en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

席守鸿(1996—),硕士研究生,主要从事森林土壤生态研究,(E-mail)386343976@qq.com。

通讯作者:

覃林,博士,副教授,主要从事森林生态与经营研究,(E-mail)nilniq@gxu.edu.cn。

中图分类号:Q948

文献标识码:A

文章编号:1000-3142(2024)07-1232-13

DOI:10.11931/guihaia.gxzw202211020

参考文献
AI-YAHYA'EI MN, OEHL F, VALLINA M, et al. , 2011. Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia [J]. Mycorrhiza, 21(3): 195-209.
参考文献
ASLANI F, GEISEN S, NING D, et al. , 2022. Towards revealing the global diversity and community assembly of soil eukaryotes [J]. Ecol Lett, 25(1): 65-76.
参考文献
BARBI F, PRUDENT E, VALLON L, et al. , 2016. Tree species select diverse soil fungal communities expressing different sets of lignocellulolytic enzyme-encoding genes [J]. Soil Biol Biochem, 100: 149-159.
参考文献
CHEN L, XIANG WH, WU HL, et al. , 2019. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests [J]. Appl Microbiol Biotechnol, 103(13): 5421-5433.
参考文献
CHEN LR, LIN JN, SHEN R, et al. , 2022. Characteristic of soil fungal community and its impact factors of Pinus massoniana forests in the Three Gorges Reservoir Region [J]. Chin J Appl Ecol, 33(9): 2397-2404. [陈历睿, 林佳妮, 沈蓉, 等, 2022. 三峡库区马尾松林土壤真菌群落特征及影响因素 [J]. 应用生态学报, 33(9): 2397-2404. ]
参考文献
CHEN WQ, WANG JY, MENG ZX, et al. , 2020. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands [J]. New Phytol, 226(4): 947-949.
参考文献
CHEN XB, ZHU DQ, ZHAO CC, et al. , 2019. Community composition and diversity of fungi in soils under different types of Pinus koraiensis forests [J]. Acta Ped Sin, 56(5): 1221-1234. [陈秀波, 朱德全, 赵晨晨, 等, 2019. 不同林型红松林土壤真菌群落组成和多样性 [J]. 土壤学报, 56(5): 1221-1234. ]
参考文献
CHEN ZJ, GAO SK, CHEN Y, et al. , 2020. Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest [J]. Acta Ecol Sin, 40(11): 3813-3821. [陈祖静, 高尚坤, 陈园, 等, 2020. 短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响 [J]. 生态学报, 40(11): 3813-3821. ]
参考文献
CLAUDIA C, LAURA S, EMILIO G, et al. , 2022. Humidity and low pH boost occurrence of Onygenales fungi in soil at global scale [J]. Soil Biol Biochem, 167: 108617.
参考文献
DENG FC, QIN QY, YAN Q, et al. , 2013. Variation of soil fertility in Eucalyptus plantation and its soil fertility comprehensive evaluation [J]. Guangxi For Sci, 42(2): 148-152. [邓富春, 覃其云, 颜权, 等, 2013. 桉树人工林土壤肥力变化及其综合评价 [J]. 广西林业科学, 42(2): 148-152. ]
参考文献
DENG JJ, ZHU WX, ZHANG Y, et al. , 2020. Studies on soil fungal community composition and function characteristics of different plantations of sandy area, northwest Liaoning Province [J]. For Res, 33(1): 44-54. [邓娇娇, 朱文旭, 张岩, 等, 2020. 辽西北风沙区不同人工林土壤真菌群落结构及功能特征 [J]. 林业科学研究, 33(1): 44-54. ]
参考文献
DONG AR, LÜ GZ, WU QY, et al. , 2004. Diversity of soil fungi in Liangshui Natural Reserve, Xiaoxing’anling forest region [J]. J NE For Univ, 32(1): 8-10. [董爱荣, 吕国忠, 吴庆禹, 等, 2004. 小兴安岭凉水自然保护区森林土壤真菌的多样性 [J]. 东北林业大学学报, 32(1): 8-10. ]
参考文献
FERRIER S, MANION G, ELITH J, et al. , 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment [J]. Divers Distrib, 13(3): 252-264.
参考文献
FREY SD, 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics [J]. Ann Rev Ecol Evol Syst, 50(1): 237-259.
参考文献
GE W, DONG CB, ZHANG ZY, et al. , 2021. Symbiotic interaction between ectomycorrhizal fungi and endobacteria: a review [J]. Microbiol Chin, 48(10): 3810-3822. [葛伟, 董醇波, 张芝元, 等, 2021. 外生菌根真菌与内生细菌共生互作的研究进展 [J]. 微生物学通报, 48(10): 3810-3822. ]
参考文献
GILMARTIN EC, JUSINO MA, PYNE EJ, et al. , 2022. Fungal endophytes and origins of decay in beech (Fagus sylvatica) sapwood [J]. Fungal Ecol, 59: 101161.
参考文献
GREEN JL, HOLMES AJ, WESTOBY M, et al. , 2004. Spatial scaling of microbial eukaryote diversity [J]. Nature, 432(7018): 747-750.
参考文献
HE YJ, QIN L, LI ZY, et al. , 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China [J]. For Ecol Manage, 295: 193-198.
参考文献
LIANG X, LI YC, CHEN XJ, et al. , 2017. Soil fungal community characteristics in three types of forest stand in Huyang forest region of Mulei, Xinjiang [J]. Chin J Ecol, 36(3): 623-630. [梁雪, 李永春, 陈相君, 等, 2017. 新疆木垒胡杨林区三种林分土壤真菌群落特征 [J]. 生态学杂志, 36(3): 623-630. ]
参考文献
LIU B, 2020. The effects of different Eucalyptus stands on soil fungal community structures and functions [D]. Nanjing: Nanjing Forestry University. [刘兵, 2020. 桉树人工林林分结构变化对土壤真菌群落和功能结构的影响 [D]. 南京: 南京林业大学. ]
参考文献
LU RK, 2000. Methods for agricultural chemical analysis of soil [M]. Beijing: China Agricultural Science and Technology Press. [鲁如坤, 2000. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社. ]
参考文献
MAN BY, XIANG X, LUO Y, et al. , 2021. Characteristics and influencing factors of soil fungal community of typical vegetation types in Mount Huangshan, East China [J]. Mycosystema, 40(10): 2735-2751. [满百膺, 向兴, 罗洋, 等, 2021. 黄山典型植被类型土壤真菌群落特征及其影响因素 [J]. 菌物学报, 40(10): 2735-2751. ]
参考文献
MARON JL, MARLER M, KLIRONOMOS JN, et al. , 2011. Soil fungal pathogens and the relationship between plant diversity and productivity [J]. Ecol Lett, 14(1): 36-41.
参考文献
MARTIN H, CHARLES GH, DAVID V, et al. , 2012. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests [J]. ISME J, 6(12): 2199-2218.
参考文献
MENG M, WANG B, ZHANG QL, et al. , 2020. Driving force of soil microbial community structure in a burned area of Daxing’anling, China [J]. J For Res, 32(4): 1723-1738.
参考文献
MONKAI J, PURAHONG W, NAWAZ A, et al. , 2022. Conversion of rainforest to rubber plantations impacts the rhizosphere soil mycobiome and alters soil biological activity [J]. Land Degrad Dev, 33(17): 3411-3426.
参考文献
NASHOLM T, EKBLAD A, NORDIN A, et al. , 1998. Boreal forest plants take up organic nitrogen [J]. Nature, 392(6679): 914-916.
参考文献
NGUYEN NH, SONG ZW, BATES ST, et al. , 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild [J]. Fungal Ecol, 20: 241-248.
参考文献
NIE SA, LEI XM, ZHAO LX, et al. , 2018. Fungal communities and functions response to long-term fertilization in paddy soils [J]. Appl Soil Ecol, 130: 251-258.
参考文献
PATRICK DS, GEVERS D, SARAH LW, 2017. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies [J]. PLoS ONE, 6(12): e27310.
参考文献
PENG W, TAN L, MING AG, et al. , 2018. Bacterial community composition in soil profile of typical monoculture plantations in south subtropical China [J]. Chin J Soil Sci, 49(6): 1361-1369. [彭雯, 谭玲, 明安刚, 等, 2018. 南亚热带典型人工纯林土壤剖面细菌群落组成差异分析 [J]. 土壤通报, 49(6): 1361-1369. ]
参考文献
PING Y, HAN DX, WANG N, et al. , 2017. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China [J]. World J Microbiol Biotechnol, 33(1): 12.
参考文献
QIAO SS, ZHOU YN, CHAI BF, et al. , 2017. Characteristics of fungi community structure and genetic diversity of forests in Guandi mountains [J]. Environ Sci, 38(6): 2502-2512. [乔沙沙, 周永娜, 柴宝峰, 等, 2017. 关帝山森林土壤真菌群落结构与遗传多样性特征 [J]. 环境科学, 38(6): 2502-2512. ]
参考文献
QIN H, LI CX, REN QS, et al. , 2017. Effects of different land use patterns on soil bacterial and fungal biodiversity in the hydro-fluctuation zone of the Three Gorges Reservoir Region [J]. Acta Ecol Sin, 37(10): 3494-3504. [秦红, 李昌晓, 任庆水, 2017. 不同土地利用方式对三峡库区消落带土壤细菌和真菌多样性的影响 [J]. 生态学报, 37(10): 3494-3504. ]
参考文献
QIN XH, LIAN Y, CHEN CF, et al. , 2021. Effects of different tree species plantations on soil bacterial community diversity in south subtropical China [J]. For Res, 34(4): 120-127. [覃鑫浩, 梁艳, 陈超凡, 等, 2021. 南亚热带不同树种人工林对土壤细菌群落多样性的影响 [J]. 林业科学研究, 34(4): 120-127. ]
参考文献
QIN L, MA XZ, WU SR, et al. , 2017. Characteristics of soil microbial biomass nitrogen and soluble nitrogen between typical native broad-leaved and Eucalyptus plantations in southern subtropical China [J]. Chin J Appl Environ Biol, 23(4): 678-684. [覃林, 马雪珍, 吴水荣, 等, 2017. 南亚热带典型乡土阔叶人工林与桉树人工林土壤微生物量氮及可溶性氮特征 [J]. 应用与环境生物学报, 23(4): 678-684. ]
参考文献
ROUSK J, BAATH E, BROOKES PC, et al. , 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 4(10): 1340-1351.
参考文献
SCHNEIDER T, KEIBLINGER KM, SCHMID E, et al. , 2012. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions [J]. ISME J, 6(9): 1749-1762.
参考文献
SHEN CC, LIANG WJ, SHI Y, et al. , 2014. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants [J]. Ecology, 95(11): 3190-3202.
参考文献
SNAJDR J, DOBIASOVA P, URBANOVA M, et al. , 2013. Dominant trees affect microbial community composition and activity in post-mining afforested soils [J]. Soil Biol Biochem, 56: 105-115.
参考文献
SONG ZC, WANG H, LIU SR, et al. , 2020. Relationship between tree species richness and soil microbial diversity and community composition in a mixed planted south subtropical forest [J]. Acta Ecol Sin, 40(22): 8265-8273. [宋战超, 王晖, 刘世荣, 等, 2020. 南亚热带混交人工林树种丰富度与土壤微生物多样性和群落组成的关系 [J]. 生态学报, 40(22): 8265-8273. ]
参考文献
SUN Q, WU HL, CHEN F, et al. , 2019. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia [J]. Microbiol Chin, 46(11): 2963-2972. [孙倩, 吴宏亮, 陈阜, 等, 2019. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构 [J]. 微生物学通报, 46(11): 2963-2972. ]
参考文献
TAN HW, YANG SD, WU J, et al. , 2014. Comparison of Eucalyptus plantation with and other forests in soil microbial activity and bacterial diversity in red soil region, China [J]. Acta Ped Sin, 51(3): 575-584. [谭宏伟, 杨尚东, 吴俊, 等, 2014. 红壤区桉树人工林与不同林分土壤微生物活性及细菌多样性的比较 [J]. 土壤学报, 51(3): 575-584. ]
参考文献
TEDERSOO L, BAHRAM M, POLME S, et al. , 2014. Global diversity and geography of soil fungi [J]. Science, 346(6213): 1078.
参考文献
VAN DER HEIJDEN MGA, DE BRUIN S, LUCKERHOFF L, et al. , 2016. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment [J]. ISME J, 10(2): 389-399.
参考文献
WAN XH, HUANG ZQ, HE ZM, et al. , 2015. Soil C∶N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations [J]. Plant Soil, 387(2): 103-116.
参考文献
WANG Q, WANG C, YU WW, et al. , 2018. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations [J]. Front Microbiol, 9: 1543.
参考文献
WILSON H, JOHNSON BR, BOHANNAN B, et al. , 2016. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient [J]. PeerJ, 4: e2083.
参考文献
WU D, ZHANG MM, PENG M, et al. , 2019. Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China [J]. Front Microbiol, 10: 1636.
参考文献
XIONG D, OU J, LI LP, et al. , 2020. Community composition and ecological function analysis of endophytic fungi in the roots of Rhododendron simsii in Pinus massoniana forest in central Guizhou [J]. Acta Ecol Sin, 40(4): 1228-1239. [熊丹, 欧静, 李林盼, 等, 2020. 黔中地区马尾松林下杜鹃根部内生真菌群落组成及其生态功能 [J]. 生态学报, 40(4): 1228-1239. ]
参考文献
YANG LB, SUI X, ZHU DG, et al. , 2017. Study on fungal communities characteristics of different Larix gmelini forest typesin cold temperate zone [J]. J Cent S Univ For Technol, 37(12): 76-84. [杨立宾, 隋心, 朱道光, 等, 2017. 大兴安岭兴安落叶松林土壤真菌群落特征研究 [J]. 中南林业科技大学学报, 37(12): 76-84. ]
参考文献
YANG Y, CHENG H, DOU YX, et al. , 2020. Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau [J]. Sci Total Environ, 708: 134560.
参考文献
YOU YM, XU HC, WU XP, et al. , 2020. Native broadleaf tree species stimulate topsoil nutrient transformation by changing microbial community composition and physiological function, but not biomass in subtropical plantations with low P status [J]. For Ecol Manage, 477: 118491.
参考文献
YU TH, ZHANG NL, YU S, et al. , 2021. The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing [J]. Acta Ecol Sin, 41(5): 1835-1845. [于天赫, 张乃莉, 于爽, 等, 2021. 北京城市公园常见乔木土壤真菌群落特征及影响因素 [J]. 生态学报, 41(5): 1835-1845. ]
参考文献
ZHENG W, LI CX, TAN L, et al. , 2020. Comparison of Eucalyptus plantation and typical native species plantations in soil phosphorus fractions and sorption characteristics in south subtropical China [J]. Soils, 52(5): 1017-1024. [郑威, 李晨曦, 谭玲, 等, 2020. 南亚热带桉树人工林与典型乡土树种人工林土壤磷组分及磷吸附特性比较 [J]. 土壤, 52(5): 1017-1024. ]
参考文献
ZHOU HY, 2019. Dynamics characteristic of litterfall production and nutrient of E. grandis × E. urophylla plantation in southwest of Guangxi [D]. Nanning: Guangxi University. [周弘愿, 2019. 桂西南巨尾桉人工林凋落物量及养分动态特征 [D]. 南宁: 广西大学. ]
目录contents

    摘要

    营造乡土树种人工林和桉树人工林是我国南亚热带森林经营的常见模式。为探究土壤真菌群落多样性及功能对乡土树种和桉树人工林的响应特征与机制,该研究以南亚热带4个乡土树种人工林[马尾松(Pinus massoniana)、火力楠(Michelia macclurei)、米老排(Mytilaria laosensis)、红锥(Castanopsis hystrix)]和外来树种尾巨桉(Eucalyptus urophylla × E. grandis)人工林为对象,基于各林分土壤(0~20 cm)真菌18S rRNA高通量测序数据,利用FUNGuild数据库,比较分析乡土树种与尾巨桉人工林土壤真菌群落多样性和功能类群的差异特性及影响的主导土壤环境因子。结果表明:(1)5个研究林分的土壤真菌优势门均为子囊菌门和担子菌门,但不同乡土树种林分与尾巨桉林的土壤真菌优势目存在差异。(2)尾巨桉林土壤真菌群落α多样性高于乡土树种人工林,其群落组成结构也与乡土树种人工林存在显著差异(P<0.05)。(3)4个乡土树种人工林土壤的腐生营养型的相对丰度高于尾巨桉林,并且火力楠林和米老排林土壤丛枝菌根真菌的相对丰度明显高于尾巨桉林,尾巨桉林土壤共生营养型以及外生菌根真菌和木材腐生菌的相对丰度明显高于乡土树种人工林。(4)pH是导致尾巨桉林与乡土树种人工林土壤真菌群落多样性和功能类群差异的主要土壤环境因子。综上认为,在南亚热带地区将尾巨桉林改建成火力楠林或米老排林可提高土壤养分水平,提升土壤生态功能。

    Abstract

    Planting native tree species plantations and Eucalyptus plantations is a common model of forest management in south subtropical China. To explore the response characteristics and mechanisms of soil fungal community diversity and function to native tree species and Eucalyptus plantations. four native tree species plantations(Pinus massoniana, Michelia macclurei, Mytilaria laosensis, Castanopsis hystrix) and exotic tree species Eucalyptus urophylla × E. grandis(EUG) plantations in south subtropical China were studied. Based on 18S rRNA high-throughput sequencing data of fungi in soil (0-20 cm) of each stand and FUNGuild database, the differences of diversity and functional group of soil fungal communities between native tree species and EUG plantations were compared and analyzed, as well as the dominant soil environmental factors affecting them. The results were as follows: (1)The dominant phyla of soil fungi in five stands were both Ascomycota and Basidiomycota, but there were differences in the dominant orders of soil fungi between different native tree species and EUG plantations. (2)The α diversity of soil fungal community in EUG plantation was higher than that in native tree plantations, and the community composition structure was significantly different from the native tree plantations(P<0.05). (3)The relative abundance of saprotroph in the native tree plantations was higher than that of EUG plantation, and the relative abundance of soil arbuscular mycorrhizal fungi in Michelia macclurei and Mytilaria laosensis plantations was significantly higher than that of EUG plantation. The relative abundance of soil symbiotroph, ectomycorrhizal fungi and wood saprotroph in EUG plantation was significantly higher than that in the native tree plantations. (4)pH was the crucial soil environmental factor that led to the difference of soil fungal community diversity and functional group between EUG and native tree plantations. In general, there were significant differences in the structure and function of soil fungal community between native tree species and EUG plantations, which indicated that different stand types had great effects on soil fungal community and function. In conclusion, the soil nutrient level can be improved by converting the EUG plantation into native tree species plantations in south subtropical China, and the soil ecological function can be improved by choosing Michelia macclurei plantation or Mytilaria laosensis plantation as native tree species plantation.

  • 真菌是土壤微生物的重要组分,在植物营养、分解有机质和介导疾病等方面发挥着关键作用(van der Heijden et al.,2016;Aslani et al.,2022)。土壤真菌群落多样性是评价土壤质量的重要指标(Martin et al.,2012;秦红等,2017;于天赫等,2021)。在森林生态系统中,树木种类会影响土壤真菌群落物种组成,这是因为树种的凋落物及其根系分泌物对土壤性质有很大影响(陈秀波等,2019),而土壤性质的改变驱动土壤真菌群落结构和功能的响应(梁雪等,2017;Wu et al.,2019)。为了深入了解土壤生态系统的功能,必须重视土壤真菌群落的功能多样化(Barbi et al.,2016)。土壤真菌存在明显的功能分化:腐生真菌作为土壤有机质的重要分解者,其分解过程影响元素的循环速率(Frey,2019);菌根真菌通过与植物共生形成菌根为植物提供营养元素;病原真菌则通过感染植物组织获得能量,从而影响森林健康(Maron et al.,2011)。有研究发现,由真菌驱动的生态系统过程在不同林分类型中存在差异(Chen et al.,2019),当土壤性质和树种组成等外界因素发生变化时,土壤真菌群落的多样性及功能会发生改变(Snajdr et al.,2013;Tedersoo et al.,2014)。因此,深入了解不同树种人工林土壤真菌群落多样性和功能特征及其影响机制可为人工造林的树种选择提供科学参考,同时对评估人工林土壤质量具有重要意义。

  • 中国人工林面积以7 954.28万hm2而居世界首位(董爱荣等,2004)。我国南亚热带地区气候条件优越,20世纪80年代以来,大规模多代连栽外来速生树种桉树(Eucalyptus)人工林,这为地区经济发展做出了重大贡献,但导致了诸如土壤地力衰退、生物多样性丧失和生态系统稳定性降低等生态问题(邓富春等,2013)。随着森林经营思想从追求木材产量的单一目标转向提升生态系统服务质量和效益的多目标,营造高价值乡土阔叶林,如米老排(Mytilaria laosensis)、火力楠(Michelia macclurei)、山白兰(Paramichelia bailonii)、红锥(Castanopsis hystrix)等,已成为我国亚热带地区人工林经营的发展态势(Wan et al.,2015;彭雯等,2018;You et al.,2020)。近年来,不同学者对南亚热带地区乡土树种与桉树人工林土壤微生物量氮与可溶性氮特征(覃林等,2017)、土壤磷组分含量和吸附性能(郑威等,2020)以及土壤细菌群落多样性(谭宏伟等,2014;覃鑫浩等,2021)等进行了研究。目前,关于该地区乡土树种与桉树人工林土壤真菌群落多样性和功能还知之甚少,这在一定程度上制约了人工造林树种选择的科学决策。

  • 本研究以我国南亚热带地区的马尾松(Pinus massoniana)、火力楠、米老排、红锥4个乡土树种人工林和尾巨桉(Eucalyptus urophylla × E. grandis)人工林为对象,基于各林分土壤(0~20 cm)真菌18S rRNA高通量测序数据及FUNGuild功能预测方法,拟探讨:(1)乡土树种人工林土壤真菌群落多样性和功能类群是否与尾巨桉人工林有显著差异;(2)影响土壤真菌多样性和功能差异的主要土壤环境因子是否具有一致性。以期揭示桉树人工林改建为乡土树种人工林后土壤真菌群落多样性及功能的变化特征及其调控机制,为深入了解南亚热带地区乡土树种与外来树种人工林土壤真菌群落的生态功能提供科学依据。

  • 1 材料与方法

  • 1.1 研究区概况和土样采集

  • 研究地点位于中国林业科学研究院热带林业实验中心(广西凭祥,106°50′ E、22°10′ N)。该地区气候类型为南亚热带季风性半湿润-湿润气候,年均气温21℃;年均降雨量1 500 mm,降雨主要集中在4—9月;海拔130~1 045 m,地貌类型以低山丘陵为主;地带性土壤为花岗岩发育的山地红壤(He et al.,2013)。

  • 该地区地带性植被为亚热带常绿阔叶林,20世纪50年代在常绿阔叶林皆伐迹地上种植了杉木。米老排、火力楠、红锥、马尾松等乡土树种人工林于20世纪80年代在杉木人工林采伐迹地上营造(初植密度均为2 500 plants·hm-2)。尾巨桉人工林于2008年在杉木人工林采伐迹地上种植(初植密度为2 500 plants·hm-2),2014年皆伐留桩形成二代萌芽林。2017年2月在每个研究林分内随机设置3块20 m × 20 m的样地进行林分调查,各样地之间的距离至少大于20 m。5个林分的立地条件和林分概况见表1。

  • 在上述各个样地内的左对角线上随机选取3个样点,用内径为5 cm的土钻取表层土壤(0~20 cm),之后将3个取样点的土壤样品混合为1个样品,3个重复,5个林分共计15个土壤样品。土壤样品装入聚乙烯保鲜袋并用生物冰袋保存带回实验室,土壤鲜样过2 mm钢筛后分3份:1份贮藏于-80℃冰箱内,用来提取土壤DNA;1份置于4℃冰箱内保存,用于测定土壤硝态氮和氨态氮含量;1份经自然风干后过0.25 mm筛保存,用于测定土壤基本化学性质。

  • 1.2 土壤理化性质测定

  • 土壤含水量(soil water content,SWC)采用烘干法测定;土壤pH值采用水浸提(土∶水=1∶2.5,m/V)的pH计(Prtavo 907 MULTI pH,德国)测定;土壤有机碳(soil organic carbon,SOC)含量采用重铬酸钾外加热法测定;硝态氮(NO3--N)含量采用酚二磺酸比色法测定;铵态氮(NH4+-N)含量采用扩散法测定;速效磷(available phosphorus,AP)含量采用双酸浸提-钼锑抗比色法测定(鲁如坤,2000);总氮(total nitrogen,TN)和总磷(total phosphorus,TP)的含量采用H2SO4-HClO4消解,之后用SmartChem200全自动化学元素分析仪(Alliance,法国)测定。土壤碳氮比(C/N)为土壤有机碳与全氮含量之比。

  • 1.3 DNA提取、PCR扩增和Illumina MiSeq测序

  • 采用PowerSoil® DNA Isolation Kit(MoBio,USA)试剂盒提取土壤微生物总DNA,之后用1%琼脂糖凝胶电泳检测基因组DNA的完整性,用NanoDrop 2000微量紫外分光光度计(Thermo Fisher Scientific)测定DNA的纯度和浓度。对真菌18S引物1196R(5′-TCTGGACCTGGTGAGTTTCC-3′)和SSU0817F(5′-TTAGCATGGAATAATRRAAT AGGA-3′)进行PCR扩增(Rousk et al.,2010)。PCR 扩增采用TransStart Fastpfu DNA Polymerase,20 μL反应体系为5×FastPfu Buffer 4 μL、dNTPs (2.5 mmol·L-1)2 μL、Forward Primer(5 μmol·L-1)0.8 μL、Reverse Primer(5 μmol·L-1)0.8 μL、FastPfu Polymerase 0.4 μL、BSA 0.2 μL、Template DNA 10 ng,补ddH2O至20 μL。95℃ 预变性3 min,之后95℃ 30 s,55℃ 30 s,72℃ 45 s,35个循环,然后72℃ 延伸10 min,10℃至停止,达到PCR扩增条件。每个样本3个重复,将同一样本的PCR产物混合后用2%琼脂糖凝胶电泳检测,使用AxyPrep DNA凝胶回收试剂盒(AXYGEN公司)切胶回收PCR产物,并将PCR产物用QuantiFluorTM-ST蓝色荧光定量系统(Promega公司)进行检测定量。委托美吉生物科技(上海)有限公司(https://www.majorbio.com)用Illumina MiSeq PE300平台进行文库构建以及高通量测序。全部样品的高通量测序结果已提交至NCBI SRA(https://www.ncbi.nlm.nih.gov/),编号为PRJNA936188。

  • 表1 5个林分的立地条件和林分特征

  • Table1 Site conditions and stand characteristics of five stands

  • 注: PMP. 马尾松林; MMP. 火力楠林; MLP. 米老排林; CHP. 红锥林; EUGP. 尾巨桉林。I. 主林层; . 次林层。下同。

  • Note: PMP. Pinus massoniana plantation; MMP. Michelia macclurei plantation; MLP. Mytilaria laosensis plantation; CHP. Castanopsis hystrix plantation; EUGP. Eucalyptus urophylla × E. grandis plantation. I. Main forest layer; . Secondary forest layer. The same below.

  • 1.4 生物信息学分析

  • 使用Trimmomatic软件对测序读数(reader)的接头(adapter)序列和低质量序列进行过滤。利用USEARCH软件(vsesion 7.1,http://drive5.com/uparse/)按照97%相似性对非重复序列(不含单序列)进行OTU聚类,在聚类过程中去除嵌合体,得到OTU的代表序列。在Qiime1平台采用RDP classifier贝叶斯算法对97%相似水平的OTU代表序列比对Silva(Release123,http://www.arb-silva.de)数据库(置信度阈值为0.7)获得各土壤样品真菌的分类学信息,将OTU表和物种信息表合并后,利用Python 3.8软件比对FUNGuild v1.1数据库来解析各样品真菌群落的营养型和功能类群。为了保证解读真菌功能类群的可靠性,只保留置信度为“极可能”(highly probable)和“很可能”(probable)2个等级(Nguyen et al.,2016)。

  • 1.5 数据处理

  • 利用Kruskal-Wallis秩和检验法对不同林分土壤真菌门和目进行差异显著性检验。土壤样品真菌群落的α多样性采用基于OTU的Chao1指数、Shannon指数和Simpson指数来表征,其中Simpson指数越小代表多样性越大,由Mothur软件完成计算(Patrick et al.,2017)。不同林分之间土壤理化性质、真菌群落α多样性的差异显著性采用单因素方差分析(one-way ANOVA)检测,并用Duncan法进行多重比较;使用Spearman秩相关系数检验α多样性与土壤理化性质因子之间的相关性。以上计算均使用SPSS 26.0软件(SPSS,Inc,Chicago,IL)完成。

  • 基于OTU的Bray-Curtis距离,利用R软件vegan程序包中的“metaMDS()”函数对不同土壤样品的真菌群落β多样性进行非度量多维标度(non-metric multidimensional scaling,NMDS)分析;进而用基于999次置换检验的置换多元方差分析(permutational multivariate analysis of variance,PERMANOVA)法检测各土壤样品真菌群落β多样性的差异显著性,计算由R软件vegan程序包中的“adonis()”函数完成。以加权 Bray-Curtis 非相似性矩阵作为响应变量,以土壤理化性质为预测变量,采用广义非相似模型(generalized dissimilarity model,GDM)(Ferrier et al.,2007)分析土壤理化性质对林分土壤真菌群落β多样性的影响,即y轴的变化幅度代表土壤真菌群落OTU周转速度在土壤理化性质影响下的相对强度,因而y轴变化幅度越大,则表征土壤理化性质对真菌群落组成结构影响越大。计算由R软件的gdm程序包完成,只有对GDM拟合有效的变量才会有图输出。利用冗余分析(redundancy analysis,RDA)探讨土壤真菌功能类群与土壤理化性质因子之间的关系,并采用蒙特卡罗置换检验(Monte Carlo permutation test,置换次数为999次)检测土壤理化因子影响土壤真菌功能类群的显著性,计算由R软件的vegan程序包中的“rda()”函数完成。

  • 2 结果与分析

  • 2.1 土壤理化性质

  • 由表2可知,尾巨桉林土壤含水量与火力楠林差异不显著(P>0.05),但显著高于马尾松林和红椎林且显著低于米老排林(P<0.05)。尾巨桉林土壤pH显著高于火力楠林、米老排林和红锥林,而与马尾松林无显著差异。其余7个土壤理化性质(土壤有机碳、总氮、硝态氮、铵态氮、总磷、速效磷和土壤碳氮比)在尾巨桉林与4个乡土树种人工林之间均无显著差异。

  • 表2 5个林分的土壤理化性质(平均值±标准差,n=3)

  • Table2 Soil physicochemical properties of five stands (x-±s, n=3)

  • 注:同列不同小写字母表示不同林分类型间差异显著(P<0.05)。

  • Note: Different lowercase letters in the same column indicate significant differences between different stands (P<0.05) .

  • 2.2 基于物种分类水平的土壤真菌群落组成

  • 在相似水平为97%的条件下,对OTU的代表序列进行物种注释,获得全部土壤样品的真菌为33门54纲84目109科110属。5个林分土壤真菌优势门(相对丰度≥10%)分别是子囊菌门(Ascomycota)(40.6%~76.1%)和担子菌门(Basidiomycota)(15.4%~41.2%)(图1:A)。Kruskal-Wallis秩和检验发现,这2个优势菌门的相对丰度在尾巨桉林与4个乡土树种人工林间无显著差异(P>0.05)。

  • 全部林分土壤真菌相对丰度较高的前10个目分别是伞菌纲未分类目(Agaricomycetes_unclassified)、肉座菌目(Hypocreales)、散囊菌目(Eurotiales)、古根菌目(Archaeorhizomycetales)、爪甲团囊菌目(Onygenales)、粪壳菌目(Sordariales)、银耳目(Tremellales)、子囊菌门未分类目(Ascomycota_unclassified)、incertae_sedis和粪壳菌纲未分类目(Sordariomycetes_unclassified)(图1:B)。Kruskal-Wallis秩和检验发现,尾巨桉林的古根菌目的相对丰度显著低于米老排林,爪甲团囊菌目的相对丰度显著低于马尾松林和红锥林,而银耳目和肉座菌目的相对丰度却显著高于红锥林和米老排林,粪壳菌目则显著高于红椎林(P<0.05)。

  • 2.3 基于OTU水平的土壤真菌群落多样性

  • 2.3.1 α多样性

  • 本研究的全部土壤样品共获得580 568条优化序列,平均每个土壤样品有38 704条序列且平均序列长度为401 bp。随着测序数量的增加,稀疏曲线逐渐趋于平坦,说明测序数据能够反映土壤样本真菌群落的实际情况(图2)。根据97%相似性对优化序列进行聚类得到440个OTU,5个林分土壤共享114个OTU。其中,尾巨桉林总OTU数目(279个)高于4个乡土树种人工林(马尾松林215个、火力楠林263个、米老排林250个和红椎林181个),其独有OTU数目(57个)也明显高于4个乡土树种人工林(马尾松林17个、火力楠林21个、米老排林16个和红椎林8个)。

  • 图1 5个林分土壤真菌门和目的相对丰度

  • Fig.1 Relative abundance of soil fungi phylum and order in five stands

  • 图2 5个林分土壤真菌群落OTU的稀释曲线

  • Fig.2 Dilution curve of soil fungal community OTU in five stands

  • 方差分析表明,尾巨桉林土壤真菌群落的Chao1指数显著高于红锥林(P<0.05),而与其余3个乡土树种人工林无显著差异(P>0.05)(图3:A),Shannon指数与4个乡土树种人工林的差异不显著(图3:B),但其Simpson指数则显著低于4个乡土树种人工林(图3:C)。总体而言,尾巨桉林土壤真菌群落多样性显著高于4个乡土树种人工林。Spearman秩相关分析发现,仅有Simpson指数与土壤pH(r=-0.549,P=0.034)呈显著负相关(P<0.05)。

  • 2.3.2 β多样性

  • 基于Bray-Curtis距离的NMDS分析发现,NMDS前两轴较好表征了5个林分土壤样品真菌群落结构的差异(Stress=0.072)(图4)。PERMANOVA分析发现,尾巨桉林分别与马尾松林(F=5.06,P=0.001)、火力楠林(F=2.92,P=0.043)、米老排林(F=2.28,P=0.045)和红锥林(F=4.56,P=0.001)的土壤真菌群落结构存在显著差异(P<0.05)。GDM分析指出,影响林分土壤真菌群落组成结构差异的理化性质因子可分为3类:第1类是变量在低梯度区时影响较大,即SOC(图5:A)和TP(图5:E);第2类是在高梯度区时影响较大,即TN在约高于2.1 g·kg-1时,真菌群落结构的变化随梯度值增大而显著增大(图5:B);第3类是随着变量值的增加而真菌群落结构变化缓慢增加,即pH值(图5:C)、NH4+-N(图5:D)和SWC(图5:F)。

  • 图3 5个林分土壤真菌群落的α多样性指数

  • Fig.3 α-diversity index of soil fungal community in five stands

  • 2.4 土壤真菌群落的功能类群

  • 基于FUNGuild v1.1数据库对全部土壤样品真菌群落的营养型和功能类群进行鉴定分类,将检测出的75个OTU(占总OTU数目的18.2%)分为6个营养型和10个功能类群。6个营养型分别是腐生营养型、共生营养型、病理营养型、病理-腐生营养型、病理-共生营养型和病理-腐生-共生营养型(图6:A)。其中,腐生营养型是4个乡土树种人工林的优势营养型(21.7%~76.3%),而尾巨桉林中共生营养型相对丰度最大(45.7%)。

  • 图4 5个林分土壤真菌群落结构的非度量多维标度分析

  • Fig.4 Non-metric multidimensional scaling analysis of soil fungal community structure in five stands

  • 10个真菌功能类群分别是内生-寄生-植物病原菌、内生-植物病原-木材腐生菌、植物病原-未定义腐生菌、动物病原-寄生-未定义腐生菌、茎腐生-木材腐生菌、外生菌根真菌、丛枝菌根真菌、木材腐生菌、粪腐生-土壤腐生菌、植物病原菌(图6:B)。其中,尾巨桉林土壤外生菌根真菌和木材腐生菌功能类群的相对丰度(分别是44.7%和11.0%)明显高于4个乡土树种林分,而丛枝菌根真菌在火力楠林和米老排林中的相对丰度(分别是17.5%和20.8%)明显高于尾巨桉林。

  • 不同林分土壤真菌功能类群与土壤理化性质的RDA分析发现,RDA前2轴共计解释了所有信息的95.43%(RDA1轴、RDA2轴的解释率分别为87.62%和7.81%)(图7)。其中,尾巨桉林的土壤样品位于RDA1轴的正侧,而乡土树种人工林则位于RDA1轴的负侧。Monte Carlo置换检验发现,pH值是显著影响尾巨桉林土壤真菌功能类群与4个乡土树种人工林差异的主导因子(P=0.045)。

  • 图5 土壤理化性质对研究林分真菌群落组成结构影响的广义非相似模型分析

  • Fig.5 Effects of soil physiochemical properties on fungal community composition structure in the studied stands by generalized dissimilarity model

  • 3 讨论

  • 3.1 不同林分类型对土壤真菌群落多样性的影响

  • 土壤真菌的子囊菌门与担子菌门能够降解木质素和角质素等难分解物质,被认为是森林土壤中的核心微生物,在土壤养分循环以及微生物区系的功能和稳定性中发挥重要作用(乔沙沙等,2017;Wang et al.,2018)。本研究发现,子囊菌门和担子菌门是5个研究林分土壤真菌的主要优势菌门,该结果与南亚热带地区人工块状造林后自然恢复形成的乡土树种人工林(宋战超等,2020)和尾巨桉人工林(陈祖静等,2020)一致。一般而言,土壤养分富集有利于富养型真菌生长,而在土壤养分相对贫瘠时寡营养型真菌的相对丰度会增加(Schneider et al.,2012)。本研究中,米老排林土壤中古根菌目的相对丰度明显高于尾巨桉林,其原因在于古根菌目通常分布在可为腐生真菌提供有机质的物种根际(Meng et al.,2020),而米老排林土壤的有机碳高于尾巨桉林。同时,马尾松林和红锥林土壤的爪甲团囊菌目相对丰度显著高于尾巨桉林,可能是因为这2个林分的土壤pH和含水量显著低于尾巨桉林,而有研究表明较低的pH和含水量能增加土壤爪甲团囊菌目丰度(Claudia et al.,2022)。此外,有研究认为,粪壳菌目和银耳目菌群的相对丰度与pH(满百膺等,2021)和凋落物含量(Chen et al.,2020)呈正相关,而凋落物含量又与林分密度密切相关(周弘愿,2019)。本研究中尾巨桉林的土壤pH和林分密度高于乡土树种人工林,这可能是导致粪壳菌目和银耳目菌群在尾巨桉林中富集的原因。

  • 相较于乡土树种人工林,尾巨桉林土壤真菌群落有着较高的总OTU数、特有OTU数、Chao1指数和Shannon指数以及较低的Simpson指数,说明尾巨桉林的土壤真菌群落α多样性高于乡土树种人工林。有研究发现,森林土壤真菌α多样性与土壤pH值之间具有显著正相关性(Shen et al.,2014),这是因为pH值的不同会改变土壤环境,进而影响土壤真菌群落多样性(Green et al.,2004)。Spearman秩相关分析表明,5个研究林分土壤真菌群落的Simpson指数与pH值显著负相关(P<0.05),而尾巨桉林土壤pH值高于乡土树种人工林,可见土壤pH是调控尾巨桉林土壤真菌群落α多样性高于乡土树种人工林的主要因子。然而,宋战超等(2020)发现土壤碳氮含量是影响南亚热带地区不同人工林土壤真菌多样性的关键因素;Yang等(2020)指出黄土高原人工林土壤真菌多样性受土壤碳氮比的控制。本研究未发现土壤碳氮含量或碳氮比是影响乡土树种人工林与尾巨桉林土壤真菌群落多样性差异的主导因素,原因是二者的土壤碳氮含量和碳氮比均无显著差异。NMDS分析和PERMANOVA分析表明,尾巨桉林与4个乡土树种人工林土壤真菌群落结构的差异显著,结合GDM分析和土壤理化性质的单因素方差分析结果,推测土壤含水量和pH是导致此差异的主要原因。已有大量研究表明,pH是影响森林土壤真菌群落β多样性的重要因子,如Ping等(2017)研究认为pH对长白山森林土壤真菌群落β多样性的影响较大,陈祖静等(2020)发现桉树林土壤真菌群落变化对施肥的响应与pH呈负相关。此外,土壤含水量与土壤真菌群落结构密切相关(杨立宾等,2017;Chen et al.,2019)。综上所述,pH是导致尾巨桉林与乡土树种人工林土壤真菌群落多样性和结构存在差异的主要土壤环境因子。

  • 图6 5个林分土壤真菌群落营养型(A)和功能类群(B)的相对丰度

  • Fig.6 Relative abundances of trophic modes (A) and functional groups (B) of soil fungal community in five stands

  • 图7 5个林分土壤真菌功能类群与理化性质相关性的冗余分析

  • Fig.7 Redundancy analysis of correlation between functional groups and physicochemical properties of soil fungi in five stands

  • 3.2 不同林分类型对土壤真菌群落功能类群的影响

  • 真菌有着复杂的生活史,部分真菌为了适应生存环境会主动采用多种营养方式,这是真菌特有的较为高级的生存策略(熊丹等,2020)。本研究发现,乡土树种人工林土壤中腐生营养型为真菌优势营养型,意味着乡土树种人工林土壤中的子囊菌门和担子菌门主要是腐生营养型。有研究表明,我国其他地区乡土树种人工林土壤真菌优势营养型为腐生营养型(邓娇娇等,2020;陈历睿等,2022)。腐生真菌作为土壤中重要的分解者,在养分循环方面作用重大(Nie et al.,2018;孙倩等,2019)。但是,尾巨桉林土壤真菌共生营养型占优势,说明其土壤中子囊菌门和担子菌门多为共生营养型。因此,在南亚热带地区营造乡土树种人工林取代尾巨桉林有利于提高土壤肥力,改善土壤质量。

  • 本研究发现,丛枝菌根真菌类群在火力楠和米老排人工林中的相对丰度显著高于尾巨桉林,而丛枝菌根真菌有促进植物生长、改善土壤结构以及提高植物抵御不良环境的能力(Ai-Yahya'ei et al.,2011;Wilson et al.,2016),据此推测尾巨桉林改建成火力楠或米老排人工林后将提升土壤生态功能。值得注意的是,尾巨桉林土壤的外生菌根真菌和木材腐生真菌类群明显高于乡土树种人工林,这直接导致尾巨桉林土壤中的共生营养型真菌成为优势型,因为外生菌根真菌和木材腐生菌属于共生营养型(葛伟等,2021;Gilmartin et al.,2022)。刘兵(2020)研究发现南亚热带地区多代连栽桉树林土壤中共生营养型真菌占比最多,并且木材腐生菌为优势功能类群;陈祖静等(2020)研究认为南亚热带地区尾巨桉林土壤中外生菌根真菌占比最高:这些与本研究结果一致。外生菌根真菌能提高植物对养分和水分的吸收(Nasholm et al.,1998),而木材腐生真菌起到传导水分的功能,也能增强植物的吸水能力(Gilmartin et al.,2022)。因此,在南亚带地区种植尾巨桉人工林能提高土壤外生菌根真菌和木材腐生真菌的丰度,增加植物对土壤水分及其他营养元素的吸收,但会导致土壤肥力下降。Monkai等(2022)研究发现土壤pH的降低会减少外生菌根真菌形成。本研究中尾巨桉林土壤pH高于乡土树种人工林,可能是导致尾巨桉林土壤中外生菌根真菌富集的原因。土壤真菌功能与林分凋落物密切相关,而木材腐生菌一般存在于植物体内(Gilmartin et al.,2022),本研究中木材腐生菌在尾巨桉林土壤中富集,可能是由尾巨桉林凋落物中的木材腐生菌多于乡土树种人工林而导致,具体原因还有待进一步研究。冗余分析和Monte Carlo置换检验表明,pH是导致尾巨桉林和乡土树种人工林土壤真菌功能类群差异的主要土壤环境因子。Monkai等(2022)研究证实在东南亚森林转换过程中pH是显著影响真菌功能类群的主要理化因子。

  • 4 结论

  • 南亚热带地区乡土树种人工林与尾巨桉人工林土壤真菌群落多样性及功能类群存在差异,这主要由土壤pH所致。乡土树种人工林和尾巨桉林的土壤真菌优势门均为子囊菌门和担子菌门,但在优势目上存在一定差异。尾巨桉林的土壤真菌群落α多样性高于乡土树种人工林,其土壤真菌群落组成结构与乡土树种人工林存在显著差异。乡土树种人工林土壤真菌的腐生营养型占比最高,并且火力楠林和米老排林的土壤丛枝菌根真菌类群的相对丰度显著高于尾巨桉林;尾巨桉林土壤的共生营养型为优势真菌营养型,其外生菌根真菌和木材腐生菌的相对丰度明显高于乡土树种人工林。总体而言,南亚热带乡土树种人工林(尤其是火力楠林和米老排林)替代尾巨桉林能提高土壤肥力,提升土壤生态功能。

  • 参考文献

    • AI-YAHYA'EI MN, OEHL F, VALLINA M, et al. , 2011. Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia [J]. Mycorrhiza, 21(3): 195-209.

    • ASLANI F, GEISEN S, NING D, et al. , 2022. Towards revealing the global diversity and community assembly of soil eukaryotes [J]. Ecol Lett, 25(1): 65-76.

    • BARBI F, PRUDENT E, VALLON L, et al. , 2016. Tree species select diverse soil fungal communities expressing different sets of lignocellulolytic enzyme-encoding genes [J]. Soil Biol Biochem, 100: 149-159.

    • CHEN L, XIANG WH, WU HL, et al. , 2019. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests [J]. Appl Microbiol Biotechnol, 103(13): 5421-5433.

    • CHEN LR, LIN JN, SHEN R, et al. , 2022. Characteristic of soil fungal community and its impact factors of Pinus massoniana forests in the Three Gorges Reservoir Region [J]. Chin J Appl Ecol, 33(9): 2397-2404. [陈历睿, 林佳妮, 沈蓉, 等, 2022. 三峡库区马尾松林土壤真菌群落特征及影响因素 [J]. 应用生态学报, 33(9): 2397-2404. ]

    • CHEN WQ, WANG JY, MENG ZX, et al. , 2020. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands [J]. New Phytol, 226(4): 947-949.

    • CHEN XB, ZHU DQ, ZHAO CC, et al. , 2019. Community composition and diversity of fungi in soils under different types of Pinus koraiensis forests [J]. Acta Ped Sin, 56(5): 1221-1234. [陈秀波, 朱德全, 赵晨晨, 等, 2019. 不同林型红松林土壤真菌群落组成和多样性 [J]. 土壤学报, 56(5): 1221-1234. ]

    • CHEN ZJ, GAO SK, CHEN Y, et al. , 2020. Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest [J]. Acta Ecol Sin, 40(11): 3813-3821. [陈祖静, 高尚坤, 陈园, 等, 2020. 短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响 [J]. 生态学报, 40(11): 3813-3821. ]

    • CLAUDIA C, LAURA S, EMILIO G, et al. , 2022. Humidity and low pH boost occurrence of Onygenales fungi in soil at global scale [J]. Soil Biol Biochem, 167: 108617.

    • DENG FC, QIN QY, YAN Q, et al. , 2013. Variation of soil fertility in Eucalyptus plantation and its soil fertility comprehensive evaluation [J]. Guangxi For Sci, 42(2): 148-152. [邓富春, 覃其云, 颜权, 等, 2013. 桉树人工林土壤肥力变化及其综合评价 [J]. 广西林业科学, 42(2): 148-152. ]

    • DENG JJ, ZHU WX, ZHANG Y, et al. , 2020. Studies on soil fungal community composition and function characteristics of different plantations of sandy area, northwest Liaoning Province [J]. For Res, 33(1): 44-54. [邓娇娇, 朱文旭, 张岩, 等, 2020. 辽西北风沙区不同人工林土壤真菌群落结构及功能特征 [J]. 林业科学研究, 33(1): 44-54. ]

    • DONG AR, LÜ GZ, WU QY, et al. , 2004. Diversity of soil fungi in Liangshui Natural Reserve, Xiaoxing’anling forest region [J]. J NE For Univ, 32(1): 8-10. [董爱荣, 吕国忠, 吴庆禹, 等, 2004. 小兴安岭凉水自然保护区森林土壤真菌的多样性 [J]. 东北林业大学学报, 32(1): 8-10. ]

    • FERRIER S, MANION G, ELITH J, et al. , 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment [J]. Divers Distrib, 13(3): 252-264.

    • FREY SD, 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics [J]. Ann Rev Ecol Evol Syst, 50(1): 237-259.

    • GE W, DONG CB, ZHANG ZY, et al. , 2021. Symbiotic interaction between ectomycorrhizal fungi and endobacteria: a review [J]. Microbiol Chin, 48(10): 3810-3822. [葛伟, 董醇波, 张芝元, 等, 2021. 外生菌根真菌与内生细菌共生互作的研究进展 [J]. 微生物学通报, 48(10): 3810-3822. ]

    • GILMARTIN EC, JUSINO MA, PYNE EJ, et al. , 2022. Fungal endophytes and origins of decay in beech (Fagus sylvatica) sapwood [J]. Fungal Ecol, 59: 101161.

    • GREEN JL, HOLMES AJ, WESTOBY M, et al. , 2004. Spatial scaling of microbial eukaryote diversity [J]. Nature, 432(7018): 747-750.

    • HE YJ, QIN L, LI ZY, et al. , 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China [J]. For Ecol Manage, 295: 193-198.

    • LIANG X, LI YC, CHEN XJ, et al. , 2017. Soil fungal community characteristics in three types of forest stand in Huyang forest region of Mulei, Xinjiang [J]. Chin J Ecol, 36(3): 623-630. [梁雪, 李永春, 陈相君, 等, 2017. 新疆木垒胡杨林区三种林分土壤真菌群落特征 [J]. 生态学杂志, 36(3): 623-630. ]

    • LIU B, 2020. The effects of different Eucalyptus stands on soil fungal community structures and functions [D]. Nanjing: Nanjing Forestry University. [刘兵, 2020. 桉树人工林林分结构变化对土壤真菌群落和功能结构的影响 [D]. 南京: 南京林业大学. ]

    • LU RK, 2000. Methods for agricultural chemical analysis of soil [M]. Beijing: China Agricultural Science and Technology Press. [鲁如坤, 2000. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社. ]

    • MAN BY, XIANG X, LUO Y, et al. , 2021. Characteristics and influencing factors of soil fungal community of typical vegetation types in Mount Huangshan, East China [J]. Mycosystema, 40(10): 2735-2751. [满百膺, 向兴, 罗洋, 等, 2021. 黄山典型植被类型土壤真菌群落特征及其影响因素 [J]. 菌物学报, 40(10): 2735-2751. ]

    • MARON JL, MARLER M, KLIRONOMOS JN, et al. , 2011. Soil fungal pathogens and the relationship between plant diversity and productivity [J]. Ecol Lett, 14(1): 36-41.

    • MARTIN H, CHARLES GH, DAVID V, et al. , 2012. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests [J]. ISME J, 6(12): 2199-2218.

    • MENG M, WANG B, ZHANG QL, et al. , 2020. Driving force of soil microbial community structure in a burned area of Daxing’anling, China [J]. J For Res, 32(4): 1723-1738.

    • MONKAI J, PURAHONG W, NAWAZ A, et al. , 2022. Conversion of rainforest to rubber plantations impacts the rhizosphere soil mycobiome and alters soil biological activity [J]. Land Degrad Dev, 33(17): 3411-3426.

    • NASHOLM T, EKBLAD A, NORDIN A, et al. , 1998. Boreal forest plants take up organic nitrogen [J]. Nature, 392(6679): 914-916.

    • NGUYEN NH, SONG ZW, BATES ST, et al. , 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild [J]. Fungal Ecol, 20: 241-248.

    • NIE SA, LEI XM, ZHAO LX, et al. , 2018. Fungal communities and functions response to long-term fertilization in paddy soils [J]. Appl Soil Ecol, 130: 251-258.

    • PATRICK DS, GEVERS D, SARAH LW, 2017. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies [J]. PLoS ONE, 6(12): e27310.

    • PENG W, TAN L, MING AG, et al. , 2018. Bacterial community composition in soil profile of typical monoculture plantations in south subtropical China [J]. Chin J Soil Sci, 49(6): 1361-1369. [彭雯, 谭玲, 明安刚, 等, 2018. 南亚热带典型人工纯林土壤剖面细菌群落组成差异分析 [J]. 土壤通报, 49(6): 1361-1369. ]

    • PING Y, HAN DX, WANG N, et al. , 2017. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China [J]. World J Microbiol Biotechnol, 33(1): 12.

    • QIAO SS, ZHOU YN, CHAI BF, et al. , 2017. Characteristics of fungi community structure and genetic diversity of forests in Guandi mountains [J]. Environ Sci, 38(6): 2502-2512. [乔沙沙, 周永娜, 柴宝峰, 等, 2017. 关帝山森林土壤真菌群落结构与遗传多样性特征 [J]. 环境科学, 38(6): 2502-2512. ]

    • QIN H, LI CX, REN QS, et al. , 2017. Effects of different land use patterns on soil bacterial and fungal biodiversity in the hydro-fluctuation zone of the Three Gorges Reservoir Region [J]. Acta Ecol Sin, 37(10): 3494-3504. [秦红, 李昌晓, 任庆水, 2017. 不同土地利用方式对三峡库区消落带土壤细菌和真菌多样性的影响 [J]. 生态学报, 37(10): 3494-3504. ]

    • QIN XH, LIAN Y, CHEN CF, et al. , 2021. Effects of different tree species plantations on soil bacterial community diversity in south subtropical China [J]. For Res, 34(4): 120-127. [覃鑫浩, 梁艳, 陈超凡, 等, 2021. 南亚热带不同树种人工林对土壤细菌群落多样性的影响 [J]. 林业科学研究, 34(4): 120-127. ]

    • QIN L, MA XZ, WU SR, et al. , 2017. Characteristics of soil microbial biomass nitrogen and soluble nitrogen between typical native broad-leaved and Eucalyptus plantations in southern subtropical China [J]. Chin J Appl Environ Biol, 23(4): 678-684. [覃林, 马雪珍, 吴水荣, 等, 2017. 南亚热带典型乡土阔叶人工林与桉树人工林土壤微生物量氮及可溶性氮特征 [J]. 应用与环境生物学报, 23(4): 678-684. ]

    • ROUSK J, BAATH E, BROOKES PC, et al. , 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 4(10): 1340-1351.

    • SCHNEIDER T, KEIBLINGER KM, SCHMID E, et al. , 2012. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions [J]. ISME J, 6(9): 1749-1762.

    • SHEN CC, LIANG WJ, SHI Y, et al. , 2014. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants [J]. Ecology, 95(11): 3190-3202.

    • SNAJDR J, DOBIASOVA P, URBANOVA M, et al. , 2013. Dominant trees affect microbial community composition and activity in post-mining afforested soils [J]. Soil Biol Biochem, 56: 105-115.

    • SONG ZC, WANG H, LIU SR, et al. , 2020. Relationship between tree species richness and soil microbial diversity and community composition in a mixed planted south subtropical forest [J]. Acta Ecol Sin, 40(22): 8265-8273. [宋战超, 王晖, 刘世荣, 等, 2020. 南亚热带混交人工林树种丰富度与土壤微生物多样性和群落组成的关系 [J]. 生态学报, 40(22): 8265-8273. ]

    • SUN Q, WU HL, CHEN F, et al. , 2019. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia [J]. Microbiol Chin, 46(11): 2963-2972. [孙倩, 吴宏亮, 陈阜, 等, 2019. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构 [J]. 微生物学通报, 46(11): 2963-2972. ]

    • TAN HW, YANG SD, WU J, et al. , 2014. Comparison of Eucalyptus plantation with and other forests in soil microbial activity and bacterial diversity in red soil region, China [J]. Acta Ped Sin, 51(3): 575-584. [谭宏伟, 杨尚东, 吴俊, 等, 2014. 红壤区桉树人工林与不同林分土壤微生物活性及细菌多样性的比较 [J]. 土壤学报, 51(3): 575-584. ]

    • TEDERSOO L, BAHRAM M, POLME S, et al. , 2014. Global diversity and geography of soil fungi [J]. Science, 346(6213): 1078.

    • VAN DER HEIJDEN MGA, DE BRUIN S, LUCKERHOFF L, et al. , 2016. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment [J]. ISME J, 10(2): 389-399.

    • WAN XH, HUANG ZQ, HE ZM, et al. , 2015. Soil C∶N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations [J]. Plant Soil, 387(2): 103-116.

    • WANG Q, WANG C, YU WW, et al. , 2018. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations [J]. Front Microbiol, 9: 1543.

    • WILSON H, JOHNSON BR, BOHANNAN B, et al. , 2016. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient [J]. PeerJ, 4: e2083.

    • WU D, ZHANG MM, PENG M, et al. , 2019. Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China [J]. Front Microbiol, 10: 1636.

    • XIONG D, OU J, LI LP, et al. , 2020. Community composition and ecological function analysis of endophytic fungi in the roots of Rhododendron simsii in Pinus massoniana forest in central Guizhou [J]. Acta Ecol Sin, 40(4): 1228-1239. [熊丹, 欧静, 李林盼, 等, 2020. 黔中地区马尾松林下杜鹃根部内生真菌群落组成及其生态功能 [J]. 生态学报, 40(4): 1228-1239. ]

    • YANG LB, SUI X, ZHU DG, et al. , 2017. Study on fungal communities characteristics of different Larix gmelini forest typesin cold temperate zone [J]. J Cent S Univ For Technol, 37(12): 76-84. [杨立宾, 隋心, 朱道光, 等, 2017. 大兴安岭兴安落叶松林土壤真菌群落特征研究 [J]. 中南林业科技大学学报, 37(12): 76-84. ]

    • YANG Y, CHENG H, DOU YX, et al. , 2020. Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau [J]. Sci Total Environ, 708: 134560.

    • YOU YM, XU HC, WU XP, et al. , 2020. Native broadleaf tree species stimulate topsoil nutrient transformation by changing microbial community composition and physiological function, but not biomass in subtropical plantations with low P status [J]. For Ecol Manage, 477: 118491.

    • YU TH, ZHANG NL, YU S, et al. , 2021. The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing [J]. Acta Ecol Sin, 41(5): 1835-1845. [于天赫, 张乃莉, 于爽, 等, 2021. 北京城市公园常见乔木土壤真菌群落特征及影响因素 [J]. 生态学报, 41(5): 1835-1845. ]

    • ZHENG W, LI CX, TAN L, et al. , 2020. Comparison of Eucalyptus plantation and typical native species plantations in soil phosphorus fractions and sorption characteristics in south subtropical China [J]. Soils, 52(5): 1017-1024. [郑威, 李晨曦, 谭玲, 等, 2020. 南亚热带桉树人工林与典型乡土树种人工林土壤磷组分及磷吸附特性比较 [J]. 土壤, 52(5): 1017-1024. ]

    • ZHOU HY, 2019. Dynamics characteristic of litterfall production and nutrient of E. grandis × E. urophylla plantation in southwest of Guangxi [D]. Nanning: Guangxi University. [周弘愿, 2019. 桂西南巨尾桉人工林凋落物量及养分动态特征 [D]. 南宁: 广西大学. ]

  • 参考文献

    • AI-YAHYA'EI MN, OEHL F, VALLINA M, et al. , 2011. Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia [J]. Mycorrhiza, 21(3): 195-209.

    • ASLANI F, GEISEN S, NING D, et al. , 2022. Towards revealing the global diversity and community assembly of soil eukaryotes [J]. Ecol Lett, 25(1): 65-76.

    • BARBI F, PRUDENT E, VALLON L, et al. , 2016. Tree species select diverse soil fungal communities expressing different sets of lignocellulolytic enzyme-encoding genes [J]. Soil Biol Biochem, 100: 149-159.

    • CHEN L, XIANG WH, WU HL, et al. , 2019. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests [J]. Appl Microbiol Biotechnol, 103(13): 5421-5433.

    • CHEN LR, LIN JN, SHEN R, et al. , 2022. Characteristic of soil fungal community and its impact factors of Pinus massoniana forests in the Three Gorges Reservoir Region [J]. Chin J Appl Ecol, 33(9): 2397-2404. [陈历睿, 林佳妮, 沈蓉, 等, 2022. 三峡库区马尾松林土壤真菌群落特征及影响因素 [J]. 应用生态学报, 33(9): 2397-2404. ]

    • CHEN WQ, WANG JY, MENG ZX, et al. , 2020. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands [J]. New Phytol, 226(4): 947-949.

    • CHEN XB, ZHU DQ, ZHAO CC, et al. , 2019. Community composition and diversity of fungi in soils under different types of Pinus koraiensis forests [J]. Acta Ped Sin, 56(5): 1221-1234. [陈秀波, 朱德全, 赵晨晨, 等, 2019. 不同林型红松林土壤真菌群落组成和多样性 [J]. 土壤学报, 56(5): 1221-1234. ]

    • CHEN ZJ, GAO SK, CHEN Y, et al. , 2020. Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest [J]. Acta Ecol Sin, 40(11): 3813-3821. [陈祖静, 高尚坤, 陈园, 等, 2020. 短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响 [J]. 生态学报, 40(11): 3813-3821. ]

    • CLAUDIA C, LAURA S, EMILIO G, et al. , 2022. Humidity and low pH boost occurrence of Onygenales fungi in soil at global scale [J]. Soil Biol Biochem, 167: 108617.

    • DENG FC, QIN QY, YAN Q, et al. , 2013. Variation of soil fertility in Eucalyptus plantation and its soil fertility comprehensive evaluation [J]. Guangxi For Sci, 42(2): 148-152. [邓富春, 覃其云, 颜权, 等, 2013. 桉树人工林土壤肥力变化及其综合评价 [J]. 广西林业科学, 42(2): 148-152. ]

    • DENG JJ, ZHU WX, ZHANG Y, et al. , 2020. Studies on soil fungal community composition and function characteristics of different plantations of sandy area, northwest Liaoning Province [J]. For Res, 33(1): 44-54. [邓娇娇, 朱文旭, 张岩, 等, 2020. 辽西北风沙区不同人工林土壤真菌群落结构及功能特征 [J]. 林业科学研究, 33(1): 44-54. ]

    • DONG AR, LÜ GZ, WU QY, et al. , 2004. Diversity of soil fungi in Liangshui Natural Reserve, Xiaoxing’anling forest region [J]. J NE For Univ, 32(1): 8-10. [董爱荣, 吕国忠, 吴庆禹, 等, 2004. 小兴安岭凉水自然保护区森林土壤真菌的多样性 [J]. 东北林业大学学报, 32(1): 8-10. ]

    • FERRIER S, MANION G, ELITH J, et al. , 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment [J]. Divers Distrib, 13(3): 252-264.

    • FREY SD, 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics [J]. Ann Rev Ecol Evol Syst, 50(1): 237-259.

    • GE W, DONG CB, ZHANG ZY, et al. , 2021. Symbiotic interaction between ectomycorrhizal fungi and endobacteria: a review [J]. Microbiol Chin, 48(10): 3810-3822. [葛伟, 董醇波, 张芝元, 等, 2021. 外生菌根真菌与内生细菌共生互作的研究进展 [J]. 微生物学通报, 48(10): 3810-3822. ]

    • GILMARTIN EC, JUSINO MA, PYNE EJ, et al. , 2022. Fungal endophytes and origins of decay in beech (Fagus sylvatica) sapwood [J]. Fungal Ecol, 59: 101161.

    • GREEN JL, HOLMES AJ, WESTOBY M, et al. , 2004. Spatial scaling of microbial eukaryote diversity [J]. Nature, 432(7018): 747-750.

    • HE YJ, QIN L, LI ZY, et al. , 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China [J]. For Ecol Manage, 295: 193-198.

    • LIANG X, LI YC, CHEN XJ, et al. , 2017. Soil fungal community characteristics in three types of forest stand in Huyang forest region of Mulei, Xinjiang [J]. Chin J Ecol, 36(3): 623-630. [梁雪, 李永春, 陈相君, 等, 2017. 新疆木垒胡杨林区三种林分土壤真菌群落特征 [J]. 生态学杂志, 36(3): 623-630. ]

    • LIU B, 2020. The effects of different Eucalyptus stands on soil fungal community structures and functions [D]. Nanjing: Nanjing Forestry University. [刘兵, 2020. 桉树人工林林分结构变化对土壤真菌群落和功能结构的影响 [D]. 南京: 南京林业大学. ]

    • LU RK, 2000. Methods for agricultural chemical analysis of soil [M]. Beijing: China Agricultural Science and Technology Press. [鲁如坤, 2000. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社. ]

    • MAN BY, XIANG X, LUO Y, et al. , 2021. Characteristics and influencing factors of soil fungal community of typical vegetation types in Mount Huangshan, East China [J]. Mycosystema, 40(10): 2735-2751. [满百膺, 向兴, 罗洋, 等, 2021. 黄山典型植被类型土壤真菌群落特征及其影响因素 [J]. 菌物学报, 40(10): 2735-2751. ]

    • MARON JL, MARLER M, KLIRONOMOS JN, et al. , 2011. Soil fungal pathogens and the relationship between plant diversity and productivity [J]. Ecol Lett, 14(1): 36-41.

    • MARTIN H, CHARLES GH, DAVID V, et al. , 2012. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests [J]. ISME J, 6(12): 2199-2218.

    • MENG M, WANG B, ZHANG QL, et al. , 2020. Driving force of soil microbial community structure in a burned area of Daxing’anling, China [J]. J For Res, 32(4): 1723-1738.

    • MONKAI J, PURAHONG W, NAWAZ A, et al. , 2022. Conversion of rainforest to rubber plantations impacts the rhizosphere soil mycobiome and alters soil biological activity [J]. Land Degrad Dev, 33(17): 3411-3426.

    • NASHOLM T, EKBLAD A, NORDIN A, et al. , 1998. Boreal forest plants take up organic nitrogen [J]. Nature, 392(6679): 914-916.

    • NGUYEN NH, SONG ZW, BATES ST, et al. , 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild [J]. Fungal Ecol, 20: 241-248.

    • NIE SA, LEI XM, ZHAO LX, et al. , 2018. Fungal communities and functions response to long-term fertilization in paddy soils [J]. Appl Soil Ecol, 130: 251-258.

    • PATRICK DS, GEVERS D, SARAH LW, 2017. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies [J]. PLoS ONE, 6(12): e27310.

    • PENG W, TAN L, MING AG, et al. , 2018. Bacterial community composition in soil profile of typical monoculture plantations in south subtropical China [J]. Chin J Soil Sci, 49(6): 1361-1369. [彭雯, 谭玲, 明安刚, 等, 2018. 南亚热带典型人工纯林土壤剖面细菌群落组成差异分析 [J]. 土壤通报, 49(6): 1361-1369. ]

    • PING Y, HAN DX, WANG N, et al. , 2017. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China [J]. World J Microbiol Biotechnol, 33(1): 12.

    • QIAO SS, ZHOU YN, CHAI BF, et al. , 2017. Characteristics of fungi community structure and genetic diversity of forests in Guandi mountains [J]. Environ Sci, 38(6): 2502-2512. [乔沙沙, 周永娜, 柴宝峰, 等, 2017. 关帝山森林土壤真菌群落结构与遗传多样性特征 [J]. 环境科学, 38(6): 2502-2512. ]

    • QIN H, LI CX, REN QS, et al. , 2017. Effects of different land use patterns on soil bacterial and fungal biodiversity in the hydro-fluctuation zone of the Three Gorges Reservoir Region [J]. Acta Ecol Sin, 37(10): 3494-3504. [秦红, 李昌晓, 任庆水, 2017. 不同土地利用方式对三峡库区消落带土壤细菌和真菌多样性的影响 [J]. 生态学报, 37(10): 3494-3504. ]

    • QIN XH, LIAN Y, CHEN CF, et al. , 2021. Effects of different tree species plantations on soil bacterial community diversity in south subtropical China [J]. For Res, 34(4): 120-127. [覃鑫浩, 梁艳, 陈超凡, 等, 2021. 南亚热带不同树种人工林对土壤细菌群落多样性的影响 [J]. 林业科学研究, 34(4): 120-127. ]

    • QIN L, MA XZ, WU SR, et al. , 2017. Characteristics of soil microbial biomass nitrogen and soluble nitrogen between typical native broad-leaved and Eucalyptus plantations in southern subtropical China [J]. Chin J Appl Environ Biol, 23(4): 678-684. [覃林, 马雪珍, 吴水荣, 等, 2017. 南亚热带典型乡土阔叶人工林与桉树人工林土壤微生物量氮及可溶性氮特征 [J]. 应用与环境生物学报, 23(4): 678-684. ]

    • ROUSK J, BAATH E, BROOKES PC, et al. , 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 4(10): 1340-1351.

    • SCHNEIDER T, KEIBLINGER KM, SCHMID E, et al. , 2012. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions [J]. ISME J, 6(9): 1749-1762.

    • SHEN CC, LIANG WJ, SHI Y, et al. , 2014. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants [J]. Ecology, 95(11): 3190-3202.

    • SNAJDR J, DOBIASOVA P, URBANOVA M, et al. , 2013. Dominant trees affect microbial community composition and activity in post-mining afforested soils [J]. Soil Biol Biochem, 56: 105-115.

    • SONG ZC, WANG H, LIU SR, et al. , 2020. Relationship between tree species richness and soil microbial diversity and community composition in a mixed planted south subtropical forest [J]. Acta Ecol Sin, 40(22): 8265-8273. [宋战超, 王晖, 刘世荣, 等, 2020. 南亚热带混交人工林树种丰富度与土壤微生物多样性和群落组成的关系 [J]. 生态学报, 40(22): 8265-8273. ]

    • SUN Q, WU HL, CHEN F, et al. , 2019. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia [J]. Microbiol Chin, 46(11): 2963-2972. [孙倩, 吴宏亮, 陈阜, 等, 2019. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构 [J]. 微生物学通报, 46(11): 2963-2972. ]

    • TAN HW, YANG SD, WU J, et al. , 2014. Comparison of Eucalyptus plantation with and other forests in soil microbial activity and bacterial diversity in red soil region, China [J]. Acta Ped Sin, 51(3): 575-584. [谭宏伟, 杨尚东, 吴俊, 等, 2014. 红壤区桉树人工林与不同林分土壤微生物活性及细菌多样性的比较 [J]. 土壤学报, 51(3): 575-584. ]

    • TEDERSOO L, BAHRAM M, POLME S, et al. , 2014. Global diversity and geography of soil fungi [J]. Science, 346(6213): 1078.

    • VAN DER HEIJDEN MGA, DE BRUIN S, LUCKERHOFF L, et al. , 2016. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment [J]. ISME J, 10(2): 389-399.

    • WAN XH, HUANG ZQ, HE ZM, et al. , 2015. Soil C∶N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations [J]. Plant Soil, 387(2): 103-116.

    • WANG Q, WANG C, YU WW, et al. , 2018. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations [J]. Front Microbiol, 9: 1543.

    • WILSON H, JOHNSON BR, BOHANNAN B, et al. , 2016. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient [J]. PeerJ, 4: e2083.

    • WU D, ZHANG MM, PENG M, et al. , 2019. Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China [J]. Front Microbiol, 10: 1636.

    • XIONG D, OU J, LI LP, et al. , 2020. Community composition and ecological function analysis of endophytic fungi in the roots of Rhododendron simsii in Pinus massoniana forest in central Guizhou [J]. Acta Ecol Sin, 40(4): 1228-1239. [熊丹, 欧静, 李林盼, 等, 2020. 黔中地区马尾松林下杜鹃根部内生真菌群落组成及其生态功能 [J]. 生态学报, 40(4): 1228-1239. ]

    • YANG LB, SUI X, ZHU DG, et al. , 2017. Study on fungal communities characteristics of different Larix gmelini forest typesin cold temperate zone [J]. J Cent S Univ For Technol, 37(12): 76-84. [杨立宾, 隋心, 朱道光, 等, 2017. 大兴安岭兴安落叶松林土壤真菌群落特征研究 [J]. 中南林业科技大学学报, 37(12): 76-84. ]

    • YANG Y, CHENG H, DOU YX, et al. , 2020. Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau [J]. Sci Total Environ, 708: 134560.

    • YOU YM, XU HC, WU XP, et al. , 2020. Native broadleaf tree species stimulate topsoil nutrient transformation by changing microbial community composition and physiological function, but not biomass in subtropical plantations with low P status [J]. For Ecol Manage, 477: 118491.

    • YU TH, ZHANG NL, YU S, et al. , 2021. The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing [J]. Acta Ecol Sin, 41(5): 1835-1845. [于天赫, 张乃莉, 于爽, 等, 2021. 北京城市公园常见乔木土壤真菌群落特征及影响因素 [J]. 生态学报, 41(5): 1835-1845. ]

    • ZHENG W, LI CX, TAN L, et al. , 2020. Comparison of Eucalyptus plantation and typical native species plantations in soil phosphorus fractions and sorption characteristics in south subtropical China [J]. Soils, 52(5): 1017-1024. [郑威, 李晨曦, 谭玲, 等, 2020. 南亚热带桉树人工林与典型乡土树种人工林土壤磷组分及磷吸附特性比较 [J]. 土壤, 52(5): 1017-1024. ]

    • ZHOU HY, 2019. Dynamics characteristic of litterfall production and nutrient of E. grandis × E. urophylla plantation in southwest of Guangxi [D]. Nanning: Guangxi University. [周弘愿, 2019. 桂西南巨尾桉人工林凋落物量及养分动态特征 [D]. 南宁: 广西大学. ]