22、 ndhF、ycf1、rps19和 psbA,并且收缩和扩张的程度 较为相似。Rpl22 基因跨 LSC/IRb 边界,6个种仅 有 1 bp 之差。ndhF 基因跨 IRb/SSC 边界,6 个种 仅有6bp之差,其中龙头兰、景洪白蝶兰和鹅毛玉 凤花相同, 而狭叶白蝶兰、线叶十字兰和 H. cruciformis 相同。ycfl 基因跨 SSC/IRa 边界,在龙 头兰和鹅毛玉凤花中延伸至 IR 区 993 bp,在景洪 白蝶兰和狭叶白蝶兰中延伸至 IR 区 1 002 bp,在 线叶十字兰和 H. cruciformis 中延伸至 IR 区 1 032 bp(图6)。从边界分析来看,白蝶兰属3种和玉凤 花属3种之间无明显差异,表明叶绿体基因组结 构不支持2个属的划分。

以注释的狭叶白蝶兰序列为参考序列,利用 在线软件 mVISTA 分析了 6 个物种叶绿体基因组 的序列差异(图 7)。由图 7 可知,6 个物种中 LSC 区和 SSC 区的差异性高于 IR 区,非编码区的差异 性高于编码区。其中,差异性较大的基因为 accD, 差异性较高的区域有 rps19-psbA、matK-trnQ-UUG、 psbM-psbD、trnT-UGU-ndhJ、accD-psaI、ycf4-cemA、 clpP-psbB、ndhF-trnL-UAG、rps15-ycf1 等区域,可 以利用这些区域,开发特异性标记,进行物种鉴定 和系统发育研究。

外环基因按逆时针方向转录,内环基因按顺时针方向转录。内圈深灰色部分表示龙头兰叶绿体基因组的GC含量。浅灰色表示AT含量。标示了小单拷贝区(SSC)、大单拷贝区(LSC)、反向重复区(IRa、IRb)。

Genes located outside the outer rim are transcribed in a counterclockwise direction, whereas genes inside the outer rim are transcribed in a clockwise direction. The darker gray in the inner circle indicates GC content of chloroplast genome of *P. susannae*, and the lighter gray indicates AT content. Small single copy (SSC), large single copy (LSC) and inverted repeats (IRa, IRb) are indicated.

图 2 龙头兰和景洪白蝶兰的叶绿体基因组图谱

Fig. 2 Chloroplast genome map of Pecteilis susannae and P. hawkesiana

2.6 系统发育分析

通过 PhyloSuite 获取最适模型为 TVM+R2+F, 采用此模型构建所选白蝶兰属和玉凤花属的系统

发育树,以缘毛鸟足兰作为外类群。由图 8 可知, 10 种白蝶兰属和玉凤花属植物形成了 3 个分支, 其中丝瓣玉凤花单独分出来为基部分支,毛葶玉

表 1 叶绿体基因组的基本特征

Table 1 Basic characteristics of chloroplast genomes

项目 Item	龙头兰 Pecteilis susannae	景洪白蝶兰 P. hawkesiana
基因组长度 Genome size (bp)	154 407	153 891
LSC 区长度 LSC size (bp)	84 204	83 756
SSC 区长度 SSC size (bp)	17 103	17 089
IR 区长度 IR size (bp)	26 550	26 523
蛋白质编码基因数量 No. of protein coding genes	77	77
rRNA 数量 No. of rRNA	4	4
tRNA 数量 No. of tRNA	30	30
总 GC 含量 Total GC content (%)	36.5	36.6
LSC 区 GC 含量 GC content in LSC (%)	34.0	34.1
SSC区CC含量 GC content in SSC(%)	28.9	28.9
IR 区 GC 含量 GC content in IR (%)	43.0	43.0

凤花、H. chejuensis、鹅毛玉凤花、景洪白蝶兰、龙头 兰聚为一个单系分支,而落地金钱、狭叶白蝶兰、 H. cruciformis、线叶十字兰聚为一个单系分支。龙 头兰、鹅毛玉凤花和景洪白蝶兰则聚为一个亚分 支,而后二者形成了姐妹群的关系,表明三者的亲 缘关系较近。2种白蝶兰属嵌入玉凤花属,表明这 2属从叶绿体基因组构建的系统发育树上不能 分开。

3 讨论与结论

3.1 基因组序列特征比较分析

在兰科红门兰亚族中玉凤花属、舌唇兰属、鸟 足兰属(Satyrium)、无柱兰属(Amitostigma)、手参 属(Gymnadenia)等属已有叶绿体基因组的报道, 基因组大小为146754~156120bp(Kim et al., 2020)。本文首次报道并解析了红门亚兰族中白 蝶兰属2种的叶绿体基因组的序列特征。龙头兰 和景洪白蝶兰的叶绿体基因组结构与大多数被子 植物叶绿体基因组结构相似,都为典型的环状四

表 2 龙头兰和景洪白蝶兰叶绿体基因组基因

Table 2 Genes in chloroplast genomes of

Pecteilis susannae and P. hawkesiana

基因类型 Genotype	基因名称 Gene name
光系统 I Photosystem I	psaA, psaB, psaC, psaI, psaJ
光系统 II Photosystem II	psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbT, psbZ
细胞色素复合物 Cytochrome b/f complex	$petA$, $petB^*$, $petD^*$, $petG$, petL, $petN$
ATP 合成酶 ATP synthase	atpA, $atpB$, $atpE$, $atpF*$, atpH, $atpI$
NADH 脱氢酶 NADH dehydrogenase	ndhA*, ndhB* (×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK
二磷酸核酮糖羧化酶大亚基 RubisCO large subunit	rbcL
光系统组装/稳定因子 Photosystem assembly/stability factors	pafI**, paf II
RNA 聚合酶 RNA polymerase	rpoA, rpoB, rpoC1*, rpoC2
核糖体蛋白小亚基 (SSU) Small subunit of ribosomal proteins (SSU)	rps2, rps3, rps4, rps7 (×2), rps8, rps11, rps12* (×2), rps14, rps15, rps16*, rps18, rps19 (×2)
核糖体蛋白大亚基(LSU) Large subunit of ribosomal proteins (LSU)	rpl2* (×2), rpl14, rpl16*, rpl20, rpl23 (×2), rpl32, rpl33, rpl36
其他基因 Other genes	clpP1**, matK, accD, ccsA, infA, cemA
假定叶绿体开放性阅读框(ycf) Hypothetical chloroplast reading frames(ycf)	ycf1, ycf2 (×2)
核糖体 RNA Ribosomal RNAs	rrn4.5 (×2), rrn5 (×2), rrn16 (×2), rrn23 (×2)
转运 RNA Transfer RNAs	$\label{eq:trans} \begin{array}{l} trnA-UGC* (\times 2), \ trnC-GCA, \\ trnD-GUC, \ trnE-UUC, \ trnF-GAA, \ trnfM-CAU, \ trnG-GCC*, \\ trnG-UCC*, \ trnH-GUG (\times 2), \\ trnI-CAU* (\times 2), \ trnI-GAU* (\times 2), \\ trnI-CAU* (\times 2), \ trnI-CAA (\times 2), \ trnL-UAA *, \ trnL-UAG, \\ trnM-CAU, \ trnN-GUU (\times 2), \\ trnP-UGG, \ trnQ-UUG, \ trnR-ACG (\times 2), \ trnR-UCU, \ trnS-GCU, \ trnS-GCA, \ trnS-UGA, \\ trnT-GGU, \ trnT-UGU, \ trnN-CAC (\times 2), \\ trnY-GUA \end{array}$

注:* 表示基因含1个内含子;** 表示基因含2个内含子; (×2)表示有2个拷贝的基因。

Note: * represents gene containing one intron; ** represents gene containing two introns; (×2) indicates gene has two copies.

A. 叶绿体基因组中不同类型简单重复序列的数量; B. 在叶绿体基因组的编码区(CDS)、基因间隔区(ICS)和内含子中识别的 SSRs 数量。

A. Number of different types of SSRs in the chloroplast genomes; B. Number of SSRs identified in coding sequence (CDS), intergenic spacer (IGS) and introns in the chloroplast genomes.

龙头兰和景洪白蝶兰叶绿体基因组的简单重复序列

Simple sequence repeats (SSRs) in chloroplast genomes of Pecteilis susannae and P. hawkesiana

图 3

Fig. 3

分体结构,它们的长度、基因组结构、基因数目、GC 含量等均与以前报道的红门兰族物种的基因组特 征相似。已报道的 H. cruciformis、狭叶白蝶兰等物 种的叶绿体基因组均编码了 113 个唯一基因,包括 79 个蛋白质编码基因、30 个 tRNA 和4 个 rRNA,GC 含量为 36.6%(Kim et al., 2017, 2020);在本研究中, 龙头兰和景洪白蝶兰都包含 111 个唯一基因,包括 77 个蛋白质编码基因、30 个 tRNA 基因和 4 个 rRNA 基因,GC 含量分别为 36.5%和 36.6%。在兰 科植物叶绿体基因组中编码NAD(P)H脱氢酶复合 体的 ndh 基因截短或丢失的现象较为多见,但在红 门兰亚科中很少发生(Kim et al.,2020)。丝瓣玉凤 花的叶绿体基因组中具有 11 个 ndh 基因(Lin et al.,2015),本研究中龙头兰和景洪白蝶兰的叶绿体 基因组中也包含了完整基因结构的 11 个 ndh 基因, 没有截短和丢失的现象。

3.2 特异分子鉴定标记的筛选

本研究通过基因组的比较研究,在2种白蝶兰 属植物中鉴定出的 SSRs、InDels 和核苷酸序列高 变区等均可作为特异的分子标记鉴定物种。本研 究发现龙头兰叶绿体基因组中共有 94 个 SSRs,景 洪白蝶兰叶绿体基因组中共有 92 个 SSRs,二者在 SSRs 数量上仅相差 2 个。龙头兰不存在五核苷酸 重复序列,景洪白蝶兰有 1 个五核苷酸重复。已 报道的同属狭叶白蝶兰中共检测到 76 个 SSRs 位 点,包括 58 个单核苷酸 SSRs、17 个二核苷酸 SSRs

表 3 龙头兰和景洪白蝶兰叶绿体基因组的点突变、插入缺失和突变率

Mutations, InDels, and mutation rates for the chloroplast genomes of Pecteilis susannae and P. hawkesiana

区域 Region	点突变 Mutations	插入缺失 InDels	总长度 Total length	每 100 bp 点突变 Mutations per 100 bp	每 100 InDel) bp 插入缺失 s per 100 bp
CDS	210	11	78 915	0.266 11	0.013 94	
IGS	381	108	37 865	1.006 21	0.285 22	
Intron	136	38	2 180	6.238 53	1.743 12	
IR	48	8	26 575	0.180 62	0.030 10	
LSC	517	131	84 586	0.611 21	0.154 87	
SSC	141	13	17 143	0.822 49	(0.075 83
て 0.0600 田田 田田 田田 田田 田田 田田 田田 田田 田田	2 de la característica de la c	Constrained and the second sec	All the could be all th	0.0495 0.0405	0.05116 0.027 energy 0.027 ener	22 5 Contraction of the second
D		大車	单拷贝区 LSC	反向重	复区 IR 小	单拷贝区 SSC
0.020 B 1 = 0.018 1 = 0.018 1 = 0.016 1 = 0.016 1 = 0.016 1 = 0.016 1 = 0.006 0.002 0 = 0.008 0.004 0.0000 0.000 0.0000 0.0000 0.0000		0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.01112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.012	0.0119 0.00012 0.00	a state a s	+ the - the	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				反向	重复区 IR	小单拷贝区 SSC

A. 基因间隔区的核苷酸多样性值; B. 编码基因的核苷酸多样性值。

A. Nucleotide diversity values of intergenic spacer; B. Nucleotide diversity values of coding genes.

Fig. 5 Comparative analysis of nucleotide diversity (Pi) values among chloroplast genome of Pecteilis susannae and P. hawkesiana 1 002 bp 2 198 bp 4 266 bp 319 bp. 62 br 狭叶白蝶兰 rp/22 2 250 bp Pecteilis radiata 155 353 bp 17 718 bp 2 186 bp 320 bc 4 263 bp 993 bp 龙头兰 2 244 bp rp/22 P. susannae 7 103 bp 154 407 bp 993 bp 6 bp p 2 186 bp 320 bp 61 b 58 bp 4 245 bp 1 002 bp 景洪白蝶兰 2 244 bp rp/22 P. hawkesiana 17 089 bp 153 891 bp 1002 bp 6 bp 58 bp 2 186 bp 4 233 bp 993 bp 320 bp. 61 b 鹅毛玉凤花 2 244 b 7 041 bp Habenaria dentata 153 682 bp 993 bp 6 bp 2 198 bp 4 269 bp 1 032 bp 320 bp. 61 bp 52 bp. trnl 线叶十字兰 rpl22 2 250 bp 17 680 bp H. linearifolia 155 653 bp 1 032 bp 320 bp. 61 bp 52 bp 2 198 bp 4 269 bp 111 b trnl rp/22 H. cruciformis 2 250 br 7 659 bp 5 131 b 155 708 bp

图 5 龙头兰和景洪白蝶兰叶绿体基因组间的核苷酸多样性(Pi)值比较分析

主线上方或下方的方框表示与边界相邻的基因。

Boxes above or below the main line indicate genes adjacent to borders.

图 6 3 种白蝶兰属和 3 种玉凤花属叶绿体基因组中 LSC、SSC 和 IR 区相邻边界的比较

Fig. 6 Comparison of the borders between neighboring genes and junctions of LSC, SSC and IR regions in chloroplast genomes in three Pecteilis species and three Habenaria species

Table 3

x 轴对应叶绿体基因组内的坐标, y 轴表示 50%~100% 范围内的百分比同一性。

The x-axis corresponds to coordinates within the chloroplast genome, and the y-axis shows the percentage identity in the range 50% to 100%.

图 7 以狭叶白蝶兰为参考,3种白蝶兰属和3种玉凤花属叶绿体基因组序列的比对

Fig. 7 Alignment of chloroplast genome sequences of three *Pecteilis* species and three *Habenaria* species, with *P. radiata* as a reference

和1个三核苷酸 SSRs(Kim et al., 2017)。这些 SSRs位点可进一步开发为遗传标记用于遗传多样 性研究及同属近缘种间鉴别的分子标记。InDel 标记具有稳定性好、多态性高、分型系统简单等优 点,在作物育种、医学诊断等领域多有应用(杨洁 等, 2016)。在黄麻(Corchorus capsularis)和长蒴黄 麻(C. olitorius)中共鉴定出了 294 个 InDels,其中 cpIndel 205 可以将这 2 种黄麻属植物区分开来 (Fang et al., 2021)。本研究在龙头兰和景洪白蝶 兰叶绿体基因组中共鉴定出 152 个 InDels,其中 cpInDel 067(104 bp)位于大单拷贝区 *trnL-UAA* 基 因和 *trnF-GAA* 基因之间,全长超过 100 bp,可以作 为潜在的区分 2 个物种的分子标记。高变序列较 短,作为 DNA 条形码可以经济、快速地区分同属 近缘物种(杨嘉鹏等,2020)。Li等(2020)利用叶 绿体基因组的 LSC 区可高效、精准地对枫斗类石 斛进行中药材鉴定。姚辉等(2015)利用 *psbK-psbI* 片段可成功分辨 18 种药用石斛及其混伪品。杨

节点上的数字表示支持率。

Numbers at nodes are bootstrap support values.

嘉鹏等(2020)筛选出 5 个高度变异的基因间隔区 序列($psbI-trnS_psbC-trnS_clpP-ex1-psbB_psaJ-rpl33_rpl33 - rps18$)可用于药用石豆兰 (Bulbophyllum)的鉴定。本研究中 2 种白蝶兰属 植物中的多数高变位点位于 LSC 区,基因间隔区 序列 $petG-trnW-CCA_rps16-trnQ-UUG_rps14-psaB_petD-rpoA_rpl16-rps3_rrn4.5-rrn5 为高变区,可用$ 于中药材龙头兰及其混淆种的鉴别。

3.3 基于叶绿体基因组的白蝶兰属和玉凤花属的 系统发育关系

长期以来,关于红门兰亚族内的进化与分类 问题争议不断。在白蝶兰属与玉凤花属中具宽大 扇形的唇瓣侧裂片的种类在形态上最为接近,传 统的形态学分类主要是根据柱头是否有柄将二者 区分开来(Wah et al.,2021)。但是,形态学特征往 往变异丰富、个体差异较大。因此,我们需要结合 更加充分的分子证据。玉凤花属和白蝶兰属的遗 传背景资料尚十分缺乏,仅报道了为数不多的一 些物种的叶绿体基因组。本研究通过 GenBank 检 索到的玉凤花属和白蝶兰属物种的叶绿体基因组 序列构建了基于叶绿体基因组的系统发育树,发 现景洪白蝶兰和鹅毛玉凤花亲缘关系最近,并与 龙头兰聚为一个单系分支,这一单系分支与 Jin 等 (2014,2017)基于 2 个核基因和 5 个叶绿体基因

片段得到的结果一致。龙头兰和景洪白蝶兰在花 形态上与分布于亚洲热带的玉凤花属的一些类群 非常接近,如花白色、花大、宽药隔、唇瓣具扇形裂 片等。因此,二者的柱头是否有柄的形态特征不 能作为分属的特征。Jin 等(2017)指出柱头有柄 的特征在这一单系分支中至少独立消失了2次。 同属于白蝶兰属的分布于温带的狭叶白蝶兰并未 与龙头兰和景洪白蝶兰聚成一支,而是和玉凤花 属的 H. cruciformis 和线叶十字兰亲缘关系更近。 Kim 等(2017)和 Tachibana 等(2021)认为该种属 于玉凤花属,本研究支持该观点,狭叶白蝶兰应置 于玉凤花属中。本研究初步的系统发育结果与 Jin 等(2014,2017)基于核基因和叶绿体基因片段的 分子系统发育分析得出的结果一致,均认为目前 划分的白蝶兰属并非单系,与玉凤花属嵌套不能 分开,可归并至玉凤花属中。完整的叶绿体基因 组长度约15kb,包含77~78个蛋白质编码基因, 通过叶绿体基因组建树,序列长度、变异率和信息 位点均大大增加,物种间关系的支持率都很高,多 数分支的支持率高达100%,表明利用叶绿体基因 组序列构建系统的发育树为解决白蝶兰属和玉凤 花属物种之间的物种关系提供了有用信息,在今 后的研究中,可在进一步全面取样的基础上,探讨 这一复杂类群的种间系统发育关系。

致谢 中国科学院西双版纳热带植物园王晓静提供照片,谨致谢意。

参考文献:

- AMIRYOUSEFI A, HYVÖNEN J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 34(17): 3030–3031.
- BEIER S, THIEL T, MUENCH T, et al., 2017. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 33(16): 2583-2585.
- CHEN MS, YANG ZY, 2022. Genealogical structure and differentiation analysis of *Carpinus tientaiensis* based on single nucleotide polymorphism of chloroplast genome [J]. Guihaia, 42(10): 1703-1716. [陈模舜,杨仲毅, 2022. 基于叶绿体基因组 SNP 的天台鹅耳枥谱系结构与 分化分析[J]. 广西植物, 42(10): 1703-1716.]
- CHEN SF, ZHOU YQ, CHEN YR, et al., 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 34(17): 884-890.
- FANG SS, ZHANG LM, QI JM, et al., 2021. De novo assembly of chloroplast genomes of Corchorus capsularis and C. olitorius yields species-specific InDel markers [J]. Crop J, 9(1): 216-226.
- FRAZER KA, PACHTER L, POLIAKOV A, et al., 2004. VISTA: computational tools for comparative genomics [J]. Nucleic Acids Res, 32(Suppl. 2): W273-W279.
- FU CN, MO ZQ, YANG JB, et al., 2022. Testing genome skimming for species discrimination in the large and taxonomically difficult genus *Rhododendron* [J]. Mol Ecol Resour, 22(1): 404-414.
- GREINER S, LEHWARK P, BOCK R, 2019. Organellar-GenomeDRAW(OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes [J]. Nucleic Acids Res, 47(W1): W59-W64.
- JIN JJ, YU WB, YANG JB, et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate *de novo* assembly of organelle genomes[J]. Genome Biol, 21(1): 241.
- JIN WT, JIN XH, SCHUITEMAN A, et al., 2014. Molecular systematics of subtribe Orchidinae and Asian taxa of Habenariinae (Orchideae, Orchidaceae) based on plastid *matK*, *rbcL* and nuclear ITS[J]. Mol Phylogenet Evol, 77: 41-53.
- JIN WT, SCHUITEMAN A, CHASE MW, et al., 2017. Phylogenetics of subtribe Orchidinae s. l. (Orchidaceae; Orchidoideae) based on seven markers (plastid matK, psaB, rbcL, trnL-F, trnH-psbA, and nuclear mITS, Xdh): implications for generic delimitation [J]. BMC Plant Biol,

17(1): 222.

- KIM C, DO HDK, JUNG J, et al., 2020. Characterization of the complete chloroplast genome of Korean endemic, *Habenaria cruciformis* (Orchidaceae) [J]. Mitochondrial DNA Part B, 5(3): 3287-3289.
- KIM YK, JO S, CHOON SH, et al., 2020. Plastome evolution and phylogeny of Orchidaceae, with 24 new sequences [J]. Front Plant Sci, 11: 22.
- KIM YK, KWAK MH, HONG JR, et al., 2017. The complete plastome sequence of the endangered orchid *Habenaria radiata* (Orchidaceae) [J]. Mitochondrial DNA Part B, 2(2): 704-706.
- KRESS WJ, ERICKSON DL, 2007. A two-locus global DNA Barcode for land plants: the coding *rbcL* gene complements the non-coding *trnH-psbA* spacer region [J]. PLoS ONE, 2(6): e508.
- KUANG DY, WU H, WANG YL, et al., 2011. Complete chloroplast genome sequence of *Magnolia kwangsiensis* (Magnoliaceae): implication for DNA barcoding and population genetics[J]. Genome, 54(8): 663-673.
- LAHAYE R, VAN DER BANK M, BOGARIN D, et al., 2008. DNA barcoding the floras of biodiversity hotspots [J]. Proc Natl Acad Sci USA, 105(8): 2923-2928.
- LI JW, YE DP, LIU JX, et al., 2015. Orchids newly recorded to China[J]. Plant Divers Resour, 37(3): 246–252.
- LI LD, JIANG Y, LIU YY, et al., 2020. The large single-copy (LSC) region functions as a highly effective and efficient molecular marker for accurate authentication of medicinal *Dendrobium* species [J]. Acta Pharm Sin B, 10(10): 1989-2001.
- LI RJ, WU LW, XIN TY, et al., 2022. Analysis of chloroplast genomes and development of specific DNA barcodes for identifying the original species of Rhei Radix et Rhizoma [J]. Acta Pharm Sin, 57(5): 1495–1505. [李冉郡, 武立 伟, 辛天怡, 等, 2022. 大黄药材基原物种叶绿体基因组 分析与特异 DNA 条形码开发[J]. 药学学报, 57(5): 1495–1505.]
- LI RZ, CAI J, YANG JB, et al., 2022. Plastid phylogenomics resolving phylogenetic placement and genera phylogeny of Sterculioideae (Malvaceae s. l.) [J]. Guihaia, 42(1): 25-38. [黎若竹, 蔡杰, 杨俊波, 等, 2022. 利用叶绿体基因 组数据解析锦葵科梧桐亚科的系统位置和属间关系 [J]. 广西植物, 42(1): 25-38.]
- LI ZB, REN T, DENG JJ, et al., 2022. Comparative analysis of the chloroplast genomes of three cultivars of *Hibiscus mutabilis* and its related species [J]. Guihaia, 42(12): 2007-2020. [李镇兵, 任婷, 邓姣姣, 等, 2022. 木芙蓉三 个品种及近缘种的叶绿体基因组比较分析[J]. 广西植 物, 42(12): 2007-2020.]

- LIN CS, CHEN JJW, HUANG YT, et al., 2015. The location and translocation of *ndh* genes of chloroplast origin in the Orchidaceae family[J]. Sci Rep, 5(1): 1-10.
- MICHAEL T, PASCAL L, TOMMASO P, et al., 2017. GeSeqversatile and accurate annotation of organelle genomes [J]. Nucleic Acids Res, 45(W1): W6–W11.
- PAN JJ, 2017. Analysis of genetic relationship of *Dendrobium huoshanense* population and its identification based on chloroplast genome [D]. Nanjing: Nanjing Normal University. [潘佳佳, 2017. 基于叶绿体基因组的霍山石 斛居群亲缘关系分析及其鉴定研究[D]. 南京: 南京师 范大学.]
- PRIDGEON AM, CRIBB PJ, CHASE MW, et al., 2012. Genera Orchidacearum: Vol. 2, Orchidoideae (Part 1) [M]. Oxford: Oxford University Press.
- QI D, CHANG YJ, CAO YF, et al., 2018. Genetic diversity and phylogenetics of pear (*Pyrus* L.) germplasm resources from south China revealed by chloroplast DNA [J]. Acta Hortic Sin, 45(12): 2308-2320. [齐丹, 常耀军, 曹玉芬, 等, 2018. 基于叶绿体 DNA 信息的南方梨属种质的遗传多样性 和演化分析[J]. 园艺学报, 45(12): 2308-2320.]
- RUHLMAN TA, JANSEN RK, 2014. The plastid genomes of flowering plants[J]. Meth Mol Biol, 1132: 3-38.
- SHI LC, CHEN HM, JIANG M, et al., 2019. CPGAVAS2, an integrated plastome sequence annotator and analyzer [J]. Nucleic Acids Res, 47(W1); W65-W73.
- TACHIBANA T, NISHIKAWA Y, KUBO N, et al., 2021. Morphological and genetic diversities of *Habenaria radiata* (Orchidaceae) in the Kinki area, Japan[J]. Int J Mol Sci, 22(1): 311.
- TANG CQ, QIU ZX, TAN C, et al., 2022. Sorbus koehneana (Rosaceae): its complete chloroplast genome and phylogenetic relationship with S. unguiculata [J]. Acta Hortic Sin, 49(3): 641-654. [汤晨茜, 仇志欣, 檀超, 等, 2022. 陕甘花楸叶绿体基因组及其与爪瓣花楸的系 统关系[J]. 园艺学报, 49(3): 641-654.]

- TEOH ES, 2021. Pecteilis Rafin. [M]. Cham: Springer International Publishing: 231–233.
- WAH LK, KUMAR P, GALE SW, 2021. 971. Pecteilis susannae: Orchidaceae [J]. Curtis's Bot Mag, 38(1): 57-71.
- WICK RR, SCHULTZ MB, ZOBEL J, et al., 2015. Bandage: interactive visualization of *de novo* genome assemblies [J]. Bioinformatics, 31(20): 3350-3352.
- WU ZY, RAVEN PH, HONG DY, 2009. Flora of China: Vol. 25 (Orchidaceae) [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press: 136-137.
- YANG J, HE J, WANG DB, et al., 2016. Progress in research and application of InDel markers[J]. Biodivers Sci, 24(2): 237-243.[杨洁,赫佳,王丹碧,等, 2016. InDel 标记的 研究和应用进展[J]. 生物多样性, 24(2): 237-243.]
- YANG JP, ZHU ZL, FAN YJ, et al., 2020. Comparative plastomic analysis of three *Bulbophyllum* medicinal plants and its significance in species identification[J]. Acta Pharm Sin, 55(11): 2736-2745. [杨嘉鹏,朱紫乐,范雅娟, 等, 2020. 三种石豆兰属药用植物的叶绿体基因组比较 分析及其在物种鉴定中的意义[J]. 药学学报, 55(11): 2736-2745.]
- YAO H, YANG P, ZHOU H, et al., 2015. Identification of medicinal plant *Dendrobium* based on the chloroplast *psbK-psbI* intergenic spacer[J]. Acta Pharm Sin, 50(6): 783–787. [姚辉,杨培,周红,等, 2015. 基于叶绿体 *psbK-psbI* 序列的石斛属药用植物鉴定[J]. 药学学报, 50(6): 783–787.]
- ZHANG D, GAO F, JAKOVLIC I, et al., 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Mol Ecol Resour, 20(1): 348-355.

(责任编辑 邓斯丽)