引用本文: | 白英俊, 李国瑞, 黄凤兰, 李 威, 风 兰, 李孟建, 陈永胜.CRISPR/Cas9技术在非模式植物中的应用进展[J].广西植物,2019,39(3):419-426.[点击复制] |
BAI Yingjun, LI Guorui, HUANG Fenglan, LI Wei,
Feng Lan, LI Mengjian, CHEN Yongsheng.CRISPR/Cas9 technology and its application in non-model plants[J].Guihaia,2019,39(3):419-426.[点击复制] |
|
|
|
本文已被:浏览 5402次 下载 1846次 |
码上扫一扫! |
|
CRISPR/Cas9技术在非模式植物中的应用进展 |
白英俊1, 李国瑞2,3,4,5, 黄凤兰2,3,4,5, 李 威1, 风 兰5, 李孟建5, 陈永胜1,2,3,4,5*
|
1. 内蒙古民族大学 农学院, 内蒙古 通辽 028000;2. 内蒙古自治区高校蓖麻产业工程技术研究中心, 内蒙古 通辽 028000;3. 内蒙古自治区蓖麻育种重点实验室, 内蒙古 通辽 028000;4. 内蒙古自治区蓖麻产业协同创新培育中心,
内蒙古 通辽 028000;5. 内蒙古民族大学 生命科学学院, 内蒙古 通辽 028000
|
|
摘要: |
基因组编辑技术的出现对植物遗传育种及作物性状的改良产生了深远意义。CRISPR/Cas(clustered regularly interspaced short palindromic repeat)是由成簇规律间隔短回文重复序列及其关联蛋白组成的免疫系统,其作用是原核生物(40%细菌和90%古细菌)用来抵抗外源遗传物质(噬菌体和病毒)的入侵。该技术实现了对基因组中多个靶基因同时进行编辑,与前两代基因编辑技术:锌指核酶(ZFNs)和转录激活因子样效应物核酶(TALENs)相比更加简单、廉价、高效。目前CRISPR/Cas9基因编辑技术已在拟南芥(Arabidopsis thaliana)、烟草(Nicotiana benthamiana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)、番茄(tomato)等模式植物和多数大作物中实现了定点基因组编辑,其应用范围不断地向各类植物扩展。但与模式植物和一些大作物相比,CRISPR/Cas9基因编辑技术在非模式植物,尤其在一些小作物的应用中存在如载体构建、靶点设计、脱靶检测、同源重组等问题有待进一步完善。该文对CRISPR/Cas9技术在非模式植物与小作物研究的最新研究进展进行了总结,讨论了该技术目前在非模式植物、小作物应用的局限性,在此基础上提出了相关改进策略,并对CRISPR/Cas9系统在非模式植物中的研究前景进行了展望。 |
关键词: CRISPR/Cas9 系统, 植物遗传育种, 基因组编辑, 非模式植物 |
DOI:10.11931/guihaia.gxzw201804004 |
分类号:Q943 |
文章编号:1000-3142(2019)03-0419-08 |
基金项目:国家自然科学基金(31460353); 内蒙古自治区科技创新引导资金项目(KJCX15002); 内蒙古民族大学科研立项项目(NMDSS1757)[Supported by the National Natural Science Foundation of China(31460353); Guidance Fund for Scientific and Technological Innovation(KJCX15002); Inner Mongolia University for Nationalities Scientific Research Program(NMDSS1757)]。 |
|
CRISPR/Cas9 technology and its application in non-model plants |
BAI Yingjun1, LI Guorui2,3,4,5, HUANG Fenglan2,3,4,5, LI Wei1,
Feng Lan5, LI Mengjian5, CHEN Yongsheng1,2,3,4,5*
|
1. College of Agronomy, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China;2. Inner Mongolia Industrial
Engineering Research Center of Universities for Castor, Tongliao 028000, Inner Mongolia, China;3. Inner Mongolia Key Laboratory of Castor
Breeding, Tongliao 028000, Inner Mongolia, China;4. Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000,
Inner Mongolia, China;5. College of Life Sciences, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China
1. College of Agronomy, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China; 2. Inner Mongolia Industrial
Engineering Research Center of Universities for Castor, Tongliao 028000, Inner Mongolia, China; 3. Inner Mongolia Key Laboratory of Castor
Breeding, Tongliao 028000, Inner Mongolia, China; 4. Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000,
Inner Mongolia, China; 5. College of Life Sciences, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China
|
Abstract: |
The emergence of genome editing technology has far-reaching significance for plant genetic breeding and improvement of crop traits. CRISPR/Cas(clustered ordered interspaced short palindromic repeat)is a cluster of regularly spaced short palindromic repeats used by prokaryotes(40% bacteria and 90% archaea)to resist the invasion of foreign genetic material(phage and viruses). The immune system consists of its associated proteins. CRISPR acts as an RNA-based acquired immune defense system. Its spacer sequence shares homology with phage or plasmid sequences and can use target-specific RNA to direct the Cas protein to target genes that are genetically incorrect in almost all organisms and cells. Compared with the gene editing technology of zinc finger nuclease ZFN and transcriptional activator-like effector ribozyme TALEN, it has the advantages of being efficient, cheap, and easy to operate, rapidly surpassing the previous technology, and becoming the hottest site-specific gene editing tool. The CRISPR/Cas9 gene editing technology has been successfully implemented in Arabidopsis thaliana, Nicotiana abenthamiana, Oryza sativa, Triticum aestivum, Zea mays, tomato and other large-scale plants. The application of fixed-point genome editing also extends to various types of plants. However, CRISPR/Cas9 gene editing technology has low application in non-patterns, especially in some small crops, compared with model species and some large crops. The problems such as vector construction, target design, off-target detection, and homologous recombination need to be further addressed. This paper summarizes recent advances in CRISPR/Cas9 technology and research on non-model plants and small crops, and discusses the limitations of this technology in the application of non-model plants and small crops. Finally, the research prospects of the CRISPR/Cas9 system were prospected, which provided references for related researchers. It is believed that with the further development of CRISPR/Cas9 technology, these problems will eventually be overcome, and its emergence will certainly bring about better development of plant genetic engineering. |
Key words: CRISPR / Cas9 system, plant genetic breeding, genome editing, non-model plants |
|
|
|
|
|