-
野桐属(Mallotus Lour.)属于大戟科(Euphorbiaceae)植物,全球共约140种,主要分布于东南亚和东亚地区。我国有36种,其中包括11个变种,主产于南方地区如广西、广东、湖南等。野桐属植物根部常入药,具有清热、止血、消炎、护肝、抗菌等功效(中国科学院中国植物志编辑委员会,1996;广西中药资源大典编辑委员会,2022),故常被用于治疗慢性肝炎、止血抗菌。野桐属植物中含有丰富的木脂素类化合物,其中的部分木脂素类化合物具有抗炎、抗菌、抗氧化、抗肿瘤等活性(陈德力等,2014;张艳军等,2017;Lai et al.,2021;霍晓敏等,2023)。
-
红叶野桐(Mallotus paxii),主要分布于广西、广东、湖南、湖北等地区。《中国药植图鉴》介绍其可“调整消化功能,治胃溃疡、十二指肠溃疡。”红叶野桐具有抗炎、抗菌等药用价值(Zhang et al.,2020)。迄今为止,对红叶野桐的化学成分研究鲜有报道。为了更加深入了解红叶野桐的化学成分,对红叶野桐叶75%乙醇提取物进行了分离纯化,从中分离得到12个木脂素类化合物。这些木脂素类化合物均为首次从该植物中分离得到,其结构式如图1所示。
-
1 材料与仪器
-
1.1 材料
-
实验药材于2021年7月采自广西钦州,经广西植物研究所黄俞淞研究员鉴定为红叶野桐(Mallotus paxii),植物标本(No. ID20210718)存放于广西师范大学化学与药学学院国家重点实验室天然产物研究室。
-
1.2 仪器和试剂
-
Waters e2695分析型HPLC(美国Waters);Bruker AVANCE 400/600 MHz 核磁共振仪(德国Merch Orugs &Biotechnology);Agilent 6545 Q-TOF LC-MS 高分辨质谱仪/1260型半制备HPLC(美国Agilent Technologies Inc);柱层析硅胶(37~74 μm)和薄层色谱硅胶板(G254)(青岛海洋化工有限公司);ODS填料、Sephadex LH-20填料、MCI填料(德国Merck Drugs &Biotechnology)(北京绿百草科技发展有限公司)。
-
2 方法
-
取干燥红叶野桐叶15.0 kg,砍碎,室温下用75%乙醇提取3次(3 × 50 L),合并提取液,过滤、浓缩,得浸膏1.3 kg。将浸膏分散于H2O中,依次用石油醚、乙酸乙酯、正丁醇萃取,得到相应溶剂的萃取物。将乙酸乙酯部分(300 g)用硅胶(200~300目)拌样,经硅胶柱层析,以二氯甲烷-甲醇(100∶0、95∶5、90∶10、85∶15、80∶20、70∶30、50∶50、0∶100,V/V)梯度洗脱,得到Fr.A-Fr.H共8个部分。
-
将Fr.E(28 g)经小孔树脂MCI柱层析,用H2O-CH3OH(100∶0→0∶100,V/V)洗脱,得到Fr.E.1-Fr.E.6共6个组分。Fr.E.3(3.5 g)用硅胶(200~300目)拌样,经硅胶柱层析,用CH2Cl2-CH3OH(100∶0→50∶50,V/V)进行梯度洗脱,得到Fr.E.3.1-Fr.E.3.6 共6个亚组分。Fr.E.3.1经Sephadex LH-20柱层析,利用CH3OH洗脱,得到组分Fr.E.3.1.1-Fr.E.3.1.5。组分Fr.E.3.1.2经C18半制备高效液相色谱(HPLC)(H2O-CH3CN 70∶30,V/V)洗脱,得化合物1(3.0 mg)、化合物3(4.5 mg)。组分Fr.E.3.1.3经C18半制备HPLC(H2O-CH3CN 70∶30,V/V)洗脱,得化合物2(3.7 mg)和化合物4(3.2 mg)。Fr.E.3.4经Sephadex LH-20柱层析,利用CH3OH洗脱,得到组分Fr.E.3.4.1-Fr.E.3.4.3。组分Fr.E.3.4.1经C18半制备HPLC(H2O-CH3CN 68∶32,V/V)洗脱,得化合物5(2.3 mg)、化合物8(2.9 mg)。组分Fr.E.3.4.3经C18半制备HPLC(H2O-CH3CN 68∶32,V/V)洗脱,得化合物6(3.3 mg)、化合物7(4.7 mg)、化合物9(1.8 mg)。Fr.E.5(4.5 g)用硅胶柱(200~300目)拌样,经硅胶柱层析,用CH2Cl2-CH3OH(100∶0→50∶50,V/V)进行梯度洗脱,得到Fr.E.5.1-Fr.E.5.7共5个亚组分。Fr.E.5.1经Sephadex LH-20柱层析,利用CH3OH洗脱,得到组分Fr.E.5.1.1-Fr.E.5.1.4。组分Fr.E.5.1.2经C18半制备HPLC(H2O-CH3CN 58∶42,V/V)洗脱,得化合物11(4.8 mg)。组分Fr.E.5.1.4经C18半制备HPLC(H2O-CH3CN 55∶45,V/V)洗脱,得化合物10 (3.7 mg)。Fr.E.5.5经Sephadex LH-20柱层析,利用CH3OH洗脱,得到组分Fr.E.5.5.1-Fr.E.5.5.4。组分Fr.E.5.5.2经C18半制备HPLC(H2O-CH3CN 50∶50,V/V)洗脱,得化合物12(3.1 mg)。
-
图1 红叶野桐叶中木脂素的结构式
-
Fig.1 Structural formulas of lignans from the leaves of Mallotus paxii
-
3 化合物结构鉴定
-
化合物1 淡黄色固体(CH3OH)。-3.0(c 0.05,CH3OH); IR(KBr)νmax 3 346,2 939,2 841,1 614,1 519,1 462,1 425,1 326,1 218,1 118,829,702 cm-1; mp.132~135℃。HR-ESI-MS m/z: 645.253 9[M + H]+(calcd for C33H41O13,645.254 7)。1H-NMR(600 MHz,CD3OD)δH: 6.65(2H,d,J=2.4 Hz,H-2,6),6.64(2H,br s,H-2′,H-6′),6.63(2H,d,J=3.6 Hz,H-2″,6″),4.88(1H,t,J = 5.4 Hz,H-7″),4.75(1H,br d,J=3.0 Hz,H-7′),4.69(1H,br d,J=3.0 Hz,H-7),4.28(3H,m,H-9a,9′a,8″),3.90(3H,m,H-9b,9′b,8″),3.85(6H,s,3,5-OCH3),3.83(6H,d,J=0.6 Hz,3′,5′-OCH3),3.81(6H,d,J=2.4 Hz,3″,5″-OCH3),3.62(1H,m,H-9″a),3.30(1H,overlap,H-9″b),3.15(2H,m,H-8,8′);13C-NMR(150 MHz,CD3OD)δC: 154.5(C-3,5),149.3(C-3′,5′),148.9(C-3″,5″),138.9(C-1),136.2(C-4,4′),135.8(C-4″),133.1(C-1′),133.0(C-1″),105.2(C-2″,6″),104.5(C-2′,6′),104.2(C-2,6),87.6(C-7),87.3(C-8″),87.2(C-7′),74.3(C-7″),73.0(C-9),72.9(C-9′),61.8(C-9″),56.8(3,5-OCH3),56.7(3′,5′,3″,5″-OCH3),55.7(C-8),55.5(C-8′)。以上数据与文献(刘祥忠等,2020)报道的基本一致,故鉴定化合物1为7″,8″-threo-buddlenol D。
-
化合物2 淡黄色固体(CH3OH)。-5.0(c 0.10,CH3OH); IR(KBr)νmax 3 441,2 939,2 842,1 613,1 519,1 462,1 326,1 218,1 119,830,702 cm-1; mp.142~144℃。HR-ESI-MS m/z: 645.254 1[M + H]+(calcd for C33H41O13,645.254 7)。1H-NMR(600 MHz,CD3OD)δH: 6.72(2H,s,H-2,6),6.70(2H,s,H-2′,6′),6.67(2H,s,H-2″,6″),4.99(1H,d,J = 6.7 Hz,H-7″),4.78(1H,d,J=4.9 Hz,H-7′),4.73(1H,d,J=4.8 Hz,H-7),4.33(1H,t,J=8.2 Hz,H-9a),4.28(1H,t,J=8.2 Hz,H-9′a),4.17(1H,m,H-8″),3.94(1H,d,J=8.2 Hz,H-9b),3.92(1H,d,J=8.2 Hz,H-9′b),3.89(6H,s,3,5-OCH3),3.87(6H,s,3′,5′-OCH3),3.83(6H,s,3″,5″-OCH3),3.80(1H,ddd,J=11.8,4.2,1.2 Hz,H-9″a),3.43(1H,ddd,J=11.8,4.2,1.2 Hz,H-9″b),3.13(2H,m,H-8,8′);13C-NMR(150 MHz,CD3OD)δC: 154.5(C-3,5),149.3(C-3′,5′),148.8(C-3″,5″),138.9(C-1),136.2(C-4,4′),135.8(C-4″),133.1(C-1′),132.9(C-1″),105.2(C-2″,6″),104.6(C-2′,6′),104.1(C-2,6),88.4(C-8″),87.6(C-7),87.2(C-7′),74.4(C-7″),73.0(C-9),72.9(C-9′),61.8(C-9″),56.8(3,5-OCH3),56.7(3′,5′,3″,5″-OCH3),55.7(C-8),55.4(C-8′)。以上数据与文献(刘祥忠等,2020)报道的基本一致,故鉴定化合物2为buddlenol D。
-
化合物3 淡黄色固体(CH3OH)。-3.0(c 0.05,CH3OH); IR(KBr)νmax 3 303,2 962,1 593,1 518,1 463,1 262,1 224,1 113,1 028,803 cm-1; mp.164~166℃。HR-ESI-MS m/z: 615.222 7[M + H]+(calcd for C32H9O12,615.224 2)。1H-NMR(600 MHz,CD3OD)δH: 6.96(1H,d,J = 1.7 Hz,H-2″),6.84(1H,dd,J = 8.2,1.8 Hz,H-5″),6.75(1H,d,J = 8.2 Hz,H-6″),6.67(2H,br s,H-2′,6′),6.64(2H,s,H-2,6),4.95(1H,d,J=7.3 Hz,H-7″),4.73(1H,d,J =4.4 Hz,H-7),4.71(1H,d,J=4.9 Hz,H-7′),4.29(2H,m,H-9a,9′a),4.10(1H,m,H-8″),3.95(1H,d,J =3.4 Hz,H-9b),3.92(1H,d,J =3.4 Hz,H-9′b),3.88(6H,s,3,5-OCH3),3.86(6H,s,3′,5′-OCH3),3.81(3H,s,3″-OCH3),3.77(1H,ddd,J=12.1,4.2,1.8 Hz,H-9″a),3.34(1H,ddd,J =12.1,4.2,1.8 Hz,H-9″b),3.12(2H,m,H-8,8′); 13C-NMR(150 MHz,CD3OD)δC: 154.5(C-3,5),149.3(C-3′,5′),148.6(C-3″),147.1(C-4″),139.0(C-1),136.7(C-4′),136.2(C-4),133.4(C-1″),133.0(C-1′),120.7(C-6″),115.8(C-5″),111.6(C-2″),104.5(C-2′,6′),104.2(C-2,6),88.7(C-8″),87.6(C-7),87.3(C-7′),74.4(C-7″),73.0(C-9),72.9(C-9′),61.8(C-9″),56.8(3,5-OCH3),56.7(3′,5′-OCH3),56.3(3″-OCH3),55.8(C-8),55.4(C-8′)。以上数据与文献(刘祥忠等,2020)报道的基本一致,故鉴定化合物3为7″,8″-threo-buddlenol C。
-
化合物4 白色无定型粉末(CH3OH)。-5.0(c 0.10,CH3OH); IR(KBr)νmax 3 450,2 940,2 842,1 593,1 518,1 463,1 425,1 368,1 328,1 273,1 221,1 121,1 059,1 033,826,702 cm-1; mp.118~119℃。HR-ESI-MS m/z: 615.223 8[M + H]+(calcd for C32H39O12,615.224 2)。1H-NMR(600 MHz,CD3OD)δH: 6.96(1H,dd,J = 4.2 Hz,H-2″),6.75(1H,br d,J = 7.8 Hz,H-5″),6.72(1H,dd,J=7.8,1.8 Hz,H-6″),6.67(2H,br s,H-2′,6′),6.64(2H,s,H-2,6),4.95(1H,d,J=4.3 Hz,H-7″),4.73(1H,d,J =2.4 Hz,H-7),4.71(1H,d,J=3.5 Hz,H-7′),4.29(3H,m,H-8″,9a,9′a),3.93(1H,m,H-9″a),3.90(2H,m,H-9b,9′b),3.87(6H,s,3,5-OCH3),3.84(9H,s,3′,5′,3″-OCH3),3.55(1H,dt,J =12.0,1.8 Hz,H-9″b),3.14(2H,m,H-8,8′); 13C-NMR(150 MHz,CD3OD)δC: 154.5(C-3,5),149.3(C-3′,5′),148.5(C-3″),147.0(C-4″),138.9(C-1),136.3(C-4′),136.2(C-4),133.6(C-1″),133.0(C-1′),120.7(C-6″),115.7(C-5″),111.5(C-2″),104.4(C-2′,6′),104.3(C-2,6),87.6(C-7),87.3(C-8″),87.2(C-7′),74.2(C-7″),73.0(C-9),72.9(C-9′),61.9(C-9″),56.8(3,5-OCH3),56.7(3′,5′-OCH3),56.3(3″-OCH3),55.7(C-8),55.5(C-8′)。以上数据与文献(刘祥忠等,2020)报道的基本一致,故鉴定化合物4为buddlenol C。
-
化合物5 无色胶状物(CH3OH)。+4.7(c 0.10,CHCl3); IR(KBr)νmax 3 400,1 610,1 505 cm-1; mp.180~182℃。HR-ESI-MS m/z: 441.152 1[M + Na]+(calcd for C22H26NaO8,441.152 5)。1H-NMR(600 MHz,CD3OD)δH: 6.63(4H,s,H-2′,6′,2″,6″),4.69(2H,d,J=4.1 Hz,H-2,6),4.24(2H,dd,J = 9.0,6.8 Hz,H-4a,8a),3.85(2H,dd,J=9.2,3.3 Hz,H-4b,8b),3.82(12H,s,3′,5′,3″,5″-OCH3),3.12(2H,m,H-1,5); 13C-NMR(150 MHz,CD3OD)δC: 149.3(C-3′,5′,3″,5″),136.1(C-4′,4″),133.1(C-1′,1″),104.4(C-2′,6′,2″,6″),87.6(C-2,6),72.7(C-4,8),57.8(3′,5′,3″,5″-OCH3),55.5(C-1,5)。以上数据与文献(Hyun et al.,2009)报道的基本一致,故鉴定化合物5为(+)-丁香脂素。
-
化合物6 黄色无定型粉末(CH3OH)。-118.9(c 0.10,CH3OH); IR(KBr)νmax 3 324,1 595,1 501 cm-1; mp.141~142℃。HR-ESI-MS m/z: 359.149 1[M + H]+(calcd for C20H23O6,359.149 5)。1H-NMR(600 MHz,CD3OD)δH: 6.95(1H,d,J=1.8 Hz,H-2),6.93(1H,d,J=1.9 Hz,H-2′),6.78(2H,m,H-5,6),6.75(2H,m,H-5′,6′),4.83(1H,d,J=6.0 Hz,H-7),4.39(1H,d,J=7.0 Hz,H-7′),4.08(1H,d,J=9.2 Hz,H-9′b),3.84(3H,s,3-OCH3),3.82(1H,m,H-9′a),3.77(2H,m,H-9),3.36(1H,m,H-8),2.92(1H,m,H-8); 13C-NMR(150 MHz,CD3OD)δC: 149.3(C-4′),148.9(C-4),147.6(C-3′),146.8(C-3),133.8(C-1′),131.5(C-1),120.2(C-6′),119.5(C-6),116.1(C-5′),116.0(C-5),110.9(C-2″),110.6(C-2),89.5(C-7′),83.7(C-5),72.1(C-9′),70.8(C-9),56.5(3,3′-OCH3),55.8(C-8′),51.4(C-8)。以上数据与文献(申海艳等,2012)报道的基本一致,故鉴定化合物6为表松脂醇。
-
化合物7 黄色无定型粉末(CH3OH)。-28.5(c 0.10,CH3OH); IR(KBr)νmax 3 327,1 598,1 507 cm-1; mp.119~120℃。HR-ESI-MS m/z: 359.134 2[M-H]-(calcd for C20H21O6,359.133 8)。1H-NMR(600 MHz,CD3OD)δH: 6.93(2H,d,J=1.8 Hz,H-2,20),6.78(2H,dd,J=8.4,2.0 Hz,H-6,6′),6.75(2H,d,J=8.4 Hz,H-5,5′),4.69(2H,d,J=4.4 Hz,H-7,7′),4.20(2H,dd,J=9.2,6.8 Hz,H-9a,9′a),3.84(6H,s,3,3′-OCH3),3.75(2H,dd,J=9.2,6.3 Hz,H-9b,9′b),3.11(2H,m,H-8,H-8′); 13C-NMR(150 MHz,CD3OD)δC: 149.1(C-3,3′),147.3(C-4,4′),133.8(C-1,1′),120.1(C-6,6′),116.1(C-5,5′),110.9(C-2,2′),87.5(C-7,7′),72.6(C-9,9′),56.4(3,3′-OCH3),55.4(C-8,8′)。以上数据与文献(In et al.,2015)报道的基本一致,故鉴定化合物7为松脂素。
-
化合物8 白色晶体(CH3OH)。+34.5(c 0.47,CHCl3); IR(KBr)νmax 3 076,2 992,2 931,2 877,2 798,1 855,1 746,1 608,1 503,1 488,1 446,1 364,1 256,1 241,1 206,1 039,1 014,934,882,811,785,744 cm-1; mp.168~193℃。HR-ESI-MS m/z: 413.125 7[M + H]+(calcd for C22H21O8,413.123 6)。1H-NMR(500 MHz,CDCl3)δH: 6.92(1H,d,J=1.2 Hz,H-2″),6.86~6.74(5H,m,H-2′,6′,6″,5′,5″),5.97(2H,s,H-7′),5.94(2H,d,J=1.0 Hz,H-7″),5.03(1H,s,H-2b),4.72(1H,d,J=5.0 Hz,H-6b),4.41(2H,dd,J=14.1,7.2 Hz,H-4a,8a),4.22(1H,d,J=10.8 Hz,H-8b),3.76(1H,dd,J=9.4,4.8 Hz,H-4b),3.28(1H,dt,J=7.6,4.9 Hz,H-5a),1.75(3H,s,-O=C-CH3); 13C-NMR(125 MHz,CDCl3)δC: 169.5(C=O),148.2(C-4″),147.7(C-3″),147.5(C-3′,4′),134.1(C-1″),130.3(C-1′),122.4(C-6′),120.0(C-6″),109.0(C-2′),108.3(C-5″),108.1(C-5′),106.9(C-2″),101.3(C-7″),101.2(C-7′),97.3(C-1),86.9(C-2),85.9(C-6),75.3(C-8),70.0(C-4),59.1(C-5),21.1(-CH3-C=O)。以上数据与文献(Jiang et al.,2000)报道的基本一致,故鉴定化合物8为1-acetoxyl-2e,6e-dipiperonyl-3,7-dioxabicyclo-[3,3,0]-octane。
-
化合物9 淡黄色粉末(CH3OH)。+34.5(c 0.47,CH3OH); IR(KBr)νmax 3 322,1 737 cm-1; mp.112~114℃。HR-ESI-MS m/z: 435.156 3[M + H]+(calcd for C22H26O9,435.157 7)。1H-NMR(600 MHz,CD3OD)δH: 7.38(2H,s,H-2,H-6),6.71(2H,s,H-2′,6′),4.63(1H,d,J=8.2 Hz,H-7′),4.23(1H,m,H-8),4.22(1H,dd,J=8.6,4.7 Hz,H-9a),4.17(1H,t,J=8.4 Hz,H-9b),3.91(6H,s,3,3′-OMe),3.84(6H,s,5,5′-OMe),3.66(2H,dd,J=12.8,4.9 Hz,H-9′),2.63(1H,m,H-8′); 13C-NMR(150 MHz,CD3OD)δC: 200.4(C-7),149.2(C-3,C-5),149.1(C-3′,C-5′),142.3(C-4),136.3(C-4′),132.9(C-1′),128.7(C-1),107.7(C-2,6),105.1(C-2′,6′),85.5(C-7′),71.6(C-9),61.4(C-9′),56.9(3,3′,5,5′-OMe),55.2(C-8′),50.1(C-8)。以上数据与文献(贾自立等,2022)报道的基本一致,故鉴定化合物9为刺五加酮。
-
化合物10 白色无定形粉末(CH3OH)。-19.3(c 0.60,CH3OH); IR(KBr)νmax 3 312,1 598,1 515 cm-1; mp.161~162℃。HR-ESI-MS m/z: 545.200 1 [M+Na]+(calcd for C26H34O11Na,545.199 9)。1H-NMR(400 MHz,CD3OD)δH: 6.98(1H,d,J=3.6 Hz,H-2),6.82(1H,dd,J=7.8,3.6 Hz,H-6),6.79(1H,d,J=7.8 Hz,H-5),6.55(1H,d,J=1.8 Hz,H-2″),6.39(1H,d,J=1.8 Hz,H-6′),4.94(1H,d,J=7.2 Hz,H-1″),4.87(1H,d,J=7.2 Hz,H-7),4.07~4.04(1H,m,H-8),3.77(3H,s,3-OMe),3.65(1H,d,J=12.0 Hz,H-6″b),3.54(1H,dd,J=12.0,4.2 Hz,H-9b),3.47(1H,dd,J=12.0,6.6 Hz,H-6″a),3.39(2H,t,J=6.6 Hz,H-9′a,9′b),3.33(1H,dd,J=12.0,4.2 Hz,H-9a),3.30~3.27(1H,m,H-3″),3.26~3.24(2H,m,H-2″,5″),3.19~3.16(1H,m,H-4″),2.48~2.45(2H,m,H-7′),1.68~1.65(2H,m,H-8′); 13C-NMR(100 MHz,CD3OD)δC: 150.7(C-3′),148.9(C-3),147.2(C-4′),145.9(C-4),138.7(C-1′),133.0(C-1),122.2(C-6),119.5(C-6′),117.9(C-5′),116.2(C-5),113.4(C-2),111.2(C-2′),102.7(C-1″),83.8(C-7′),78.1(C-3″),77.8(C-5″),74.9(C-2″),73.7(C-9),71.3(C-4″),62.6(C-6″),59.0(C-9′),56.7(3′-OMe),56.5(3-OMe),54.2(C-8′),45.5(C-8),35.4(C-7)。以上数据与文献(Sugiyama &Bailleul,1993)报道的基本一致,故鉴定化合物10为落叶松脂醇-4′-O-β-D-吡喃葡萄糖苷。
-
化合物11 白色粉末(CH3OH)。-21.4(c 0.10,CH3OH); IR(KBr)νmax 3 308,2 948,1 716,1 645 cm-1; mp.119~120℃。HR-ESI-MS m/z: 361.167 5 [M+H]+(calcd for C20H25O6,361.165 1)。1H-NMR(400 MHz,CD3OD)δH: 6.95(1H,d,J=1.8 Hz,H-2′),6.82(1H,dd,J=8.2,1.8 Hz,H-6′),6.76(1H,d,J=8.1 Hz,H-5′),6.72(2H,s,H-4,6),5.49(1H,d,J=6.3 Hz,H-7′),3.85(3H,s,3-OMe),3.81(3H,s,3′-OMe),3.58(1H,t,J=6.5 Hz,H-9),3.47(1H,dt,J=6.3,6.2 Hz,H-8′),2.62(1H,t,J=7.7 Hz,H-7),1.81(1H,tt,J=7.7,6.5 Hz,H-8); 13C-NMR(100 MHz,CD3OD)δC: 149.1(C-3′),147.5(C-4′),147.4(C-4),145.2(C-3),136.9(C-1),134.9(C-1′),129.8(C-5),119.7(C-6′),117.7(C-6),116.2(C-5′),114.1(C-2),110.5(C-2′),88.8(C-7′),64.9(C-9′),62.2(C-9),56.7(7-OMe),56.4(3′-OMe),55.4(C-8′),35.7(C-8),32.9(C-7)。以上数据与文献(Seidel et al.,2000)报道的基本一致,故鉴定化合物11为rel-(2α,3β)-7-O-methylcedrusin。
-
化合物12 白色粉末(CH3OH)。+78.4(c 0.19,CH3OH); IR(KBr)νmax 3 303,2 961,1 706,1 648,1 514,1 449,1 259,1 076,1 032 cm-1; mp.144~145℃。HR-ESI-MS m/z: 523.216 6 [M+H]+(calcd for C26H35O11,523.217 9)。1H-NMR(400 MHz,CD3OD)δH: 7.15(1H,d,J=8.4 Hz,H-5′),7.00(1H,d,J=1.8 Hz,H-2′),6.92(1H,dd,J=8.4,1.8 Hz,H-6′),6.73(1H,s,H-2),6.71(1H,s,H-6),5.57(1H,d,J=5.9 Hz,H-7′),4.84(1H,d,J=7.2 Hz,H-1″),3.85(3H,s,7-OMe),3.82(3H,s,3-OMe),2.62(2H,dd,J=8.1,7.3 Hz,H-7),1.83(2H,m,H-8); 13C-NMR(100 MHz,CD3OD)δC: 150.8(C-3′),147.6(C-4′),147.5(C-4),145.1(C-3),138.3(C-1′),137.1(C-5),129.5(C-1),119.5(C-5′),117.9(C-6,6′),114.1(C-2),111.1(C-2′),102.6(C-1″),88.5(C-7′),78.1(C-3″),77.7(C-5″),74.8(C-2″),71.2(C-4″),64.9(C-9′),62.4(C-6″),62.2(C-9),56.7(7-OMe),56.5(3-OMe),55.5(C-8′),35.7(C-8),32.9(C-7)。以上数据与文献(Xiang et al.,2004)报道的基本一致,故鉴定化合物12为dihydrodehydrodiconiferyl-alcohol4′-O-β-D-glucoside。
-
4 讨论与结论
-
本研究对红叶野桐叶75%乙醇提取物的乙酸乙酯部位的化学成分进行分离纯化,得到12个木脂素类化合物,这些化合物均为首次从该植物中分离得到。这些化合物都具有良好的降血脂、抗病毒、抗肿瘤、抗骨质疏松、抗氧化、抗炎等活性。其中,表松脂醇(6)可以显著增强由高密度脂蛋白(HDL)介导的胆固醇流出,能够显著抑制RAW264.7细胞由氧化低密度脂蛋白(ox-LDL)诱导的胆固醇累积,同时还能够显著抑制胆固醇的流入,并且可以上调过氧化物增殖激活受体γ(PPARγ)、肝X受体α(LXRα)、ATP结合盒转运子A1(ABCA1)和ATP结合盒转运子G1(ABCG1)基因mRNA的水平,下调清道夫受体A1(SR-A1)和A2(SR-A2)基因mRNA的水平,在防治动脉粥样硬化方面具有潜在作用(王帅等,2015);落叶松脂醇-4′-O-β-D-吡喃葡萄糖苷(10)对甲型流感病毒诱导的MDCK细胞病变有明显抑制作用,可以降低流感病毒诱导的IL-6、TNF-α、MCP-1、IP-10、IL-8和IFN-α的表达(Li et al.,2015);松脂素(7)与(+)-丁香脂素(5)都对Hela细胞有较好的抑制作用(张宝等,2023);刺五加酮(9)对宫颈癌细胞、人肝癌细胞、小鼠乳腺癌细胞、人肺癌细胞都具有一定的抑制活性(尹伟等,2018);松脂素(7)可以通过促进OPG分泌或通过抑制RANKL表达来促进成骨细胞的增殖和分化以达到抗骨质疏松的作用(胡倩影等,2018);(+)-丁香脂素(5)可以通过抗氧化应激、修复线粒体功能及DNA损伤等通路来降低谷氨酸钠诱导的神经细胞凋亡以达到对谷氨酸钠诱导的SH-SY5Y神经细胞的兴奋性损伤的保护作用(严秋霞等,2019)。红叶野桐叶中含有丰富且活性良好的木脂素类化合物,说明其良好的药用价值可能与这些木脂素类化合物有关。
-
参考文献
-
CHEN DL, ZHANG XP, WU HF, et al. , 2014. Research progress on chemical constituents of plants from Mallotus Lour. and their pharmacological activities [J]. Chin Tradit Herb Drugs, 45(15): 2248-2264. [陈德力, 张小坡, 吴海峰, 等, 2014. 野桐属植物化学成分及其药理活性研究进展 [J]. 中草药, 45(15): 2248-2264. ]
-
Editorial Committee of Flora of China Chinese Academy of Sciences, 1996. Flora Reipublicase Popularis Sinicae: Vol. 44 [M]. Beijing: Science Press: 40. [中国科学院中国植物志编辑委员会, 1996. 中国植物志: 第44卷 [M]. 北京: 科学出版社: 40. ]
-
Editorial Committee of Guangxi Traditional Chinese Medicine Resources, 2022. Guangxi traditional Chinese medicine resources pharmacopoeia: Vol. Quanzhou [M]. Nanning: Guangxi Science and Technology Press: 382. [广西中药资源大典编辑委员会, 2022. 广西中药资源大典: 全州卷 [M]. 南宁: 广西科学技术出版社: 382. ]
-
HU QY, YIN RL, WANG YF, et al. , 2018. Effect of pinoresinol diglucoside and pinoresinol from Eucommiae Cortex on expression of OPG and RANKL in osteoblasts [J]. Chin J Exp Tradit Med Form, 24(10): 181-186. [胡倩影, 尹瑞林, 王一飞, 等, 2018. 杜仲中松脂素二葡萄糖苷和松脂素对成骨细胞中OPG和RANKL表达的影响 [J]. 中国实验方剂学杂志, 24(10): 181-186. ]
-
HUO XM, LI LJ, RAN JQ, et al. , 2023. Chemical constituents and antibacterial activities of Clerodendrum cyrtophyllum in Guizhou [J]. Guihaia, 43(1): 155-164. [霍晓敏, 李丽君, 冉坚强, 等, 2023. 黔产大青化学成分及其抗菌活性研究 [J]. 广西植物, 43(1): 155-164. ]
-
HYUN BP, KYU HL, KI HK, et al. , 2009. Lignans from the roots of Berberis amurensis [J]. Nat Prod Sci, 15(1): 17-21.
-
IN SJ, SEO KH, SONG NY, et al. , 2015. Lignans and neolignans from the stems of Vibrunum erosum and their neuroprotective and anti-inflammatory activity [J]. Arch Pharmacal Res, 38(1): 26-34.
-
JIA ZL, TIAN WJ, YANG RJ, et al. , 2022. Lignans from Agrimonia pilosa [J]. Chin J Chin Mat Med, 47(11): 2982-2988. [贾自立, 田文静, 杨任靖, 等, 2022. 仙鹤草中木脂素类成分的研究 [J]. 中国中药杂志, 47(11): 2982-2988. ]
-
JIANG B, CHEN XR, LU ZQ, et al. , 2000. A new lignan from Isodon lophanthoides var. gerardianus (Labiatae) [J]. Acta Bot Sin, 42(1): 95-97.
-
LAI P, ZHANG XC, ZHU L, et al. , 2021. Chemical composition, and evaluation of antibacterial, antibiofilm and synergistic effects with conventional antibiotics of essential oil from Mallotus repandus [J]. Rec Nat Prod, 15(4): 324-329.
-
LI J, ZHOU BX, LI CF, et al. , 2015. Lariciresinol-4-O-β-D-glucopyranoside from the root of Isatis indigotica inhibits influenza a virus-induced pro-inflammatory response [J]. J Ethnopharmacol, 174: 379-386.
-
LIU XZ, LU Q, HE SL, et al. , 2020. Isolation and identification of lignans from Vernonia amygdalina Delile [J]. Chin J Med Chem, 30(12): 738-744. [刘祥忠, 卢茜, 何守伦, 等, 2020. 扁桃斑鸠菊中木脂素类化合物的分离与鉴定 [J]. 中国药物化学杂志, 30(12): 738-744. ]
-
SEIDEL V, BAILLEUL F, WATERAN PG, et al. , 2000. Novel oligorhamnosides from the stem bark of Cleistopholis glauca [J]. J Nat Prod, 63(1): 6-11.
-
SHEN HY, DAI HF, ZHAO YX, et al. , 2012. Antibacterial components from dragon's blood of Dracaena cambodiana [J]. Lishizhen Med Mat Med, 23(12): 2954-2956. [申海艳, 戴好富, 赵友兴, 等, 2012. 海南血竭的抗菌活性成分研究 [J]. 时珍国医国药, 23(12): 2954-2956. ]
-
SUGIYAMA M, KIKUCHI M, 1993. Characterization of lariciresinol glucosides from Osmanthus aslaticus [J]. Heterocycles, 36(1): 117-121.
-
WANG S, LIU MY, ZHANG X, et al. , 2015. Inhibition of epipinoresinol on macrophage foam and potential mechanisms [J]. Chin Tradit Herb Drugs, 46(18): 2737-2742. [王帅, 刘明玥, 张雪, 等, 2015. 表松脂醇抑制巨噬细胞泡沫化的作用及潜在机制研究 [J]. 中草药, 46(18): 2737-2742. ]
-
XIANG Y, YANG SP, ZHAN ZJ, et al. , 2004. Terpenoids and phenols from Taiwania flousiana [J]. Acta Bot Sin, 46(8): 1002-1008.
-
YAN QX, LI YM, FAN YH, et al. , 2019. Protective effect of syringaresinol on excitatory damage induced by sodium glutamate in SH-SY5Y cells [J]. Chin J Exp Tradit Med Form, 25(18): 76-82. [严秋霞, 李艳梅, 范艳华, 等, 2019. 丁香脂素对谷氨酸钠诱导的SH-SY5Y细胞兴奋性损伤的保护作用 [J]. 中国实验方剂学杂志, 25(18): 76-82. ]
-
YIN W, YU Y, MA QL, et al. , 2018. Study on chemical constituents and antitumor activities of leaves of Osmanthus fragrans [J]. J Trop Subtrop Bot, 26(2): 178-184. [尹伟, 郁阳, 马秋丽, 等, 2018. 桂花叶的化学成分及抗肿瘤活性研究 [J]. 热带亚热带植物学报, 26(2): 178-184. ]
-
ZHANG B, YANG H, KUANG WM, et al. , 2023. Study on lignans from Potentilla kleiniana and their cytotoxicity [J/OL]. Guihaia: 1-10 [2023-08-29]. http: //kns. cnki. net/kcms/detail/45. 1134. q. 20230808. 0953. 004. html. [张宝, 杨红, 匡维米, 等, 2023. 蛇含委陵菜的木脂素类成分及其细胞毒活性研究 [J/OL]. 广西植物: 1-10 [2023-08-29]. http: //kns. cnki. net/kcms/detail/45. 1134. q. 20230808. 0953. 004. html. ]
-
ZHANG YJ, CHEN HC, ZHOU DX, et al. , 2020. Paxiiones A-D, four new flavonoids from the stem of Mallotus paxii Pamp. [J]. Phytochem Lett, 37: 70-74.
-
ZHANG YJ, NIE H, HE RJ, et al. , 2017. Coumarins from Mallotus conspurcatus [J]. Chin Pharm J, 52(21): 1889-1892. [张艳军, 聂辉, 何瑞杰, 等, 2017. 桂野桐中香豆素类化学成分的研究 [J]. 中国药学杂志, 52(21): 1889-1892. ]
-
摘要
为探究红叶野桐(Mallotus paxii )叶的化学成分,该研究采用正相硅胶、反相硅胶C18、葡聚糖凝胶Sephadex LH-20、反相半制备高效液相等色谱方法对红叶野桐叶提取物进行分离、纯化,利用1H-NMR、13C-NMR、HR-ESI-MS等波谱数据,结合参考文献,鉴定化合物的结构。结果表明:从红叶野桐叶中分离得到12个木脂素类化合物,分别是7″,8″-threo-buddlenol D (1)、buddlenol D (2)、7″,8″-threo-buddlenol C (3)、buddlenol C (4)、(+)-丁香脂素 (5)、表松脂醇 (6)、松脂素 (7)、1-acetoxyl-2e,6e-dipiperonyl-3,7-dioxabicyclo-[3,3,0]-octane (8)、刺五加酮(9)、落叶松脂醇-4′-O-β-D-吡喃葡萄糖苷 (10)、rel-(2α,3β)-7-O-methylcedrusin (11)和dihydrodehydrodiconiferyl-alcohol 4′-O-β-D-glucoside(12)。以上木脂素类化合物均为首次从该植物中分离得到,部分木脂素类化合物具有良好的药理活性如抗菌、抗肿瘤、抗病毒等。该研究结果表明,红叶野桐叶中含有丰富且活性良好的木脂素类化合物,说明其良好的药用价值可能与这些木脂素类化合物有关。
Abstract
Mallotus paxii is a Euphorbiaceae plant belonging to the genus Mallotus Lour. This genus mainly distributes in tropical and subtropical Asia, and there are about 140 species in the world. There are 36 species in China, including 11 varieties, which mainly grow in Guangxi, Guangdong and Hainan. To study the compounds of Mallotus paxii, twelve lignans were isolated from the leaves of M. paxii by means of various column chromatographic techniques, including silica gel, ODS, Sephadex LH-20 and preparative RP-HPLC methods. The structures of the isolated lignans were determined on the basis of analyses of spectroscopic methods (1H- and 13C-NMR spectroscopy), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and comparison of their spectroscopic data with previously reported data. The lignans were identified as 7″,8″-threo-buddlenol D (1), buddlenol D (2), 7″,8″-threo-buddlenol C (3), buddlenol C (4), (+)-syringaresinol (5), epipinoresinol (6), pinoresinol (7), 1-acetoxyl-2e,6e-dipiperonyl-3,7-dioxabicyclo-[3,3,0]-octane (8), ciwujiatone (9), lariciresinol-4′-O-β-D-glucopyranoside (10), rel-(2α,3β)-7-O-methylcedrusin (11), and dihydrodehydrodiconiferyl-alcohol 4′-O-β-D-glucoside (12). All compounds were isolated from M. paxii for the first time. Some lignans have good pharmacological activities such as antibacterial, anti-inflammatory, anti-tumor and anti-virus. The results of this study show that the leaves of M. paxii are rich in lignans with good activity, indicating that its good medicinal value may be related to these lignans.
Keywords
Mallotus ; Mallotus paxii ; (+)-syringaresinol ; ciwujiatone ; pinoresinol