en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张勇(1988—),博士,副教授,主要从事高寒草地生态适应研究,(E-mail)zhy1902@126.com。

中图分类号:Q948

文献标识码:A

文章编号:1000-3142(2024)08-1565-11

DOI:10.11931/guihaia.gxzw202305075

参考文献
CHEN XL, CHEN HYH, 2021. Plant mixture balances terrestrial ecosystem C∶N∶P stoichiometry [J]. Nat Commun, 12: 4562.
参考文献
CUI Y, 2021. Spatiotemporal variation of the alpine meadow and its effects on typical surface-water in Shangri-La in recent 30 years [D]. Kunming: Southwest Forestry University: 3-5. [崔媛, 2021. 近30年香格里拉市高寒草甸时空变化及其对典型高原面状水体的影响 [D]. 昆明: 西南林业大学: 3-5. ]
参考文献
DU E, TERRER C, PELLEGRINI AFA, et al. , 2020. Global patterns of terrestrial nitrogen and phosphorus limitation [J]. Nat Geosci, 13: 221-226.
参考文献
ELSER JJ, DOBBERFUHL DR, MACKAY NA, et al. , 1996. Organism size, life history, and N∶P stoichiometry: toward a unified view of cellular and ecosystem processes [J]. BioScience, 46 (9): 674-684.
参考文献
HE JS, FANG JY, WANG ZH, et al. , 2006. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China [J]. Oecologia, 149: 115-122.
参考文献
HE JS, WANG L, FLYNN DFB, et al. , 2008. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes [J]. Oecologia, 155: 301-310.
参考文献
LIAO JQ, LI ZL, WANG JS, et al. , 2021. Nitrogen use efficiency of terrestrial plants in China: geographic patterns, evolution, and determinants [J]. Ecol Proc, 10: 69.
参考文献
LIN L, LI YK, ZHANG FW, et al. , 2013. Soil nitrogen and phosphorus stoichiometry in a degradation series of Kobresia humulis meadows in the Tibetan Plateau [J]. Acta Ecol Sin, 33(17): 5245-5251. [林丽, 李以康, 张法伟, 等, 2013. 高寒矮嵩草群落退化演替系列氮、磷生态化学计量学特征 [J]. 生态学报, 33(17): 5245-5251. ]
参考文献
LIU CL, LI WL, XU J, et al. , 2021. Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau [J]. Soil Till Res, 206: 104822.
参考文献
LIU WT, WEI ZJ, LÜ SJ, et al. , 2015. Research advances in stoichiometry of grassland in China [J]. Acta Agr Sin, 23(5): 914-926. [刘文亭, 卫智军, 吕世杰, 等, 2015. 中国草原生态化学计量学研究进展 [J]. 草地学报, 23(5): 914-926. ]
参考文献
LIU ZL, 2017. Current situation and regional analysis of grassland resources in China [M]. Beijing: Science Press. [刘钟龄, 2017. 中国草地资源现状与区域分析 [M]. 北京: 科学出版社. ]
参考文献
LIU ZY, ZHANG XN, LI LP, et al. , 2017. Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan [J]. Acta Ecol Sin, 37(23): 7821-7832. [刘振亚, 张晓宁, 李丽萍, 等, 2017. 大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响 [J]. 生态学报, 37(23): 7821-7832. ]
参考文献
MA YD, ZHENG QZ, ZHANG Y, et al. , 2022. Responses of plant community structure to mowing in the degraded alpine meadows, Northwestern Yunnan Province [J]. Acta Ecol Sin, 42(19): 8073-8081. [马燕丹, 郑秋竹, 张勇, 等, 2022. 滇西北退化高寒草甸植物群落结构对刈割的响应 [J]. 生态学报, 42(19): 8073-8081. ]
参考文献
MARTINY AC, PHAM CTA, PRIMEAU FW, et al. , 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter [J]. Nat Geosci, 6: 279-283.
参考文献
MI WJ, ZOU Y, LI M, et al. , 2016. Nitrogen and phosphorus stoichiometry characteristics of typical herb plants in the water-fluctuation-zone of Three Gorges Reservoir [J]. J Lake Sci, 28(4): 802-811. [米玮洁, 邹怡, 李明, 等, 2016. 三峡水库消落区典型草本植物氮、磷养分计量特征 [J]. 湖泊科学, 28(4): 802-811. ]
参考文献
NIKLAS KJ, COBB ED, 2005. N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth [J]. Amer J Bot, 92(8): 1256-1263.
参考文献
REICH PB, OLEKSYN J, WRIGHT IJ, et al. , 2010. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes [J]. Proc Roy Soc B-Biol Sci, 277(1683): 877-883.
参考文献
SHEN HH, ZHU YK, ZHAO X, et al. , 2016. Analysis of current grassland resources in China [J]. Chin Sci Bull, 61(2): 139-154. [沈海花, 朱言坤, 赵霞, 等, 2016. 中国草地资源的现状分析 [J]. 科学通报, 61(2): 139-154. ]
参考文献
TIAN D, YAN ZB, FANG JY, 2021. Review on characteristics and main hypotheses of plant ecological stoichiometry [J]. Chin J Plant Ecol, 45(7): 682-713. [田地, 严正兵, 方精云, 2021. 植物生态化学计量特征及其主要假说 [J]. 植物生态学报, 45(7): 682-713. ]
参考文献
TIAN D, YAN ZB, NIKLAS KJ, et al. , 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent [J]. Nat Sci Rev, 5(5): 728-739.
参考文献
WAN LF, LIU GH, CHENG H, et al. , 2023. Global warming changes biomass and C∶N∶P stoichiometry of different components in terrestrial ecosystems [J]. Glob Change Biol, 29(24): 7102-7116.
参考文献
WANG Y, REN Z, MA PP, et al. , 2020. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau [J]. Sci Total Environ, 722: 137910.
参考文献
WANG YF, LV WW, XUE K, et al. , 2022. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau [J]. Nat Rev Earth Environ, 3: 668-683.
参考文献
WU GL, GAO JY, LI HL, et al. , 2023. Shifts in plant and soil C, N, and P concentrations and C∶N∶P stoichiometry associated with environmental factors in alpine marshy wetlands in West China [J]. Catena, 221: 106801.
参考文献
XIE J, CHANG SL, ZHANG YT, et al. , 2016. Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains [J]. Acta Ecol Sin, 36(14): 4363-4372. [谢锦, 常顺利, 张毓涛, 等, 2016. 天山北坡植物土壤生态化学计量特征的垂直地带性规律 [J]. 生态学报, 36(14): 4363-4372. ]
参考文献
XU S, GONG JR, ZHANG ZY, et al. , 2014. The ecological stoichiometry of dominant species in different land uses type of grassland [J]. Acta Pratac Sin, 23(6): 45-53. [徐沙, 龚吉蕊, 张梓榆, 等, 2014. 不同利用方式下草地优势植物的生态化学计量特征 [J]. 草业学报, 23(6): 45-53. ]
参考文献
YU Q, CHEN QS, ELSER JJ, et al. , 2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability [J]. Ecol Lett, 13(11): 1390-1399.
参考文献
ZHAO HY, ZHANG Y, CUI Y, et al. , 2020. Study on the compensatory growth of alpine meadows along a degradation gradient in northwestern Yunnan Province [J]. Pratac Sci, 37(6): 1025-1034. [赵鸿怡, 张勇, 崔媛, 等, 2020. 退化梯度上滇西北高山草甸植物群落的补偿生长能力 [J]. 草业科学, 37(6): 1025-1034. ]
参考文献
ZHANG CP, LI Q, FENG RQ, et al. , 2023. C∶N∶P stoichiometry of plant-soil-microbe in the secondary succession of zokor-made mounds on Qinghai-Tibet Plateau [J]. Environ Res, 222: 115333.
参考文献
ZHANG JH, LI MX, XU L, et al. , 2021. C∶N∶P stoichiometry in terrestrial ecosystems in China [J]. Sci Total Environ, 795: 148849.
参考文献
ZHANG LX, BAI YF, HAN XG, 2003. Application of N∶P stoichiometry to ecology studies [J]. Acta Bot Sin, 45(9): 1009-1018.
参考文献
ZHANG Y, GANJURJAV H, DONG SK, et al. , 2020. Excessive plant compensatory growth: a potential endogenous driver of meadow degradation on the Qinghai-Tibetan Plateau [J]. Ecosyst Health Sust, 6(1): 1816500.
目录contents

    摘要

    为探究环境干扰对退化高寒草甸植物化学计量特征的影响,该研究于2018—2020年对香格里拉市3个退化程度[轻度退化(LD)、中度退化(MD)、重度退化(SD)]的高寒草甸开展刈割试验,进而分析退化高寒草甸植物C、N、P含量、C∶N∶P和 N-P幂函数关系在不同刈割年限(0、1、2 a)之间的差异。结果表明:(1)除莎草科P含量外,草甸植物群落、禾本科和杂类草的C、N、P含量在退化程度间无显著差异(P>0.05)。随着刈割年限的增加,退化草甸植物C、N、P含量呈先增后降的趋势(P<0.05)。(2)草甸植物C∶N和C∶P在退化程度间无差异(P>0.05)。从LD到SD,植物群落、莎草科和杂类草的N∶P比先小幅下降再显著上升(P<0.05),禾本科的N∶P未发生显著变化(P>0.05)。(3)随刈割年限增加,草甸植物的C∶N和C∶P呈先降后增、N∶P呈先增后降的趋势。刈割0 a时,莎草科的C∶P和N∶P显著高于杂类草(P<0.05),与植物群落和禾本科无差异(P>0.05);刈割1 a和2 a时,莎草科的C∶P和N∶P高于植物群落和其他功能群(P<0.05);在各刈割年限,植物群落和各功能群植物间的C∶N无差异(P>0.05)。(4)随刈割年限增加,退化草甸植物的N-P幂函数关系由弱变强、幂指数趋于稳定。莎草科的N-P幂指数(小于0.1)与植物群落、禾本科和杂类草的幂指数(稳定在0.19~0.22之间)明显不同。该研究发现,刈割干扰下退化高寒草甸植物生态化学计量特征在退化程度间差异不大,但其随刈割年限增加发生显著变化,这说明滇西北不同退化程度高寒草甸对刈割干扰可能具有相似的响应过程。

    Abstract

    This study aimed to investigate the effects of environmental disturbances on the stoichiometry characteristics of plants in degraded alpine meadows. To achieve this, a mowing experiment was conducted on an alpine meadow with three degradation levels [light degradation (LD), moderate degradation (MD), and severe degradation (SD)] in Shangri-La from 2018 to 2020. Subsequently, differences in plant carbon (C) content, nitrogen (N) content, phosphorous (P) content, C∶N∶P ratio, and N-P power function relationship among different mowing durations (0, 1, 2 a, respectively) were analysed. The results were as follows: (1) Except for the P content of Cyperaceae, plant C, N and P contents of the entire plant community, Gramineae and forbs did not vary among degradation levels (P > 0.05) during the mowing experiment. Plant C, N and P contents tended increase and then decrease with increasing mowing years, i.e., these indices were the highest after 1 a of mowing (P < 0.05). (2) At the plant community and functional group levels, there was no significant difference in plant C∶N ratio and C∶P ratio among degradation levels (P>0.05). From LD to SD, the N∶P ratio of the plant community, Cyperaceae and forbs tended to decrease slightly first and then increased (P < 0.05), while the N∶P ratio of Gramineae did not change significantly (P > 0.05). (3) The N∶P ratio and C∶P ratio showed a parabolic trend, while the C∶N ratio showed an inverse trend with the increasing of mowing duration. Before mowing (i.e., mowing 0 a), the C∶P ratio and N∶P ratio of Cyperaceae were higher than those of forbs (P<0.05) but did not vary from those of the plant community and Gramineae (P > 0.05). After mowing (i.e., mowing 1 a or 2 a), the C∶P ratio and N∶P ratio of Cyperaceae were higher than those of the whole plant community, Gramineae, and forbs (P < 0.05). At each mowing duration, the C∶N ratio of plants did not vary among plant communities and functional groups (P > 0.05). (4) Mowing caused a stronger N-P power function relationship and a stable power exponent both at the plant community and functional group levels. And the N-P power exponent of Cyperaceae was less than 0.1, while those of the plant community, Gramineae and forbs remained stable at 0.19-0.22. In conclusion, this study found that plant stoichiometry remained stable across degradation levels but changed significantly with the prolongation of the mowing duration, which implies that different degraded alpine meadows in Northwest Yunnan may share common response mechanisms to mowing disturbance.

  • 植物生态化学计量特征研究可从生态系统、群落、种群等生态学研究层次揭示生态系统中生物地球化学循环、生物生境适应等生态学核心问题(Elser et al.,1996;Zhang et al.,2003;Du et al.,2020;Chen &Chen,2021)。

  • 我国青藏高原、内蒙古高原和新疆阿尔金山地区的草地植物叶片生态化学计量比具有普遍稳定性(He et al.,2006;刘文亭等,2015),这种特性有利于植物群落适应环境变化(Liao et al.,2021;Wan et al.,2023)。高寒草甸退化是青藏高原地区的典型生态问题之一,草甸植物群落结构和功能指标均随退化加剧表现出波动性(Wang et al.,2022),但在草甸退化程度上开展的植物生态化学计量学研究表明,在高寒草甸退化过程中植物叶片化学计量比表现出了很强的内稳性,如植物叶片C∶N、C∶P和N∶P等指标均不随退化程度发生显著变化(林丽等,2013;Wang et al.,2020)。对退化高寒草地次生演替过程的研究发现草地植物的C∶N∶P也较稳定(Zhang et al.,2023)。值得注意的是,除C∶N∶P外,植物N、P含量的非线性耦合特征(N-P幂函数)更能体现植物生态计量的内稳性(Reich et al.,2010;Tian et al.,2018)。从全球范围来看,有研究认为草本植物叶片的N-P幂函数守恒——幂指数趋近于3/4(Niklas &Cobb,2005)。但是,最近的研究指出这种守恒关系可能存在明显的区域差异,也可能因植物功能群而不同(Tian et al.,2018)。青藏高原被誉为世界第三极,是全球高寒草地的集中分布区之一,研究该区域的草本植物N-P幂函数关系可为上述争议问题提供理论依据。

  • 滇西北位于青藏高原南端,该区域海拔3 000 m以上的高山地区分布着约1 400 km2高寒草甸(沈海花等,2016;刘钟龄,2017),其中75%以上分布在迪庆藏族自治州香格里拉市境内,自20世纪90年代以来香格里拉市的高寒草甸发生了明显退化,面积缩减了近40%(崔媛,2021)。研究发现,滇西北退化高寒草甸植物群落对刈割干扰具有较强的适应能力,如植物群落表现出明显的超补偿生长能力(赵鸿怡等,2020)、群落结构对刈割干扰的响应敏感性随退化加重呈增加趋势(马燕丹等,2022)。植物生态化学计量稳定性是体现植物群落响应外界干扰的重要方面(Yu et al.,2010;Liu et al.,2021),但目前尚不清楚刈割对滇西北退化高寒草甸植物C、N、P化学计量比及N-P幂函数关系的影响。

  • 为探究上述问题,本研究基于2018—2020年在云南省香格里拉市典型退化高寒草甸上开展的刈割控制试验,拟探讨以下问题:(1)在刈割干扰下,草甸植物生态化学计量特征在退化程度间是否有显著差异;(2)退化草甸植物生态化学计量特征是否会随刈割年限发生变化。

  • 1 材料与方法

  • 1.1 样地设置和刈割试验

  • 本研究的刈割试验样地位于云南省迪庆藏族自治州香格里拉市石卡雪山山麓(99°38′49″ E,27°48′03″ N,海拔3 310 m)的高寒草甸分布区,该区域的年均温6.9℃,年降水量约620 mm,土壤类型为亚高山草甸土(刘振亚等,2017)。基于道路干扰强度、土壤含水量及植被覆盖度的调查资料(赵鸿怡等,2020),参考中华人民共和国国家标准《天然草地退化、沙化、盐渍化的分级指标》(GB 19377—2003),在研究区识别3个草甸退化程度[轻度退化(light degredation,LD);中度退化(moderate degradation,MD);重度退化(severe degradation,SD)](马燕丹等,2022)。LD样地的优势植物为绢毛匍匐委陵菜(Potentilla reptans var. sericophylla)和粉叶玉凤花(Habenaria glaucifolia),MD样地的优势植物为小龙胆(Gentiana parvula)和粉叶玉凤花,SD样地的优势植物为高山紫菀(Aster alpinus)和甘西鼠尾草(Salvia przewalskii)。在每个退化程度设置3个1 m × 10 m的重复样地,在每个样地中随机选择3个1 m × 1 m的样方,于2018—2020年草甸植物生长季(7月下旬)进行刈割试验,刈割留茬高度为1 cm,按禾本科(Gramineae)、莎草科(Cyperaceae)和杂类草(forbs)3个功能群收集植物样品。在试验过程中,每个刈割样地均经历了3个刈割年限,即0、1、2 a。刈割控制试验区域的土地管理历史:2018年以前为牦牛放牧的夏季牧场,自2018年开始进行围栏封育(马燕丹等,2022)。

  • 1.2 植物碳、氮、磷含量测定及计算

  • 先测定禾本科、莎草科和杂类草的C、N、P含量。植物总有机碳测定步骤如下:(1)取3~5 mg研磨后的植物样品进行包样;(2)使用总有机碳分析仪(Vario TOC,德国)测定。采用H2SO4-H2O2法测定植物N和P含量,步骤如下:(1)称取0.1 g植物样品,加入1 mL蒸馏水浸湿,再加入5 mL浓硫酸浸泡、静置;(2)消煮温度从80℃逐步升至350℃,在消煮期间,每隔20~30 min加1次H2O2进行催化,至消煮液呈无色后冷却;(3)定容、过滤,转移至离心管,使用AA3连续流动分析仪(SEAL Analytical GmbH,AA3,德国)测定植物N、P。

  • 以3个功能群植物在植物群落中的优势度为权重,计算植物群落的C、N、P含量。功能群植物在植物群落中的优势度计算方式如下。

  • DFi=j=1n Cij+Rij2
    (1)
  • 式中: DFi为功能群i的植物优势度;CijRij分别为功能群Fi中物种j的相对盖度(物种j的盖度与植物群落总盖度的比值)和相对高度(物种j的高度与植物群落中物种总高度的比值);植物群落中3个功能群植物的优势度加和为1。

  • 植物群落养分含量(C、N、P)的计算方式如下。

  • Concom=i=13 ConFi×DFi
    (2)
  • 式中:Concom为植物群落的养分含量;ConFi为功能群i的植物养分含量(植物群落中同功能群物种的均值);DFi为功能群i在植物群落中的优势度。

  • 1.3 统计分析

  • 采用双因素方差分析(two-way ANOVA)分析退化程度(LD、MD和SD)和刈割年限(0、1、2 a)对草甸植物群落和功能群植物(禾本科、莎草科和杂类草)C、N、P含量及其生态化学计量特征的影响,用最小显著差异法(least significant difference,LSD)进行后测检验,显著性检验水平为α=0.05。特别地,本研究在进行退化程度上植物生态化学计量特征差异分析时,将每个退化程度在3个刈割年限的数据整合在一起;在进行刈割年限对退化草甸植物生态化学计量特征影响分析时,将3个退化程度在每个刈割年限的数据整合在一起。将N、P含量做对数变换后,采用幂函数拟合植物N-P之间的回归关系(Cn=βCPα),以探讨刈割对退化草甸植物群落和功能群植物N-P幂函数守恒的影响。在回归分析中,每个刈割年限的回归模型由该刈割年限内3个退化程度的数据整合建模得到。上述分析在SPSS Statistics 17.0中完成。

  • 2 结果与分析

  • 2.1 刈割对退化高寒草甸植物C、N、P含量的影响

  • 退化程度上,高寒草甸植物群落和各功能群植物的C、N、P含量较稳定——绝大部分指标在退化程度间无显著差异(n=108,P>0.05)。刈割年限对草甸植物群落和功能群植物的C、N、P含量有显著影响——全部指标在刈割年限之间均有显著差异。此外,退化和刈割年限对草甸植物C、N、P含量的交互作用较弱(表1)。

  • 退化程度上,植物群落、禾本科和杂类草的C、N、P含量无显著差异(n=108,P>0.05);莎草科的C、N含量无显著差异(P>0.05),P含量显著增加(n=108,P=0.003)(图1,表1)。

  • 由图1可知,在各退化程度,植物C、N含量在植物群落和功能群之间无显著差异(n=108,P>0.05)。植物P含量在植物群落和功能群植物间的差异性因退化程度而不同:在SD程度,莎草科的P含量显著低于植物群落和其他2个功能群;在MD程度,植物群落和杂类草的P含量分别为(2.59±0.08) mg·g-1和(2.81±0.10) mg·g-1,显著高于禾本科 [(2.29±0.08)mg·g-1]和莎草科 [(2.22±0.08)mg·g-1](n=108,P<0.000 1);在LD程度,莎草科的P含量为(2.14±0.09) mg·g-1,其与禾本科 [(2.38±0.10)mg·g-1]无显著差异(n=108,P>0.05),但显著低于植物群落 [(2.54±0.11)mg·g-1]和杂类草 [(2.67±0.15)mg·g-1](n=108,P=0.011)。

  • 刈割年限从0 a增加到2 a,退化高寒草甸植物群落以及各功能群植物的C、N、P含量变化规律较一致:呈先上升后下降的特征(图2)。

  • 植物C、N、P含量在植物群落和功能群植物之间的差异随刈割年份发生变化。刈割0 a,植物C、N含量分别为(382.98±3.49) mg·g-1、(14.45±0.14) mg·g-1,它们在植物群落和功能群之间无显著差异(n=108,PC=0.55,PN=0.14)。杂类草P含量为(2.47±0.10) mg·g-1,其显著高于植物群落和其他2个功能群(n=108,P=0.003)(图2)。

  • 刈割1 a,杂类草、禾本科的C含量分别为(414.73±9.45) mg·g-1和(406.50±5.34) mg·g-1,显著高于莎草科的(383.02±5.78)mg·g-1n=108,P=0.008)(图2)。植物N含量为(20.19±0.26) mg·g-1,其在植物群落和功能群之间无差异(n=108,P=0.85)。植物P含量的排序为杂类草 [(3.12±0.13)mg·g-1]>禾本科~植物群落>莎草科 [(2.25±0.10)mg·g-1](n=108,P<0.000 1)(图2)。

  • 刈割2 a,草甸植物C、N含量分别为(363.17±3.29) mg·g-1和(14.99±0.26) mg·g-1,它们在植物群落和功能群之间无差异(n=108,PC=0.19,PN=0.44)。植物P含量的排序为杂类草 [(2.43±0.09)mg·g-1]>植物群落 [(2.24±0.07)mg·g-1]>禾本科 [(2.05±0.07)mg·g-1]>莎草科 [(1.85±0.08)mg·g-1](n=108,P<0.000 1)。

  • 2.2 刈割对退化高寒草甸植物C∶N∶P的影响

  • 相较于退化程度间的差异,刈割年限对草甸植物C∶N∶P化学计量比的影响更大,退化程度和刈割年限对草甸植物C∶N∶P化学计量比的交互作用较弱(表1)。

  • 退化程度上,高寒草甸植物群落和3个功能群植物的C∶N、C∶P较稳定,均未发生显著变化(n=108,P>0.05)。禾本科N∶P介于(6.84±0.13)~(7.25±0.14)之间,其未随草甸退化程度发生变化(n=108,P>0.05)。随退化程度加深,草甸植物群落、莎草科和杂类草的N∶P呈先小幅降低后显著上升的趋势(n=108,P<0.05)(表1,表2)。

  • 由表2可知,在各退化程度,植物C∶N在植物群落和功能群之间无显著差异(n=108,P>0.05)。在SD和MD程度,莎草科和禾本科C∶P有高于植物群落和杂类草的趋势;在LD程度,植物C∶P在植物群落和功能群植物间无显著差异(n=108,P>0.05)。在各退化程度,莎草科N∶P显著高于植物群落和其他功能群(n=108,P<0.05)。

  • 表1 退化程度和刈割年限对滇西北高寒草甸植物C、N、P含量及其化学计量比的影响

  • Table1 Effects of degradation level and mowing duration on plant C, N and P contents, and C∶N∶P stoichiometry in an alpine meadow in Northwest Yunnan

  • 注:表中括号外数据为F值,括号内为P值,有统计显著性(α=0.05)的加粗显示, n=8。

  • Note: F value (outside the brackets) and P value (inside the brackets) are shown in this table, and statistical significance at α=0.05 is shown in bold, n=108.

  • 由表3可知,随刈割年限从0 a增加到2 a,草甸植物群落、禾本科、莎草科和杂类草的C∶N以及植物群落、禾本科的C∶P均呈先下降后上升的趋势,即刈割0 a和2 a的显著高于刈割1 a(n=108,P<0.05)。莎草科和杂类草的C∶P、杂类草的N∶P未随刈割年限的增加而发生变化(n=108,P>0.05)。植物群落和禾本科的N∶P呈增加趋势(n=108,P<0.05),莎草科N∶P呈先增加后下降的趋势(n=108,P<0.05)。

  • 在各刈割年限,植物C∶N在植物群落和功能群间均无差异(n=108,P>0.05)。刈割0 a时,禾本科和莎草科C∶P显著高于杂类草(n=108,P<0.05);刈割1 a后,莎草科C∶P显著高于植物群落和其他2个功能群(n=108,P<0.05);刈割2 a后,莎草科C∶P显著高于植物群落和杂类草(n=108,P<0.05),但与禾本科无差异(n=108,P>0.05)。当刈割年限为0 a时,莎草科N∶P显著高于杂类草(n=108,P<0.05),但与植物群落和禾本科无差异(n=108,P>0.05);当刈割年限为1 a和2 a时,莎草科N∶P显著高于植物群落、禾本科和杂类草(n=108,P<0.05)(表3)。

  • 图1 草甸植物C、N、P含量在退化程度间的差异

  • Fig.1 Changes in plant C, N and P content among different degradation levels

  • 图2 刈割年限对退化高寒草甸植物C、N、P含量的影响

  • Fig.2 Effects of mowing duration on plant C, N and P contents in a degraded alpine meadow

  • 2.3 刈割对退化高寒草甸植物N-P幂函数关系的影响

  • 对刈割试验数据进行整体分析发现,退化草甸植物群落、禾本科和杂类草的N-P幂函数关系相似,它们的幂指数介于0.19~0.22之间,差别不大,但莎草科的幂指数为0.07,远小于前三者(图3)。

  • 由图3可知,刈割年限导致退化草甸植物的N-P幂函数关系发生了显著变化。刈割0 a时,禾本科和莎草科的N-P幂函数关系未达到统计显著性(n=27,P>0.05),植物群落和杂类草的N-P幂函数关系则达到了统计显著性(n=27,P植物群落=0.008,P杂类草=0.001),但他们的幂指数均小于0.1。刈割1 a和2 a后,植物群落和3个功能群植物的N-P幂函数模型均达到了统计显著性(n=27,P<0.01),除莎草科的幂指数小于0.1外,植物群落、禾本科和杂类草的幂指数稳定介于0.17~0.20之间。

  • 表2 草甸植物碳、氮、磷含量比值在退化程度间的变化特征

  • Table2 Changes in C∶N∶P, C∶N and N∶P of meadow plants among the degradation levels

  • 注:不同小写字母表示退化程度间有显著差异,不同大写字母表示同一退化程度上植物群落和功能群之间有显著差异(n=108,α=0.05)。

  • Note: Different lowercase letters indicate differences among degradation levels, and different uppercase letters indicate differences among plant communities and functional groups at each degradation level (n=108, α=0.05) .

  • 表3 刈割年限对草甸植物碳、氮、磷含量比值的影响

  • Table3 Effects of mowing duration on C∶N∶P, C∶N and N∶P of meadow plants

  • 注:不同小写字母表示刈割年际间有显著差异,不同大写字母表示同一个刈割年限的植物群落和功能群之间有显著差异(n=108,α=0.05)。

  • Note: Different lowercase letters indicate differences among mowing years, and different uppercase letters indicate differences among plant communities and functional groups at each mowing duration (n=108, α=0.05) .

  • 3 讨论与结论

  • 田地等(2021)在全球范围内开展的研究表明草本植物叶片的N、P含量及N∶P分别约为20.56、1.56 mg·g-1和13.17。He等(2008)的研究则表明中国草地植物叶片N、P含量和N∶P分别为29.07、1.9 mg·g-1和15.3。与上述研究结果相比发现,本研究中退化草甸植物的N含量(16.4~16.6 mg·g-1)和N∶P(6.7~7.6)远低于全球和中国平均水平,但P含量(约2 mg·g-1)则与中国平均水平相当并高于全球平均水平。这说明滇西北地区退化高寒草甸植物N、P含量及N∶P具有很强的区域特征,未来需探讨导致这种区域特异性的原因。

  • 图3 不同刈割年限下退化高寒草甸植物群落和功能群植物的N-P幂函数关系

  • Fig.3 N-P power function relationships for plant communities and functional group plants of a degraded alpine meadow under different mowing durations

  • 本研究发现,在整个刈割试验过程中草甸植物C、N、P含量及C∶N、C∶P在退化程度间差别不大,本研究结果部分印证了青藏高原地区退化高寒草甸植物生态化学计量比的稳定性特征。但是,本研究中退化草甸植物C、N、P含量及其化学计量比随刈割年限增加发生了明显变化。本试验的前期研究结果表明,刈割导致群落物种组成发生了明显变化(马燕丹等,2022),这种变化可能是改变植物C、N、P生态化学计量特征的原因。由于植物N、P含量特征由植物体内的蛋白质和核酸的相对丰度决定(田地等,2021),因此植物群落C、N、P生态化学计量特征主要受物种组成差异的影响(Zhang et al.,2021;Wu et al.,2023),其随物种组成分布呈一定的地带性特征(Martiny et al.,2013)。局地气候条件、水淹等环境条件对植物群落C、N、P生态化学计量特征的影响有限(He et al.,2006,2008;谢锦等,2016;米玮洁等,2016)。以上结果说明,如果外界干扰(包括刈割)未改变植物群落的物种组成,那么群落的C、N、P生态化学计量特征则可维持稳定。换言之,可通过生态化学计量特征判断植物群落对环境干扰的响应敏感性。

  • 大量研究表明,相较于植物C∶N或C∶P,植物N∶P对环境变化(如变暖、养分添加)的响应更显著(He et al.,2008;徐沙等,2014;Wan et al.,2023)。本研究也发现,在刈割试验期间草甸植物N∶P不仅受到了刈割年限的影响,其随退化程度也呈“先小幅降低后显著上升”的趋势。这说明植物N∶P具有指示环境变化(如干扰、退化)的潜在能力。在植物群落水平,这种指示作用可能较弱(林丽等,2013),但在植物功能群水平或种属水平,其指示作用可能比较理想。特别地,莎草科植物是高寒草甸的建群种,其N∶P对环境扰动的指示作用值得深入研究。本研究发现随刈割时间增加,莎草科N∶P的变化较植物群落明显。此外,He等(2008)的研究也表明莎草科嵩草属(Kobresia)植物叶片N∶P对降水量有明显的响应特征。因此,在高寒地区开展草地环境变化研究时需重点关注莎草科某些属(或种)的N∶P变化过程。

  • 本研究对植物N-P幂函数关系的研究表明,滇西北退化高寒草甸植物群落和功能群植物的N-P幂指数均小于1/4,远低于Niklas和Cobb(2005)提出的3/4。此外,本研究中莎草科的N-P幂函数关系与植物群落、禾本科和杂类草有明显差异。这些结果佐证了植物叶片N-P计量特征会随地理区位、植物功能群发生明显变化的观点(Tian et al.,2018)。

  • 值得注意的是,本研究发现相较于刈割前(刈割0 a),刈割1 a和2 a后退化草甸植物N-P幂函数关系明显增强,说明退化高寒草甸受刈割干扰后,植物N、P含量的耦合关系加强了。这种耦合关系增强可能对退化高寒草甸在短期内维持稳定的超补偿生长能力有重要作用(赵鸿怡等,2020)。但是从长期来看,高寒地区的植物超补偿生长可引起草甸土壤养分供给能力下降(Zhang et al.,2020)。后续研究可从植物N、P耦合关系变化的角度探讨土壤养分供给能力下降后高寒草甸植物群落超补偿生长能力维持及群落退化相关的问题。

  • 综上所述,本研究发现,在刈割干扰下滇西北退化高寒草甸植物C、N、P含量及C∶N∶P在退化程度间差异不大,但随刈割年限增加,退化草甸植物的C、N、P含量,以及C∶N∶P和N-P幂函数关系均发生了显著改变。此外,刈割年限和退化程度对大部分植物生态化学计量特征的交互作用不显著,说明滇西北不同退化程度高寒草甸对刈割干扰可能具有相似的响应过程。

  • 参考文献

    • CHEN XL, CHEN HYH, 2021. Plant mixture balances terrestrial ecosystem C∶N∶P stoichiometry [J]. Nat Commun, 12: 4562.

    • CUI Y, 2021. Spatiotemporal variation of the alpine meadow and its effects on typical surface-water in Shangri-La in recent 30 years [D]. Kunming: Southwest Forestry University: 3-5. [崔媛, 2021. 近30年香格里拉市高寒草甸时空变化及其对典型高原面状水体的影响 [D]. 昆明: 西南林业大学: 3-5. ]

    • DU E, TERRER C, PELLEGRINI AFA, et al. , 2020. Global patterns of terrestrial nitrogen and phosphorus limitation [J]. Nat Geosci, 13: 221-226.

    • ELSER JJ, DOBBERFUHL DR, MACKAY NA, et al. , 1996. Organism size, life history, and N∶P stoichiometry: toward a unified view of cellular and ecosystem processes [J]. BioScience, 46 (9): 674-684.

    • HE JS, FANG JY, WANG ZH, et al. , 2006. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China [J]. Oecologia, 149: 115-122.

    • HE JS, WANG L, FLYNN DFB, et al. , 2008. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes [J]. Oecologia, 155: 301-310.

    • LIAO JQ, LI ZL, WANG JS, et al. , 2021. Nitrogen use efficiency of terrestrial plants in China: geographic patterns, evolution, and determinants [J]. Ecol Proc, 10: 69.

    • LIN L, LI YK, ZHANG FW, et al. , 2013. Soil nitrogen and phosphorus stoichiometry in a degradation series of Kobresia humulis meadows in the Tibetan Plateau [J]. Acta Ecol Sin, 33(17): 5245-5251. [林丽, 李以康, 张法伟, 等, 2013. 高寒矮嵩草群落退化演替系列氮、磷生态化学计量学特征 [J]. 生态学报, 33(17): 5245-5251. ]

    • LIU CL, LI WL, XU J, et al. , 2021. Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau [J]. Soil Till Res, 206: 104822.

    • LIU WT, WEI ZJ, LÜ SJ, et al. , 2015. Research advances in stoichiometry of grassland in China [J]. Acta Agr Sin, 23(5): 914-926. [刘文亭, 卫智军, 吕世杰, 等, 2015. 中国草原生态化学计量学研究进展 [J]. 草地学报, 23(5): 914-926. ]

    • LIU ZL, 2017. Current situation and regional analysis of grassland resources in China [M]. Beijing: Science Press. [刘钟龄, 2017. 中国草地资源现状与区域分析 [M]. 北京: 科学出版社. ]

    • LIU ZY, ZHANG XN, LI LP, et al. , 2017. Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan [J]. Acta Ecol Sin, 37(23): 7821-7832. [刘振亚, 张晓宁, 李丽萍, 等, 2017. 大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响 [J]. 生态学报, 37(23): 7821-7832. ]

    • MA YD, ZHENG QZ, ZHANG Y, et al. , 2022. Responses of plant community structure to mowing in the degraded alpine meadows, Northwestern Yunnan Province [J]. Acta Ecol Sin, 42(19): 8073-8081. [马燕丹, 郑秋竹, 张勇, 等, 2022. 滇西北退化高寒草甸植物群落结构对刈割的响应 [J]. 生态学报, 42(19): 8073-8081. ]

    • MARTINY AC, PHAM CTA, PRIMEAU FW, et al. , 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter [J]. Nat Geosci, 6: 279-283.

    • MI WJ, ZOU Y, LI M, et al. , 2016. Nitrogen and phosphorus stoichiometry characteristics of typical herb plants in the water-fluctuation-zone of Three Gorges Reservoir [J]. J Lake Sci, 28(4): 802-811. [米玮洁, 邹怡, 李明, 等, 2016. 三峡水库消落区典型草本植物氮、磷养分计量特征 [J]. 湖泊科学, 28(4): 802-811. ]

    • NIKLAS KJ, COBB ED, 2005. N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth [J]. Amer J Bot, 92(8): 1256-1263.

    • REICH PB, OLEKSYN J, WRIGHT IJ, et al. , 2010. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes [J]. Proc Roy Soc B-Biol Sci, 277(1683): 877-883.

    • SHEN HH, ZHU YK, ZHAO X, et al. , 2016. Analysis of current grassland resources in China [J]. Chin Sci Bull, 61(2): 139-154. [沈海花, 朱言坤, 赵霞, 等, 2016. 中国草地资源的现状分析 [J]. 科学通报, 61(2): 139-154. ]

    • TIAN D, YAN ZB, FANG JY, 2021. Review on characteristics and main hypotheses of plant ecological stoichiometry [J]. Chin J Plant Ecol, 45(7): 682-713. [田地, 严正兵, 方精云, 2021. 植物生态化学计量特征及其主要假说 [J]. 植物生态学报, 45(7): 682-713. ]

    • TIAN D, YAN ZB, NIKLAS KJ, et al. , 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent [J]. Nat Sci Rev, 5(5): 728-739.

    • WAN LF, LIU GH, CHENG H, et al. , 2023. Global warming changes biomass and C∶N∶P stoichiometry of different components in terrestrial ecosystems [J]. Glob Change Biol, 29(24): 7102-7116.

    • WANG Y, REN Z, MA PP, et al. , 2020. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau [J]. Sci Total Environ, 722: 137910.

    • WANG YF, LV WW, XUE K, et al. , 2022. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau [J]. Nat Rev Earth Environ, 3: 668-683.

    • WU GL, GAO JY, LI HL, et al. , 2023. Shifts in plant and soil C, N, and P concentrations and C∶N∶P stoichiometry associated with environmental factors in alpine marshy wetlands in West China [J]. Catena, 221: 106801.

    • XIE J, CHANG SL, ZHANG YT, et al. , 2016. Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains [J]. Acta Ecol Sin, 36(14): 4363-4372. [谢锦, 常顺利, 张毓涛, 等, 2016. 天山北坡植物土壤生态化学计量特征的垂直地带性规律 [J]. 生态学报, 36(14): 4363-4372. ]

    • XU S, GONG JR, ZHANG ZY, et al. , 2014. The ecological stoichiometry of dominant species in different land uses type of grassland [J]. Acta Pratac Sin, 23(6): 45-53. [徐沙, 龚吉蕊, 张梓榆, 等, 2014. 不同利用方式下草地优势植物的生态化学计量特征 [J]. 草业学报, 23(6): 45-53. ]

    • YU Q, CHEN QS, ELSER JJ, et al. , 2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability [J]. Ecol Lett, 13(11): 1390-1399.

    • ZHAO HY, ZHANG Y, CUI Y, et al. , 2020. Study on the compensatory growth of alpine meadows along a degradation gradient in northwestern Yunnan Province [J]. Pratac Sci, 37(6): 1025-1034. [赵鸿怡, 张勇, 崔媛, 等, 2020. 退化梯度上滇西北高山草甸植物群落的补偿生长能力 [J]. 草业科学, 37(6): 1025-1034. ]

    • ZHANG CP, LI Q, FENG RQ, et al. , 2023. C∶N∶P stoichiometry of plant-soil-microbe in the secondary succession of zokor-made mounds on Qinghai-Tibet Plateau [J]. Environ Res, 222: 115333.

    • ZHANG JH, LI MX, XU L, et al. , 2021. C∶N∶P stoichiometry in terrestrial ecosystems in China [J]. Sci Total Environ, 795: 148849.

    • ZHANG LX, BAI YF, HAN XG, 2003. Application of N∶P stoichiometry to ecology studies [J]. Acta Bot Sin, 45(9): 1009-1018.

    • ZHANG Y, GANJURJAV H, DONG SK, et al. , 2020. Excessive plant compensatory growth: a potential endogenous driver of meadow degradation on the Qinghai-Tibetan Plateau [J]. Ecosyst Health Sust, 6(1): 1816500.

  • 参考文献

    • CHEN XL, CHEN HYH, 2021. Plant mixture balances terrestrial ecosystem C∶N∶P stoichiometry [J]. Nat Commun, 12: 4562.

    • CUI Y, 2021. Spatiotemporal variation of the alpine meadow and its effects on typical surface-water in Shangri-La in recent 30 years [D]. Kunming: Southwest Forestry University: 3-5. [崔媛, 2021. 近30年香格里拉市高寒草甸时空变化及其对典型高原面状水体的影响 [D]. 昆明: 西南林业大学: 3-5. ]

    • DU E, TERRER C, PELLEGRINI AFA, et al. , 2020. Global patterns of terrestrial nitrogen and phosphorus limitation [J]. Nat Geosci, 13: 221-226.

    • ELSER JJ, DOBBERFUHL DR, MACKAY NA, et al. , 1996. Organism size, life history, and N∶P stoichiometry: toward a unified view of cellular and ecosystem processes [J]. BioScience, 46 (9): 674-684.

    • HE JS, FANG JY, WANG ZH, et al. , 2006. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China [J]. Oecologia, 149: 115-122.

    • HE JS, WANG L, FLYNN DFB, et al. , 2008. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes [J]. Oecologia, 155: 301-310.

    • LIAO JQ, LI ZL, WANG JS, et al. , 2021. Nitrogen use efficiency of terrestrial plants in China: geographic patterns, evolution, and determinants [J]. Ecol Proc, 10: 69.

    • LIN L, LI YK, ZHANG FW, et al. , 2013. Soil nitrogen and phosphorus stoichiometry in a degradation series of Kobresia humulis meadows in the Tibetan Plateau [J]. Acta Ecol Sin, 33(17): 5245-5251. [林丽, 李以康, 张法伟, 等, 2013. 高寒矮嵩草群落退化演替系列氮、磷生态化学计量学特征 [J]. 生态学报, 33(17): 5245-5251. ]

    • LIU CL, LI WL, XU J, et al. , 2021. Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau [J]. Soil Till Res, 206: 104822.

    • LIU WT, WEI ZJ, LÜ SJ, et al. , 2015. Research advances in stoichiometry of grassland in China [J]. Acta Agr Sin, 23(5): 914-926. [刘文亭, 卫智军, 吕世杰, 等, 2015. 中国草原生态化学计量学研究进展 [J]. 草地学报, 23(5): 914-926. ]

    • LIU ZL, 2017. Current situation and regional analysis of grassland resources in China [M]. Beijing: Science Press. [刘钟龄, 2017. 中国草地资源现状与区域分析 [M]. 北京: 科学出版社. ]

    • LIU ZY, ZHANG XN, LI LP, et al. , 2017. Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan [J]. Acta Ecol Sin, 37(23): 7821-7832. [刘振亚, 张晓宁, 李丽萍, 等, 2017. 大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响 [J]. 生态学报, 37(23): 7821-7832. ]

    • MA YD, ZHENG QZ, ZHANG Y, et al. , 2022. Responses of plant community structure to mowing in the degraded alpine meadows, Northwestern Yunnan Province [J]. Acta Ecol Sin, 42(19): 8073-8081. [马燕丹, 郑秋竹, 张勇, 等, 2022. 滇西北退化高寒草甸植物群落结构对刈割的响应 [J]. 生态学报, 42(19): 8073-8081. ]

    • MARTINY AC, PHAM CTA, PRIMEAU FW, et al. , 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter [J]. Nat Geosci, 6: 279-283.

    • MI WJ, ZOU Y, LI M, et al. , 2016. Nitrogen and phosphorus stoichiometry characteristics of typical herb plants in the water-fluctuation-zone of Three Gorges Reservoir [J]. J Lake Sci, 28(4): 802-811. [米玮洁, 邹怡, 李明, 等, 2016. 三峡水库消落区典型草本植物氮、磷养分计量特征 [J]. 湖泊科学, 28(4): 802-811. ]

    • NIKLAS KJ, COBB ED, 2005. N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth [J]. Amer J Bot, 92(8): 1256-1263.

    • REICH PB, OLEKSYN J, WRIGHT IJ, et al. , 2010. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes [J]. Proc Roy Soc B-Biol Sci, 277(1683): 877-883.

    • SHEN HH, ZHU YK, ZHAO X, et al. , 2016. Analysis of current grassland resources in China [J]. Chin Sci Bull, 61(2): 139-154. [沈海花, 朱言坤, 赵霞, 等, 2016. 中国草地资源的现状分析 [J]. 科学通报, 61(2): 139-154. ]

    • TIAN D, YAN ZB, FANG JY, 2021. Review on characteristics and main hypotheses of plant ecological stoichiometry [J]. Chin J Plant Ecol, 45(7): 682-713. [田地, 严正兵, 方精云, 2021. 植物生态化学计量特征及其主要假说 [J]. 植物生态学报, 45(7): 682-713. ]

    • TIAN D, YAN ZB, NIKLAS KJ, et al. , 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent [J]. Nat Sci Rev, 5(5): 728-739.

    • WAN LF, LIU GH, CHENG H, et al. , 2023. Global warming changes biomass and C∶N∶P stoichiometry of different components in terrestrial ecosystems [J]. Glob Change Biol, 29(24): 7102-7116.

    • WANG Y, REN Z, MA PP, et al. , 2020. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau [J]. Sci Total Environ, 722: 137910.

    • WANG YF, LV WW, XUE K, et al. , 2022. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau [J]. Nat Rev Earth Environ, 3: 668-683.

    • WU GL, GAO JY, LI HL, et al. , 2023. Shifts in plant and soil C, N, and P concentrations and C∶N∶P stoichiometry associated with environmental factors in alpine marshy wetlands in West China [J]. Catena, 221: 106801.

    • XIE J, CHANG SL, ZHANG YT, et al. , 2016. Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains [J]. Acta Ecol Sin, 36(14): 4363-4372. [谢锦, 常顺利, 张毓涛, 等, 2016. 天山北坡植物土壤生态化学计量特征的垂直地带性规律 [J]. 生态学报, 36(14): 4363-4372. ]

    • XU S, GONG JR, ZHANG ZY, et al. , 2014. The ecological stoichiometry of dominant species in different land uses type of grassland [J]. Acta Pratac Sin, 23(6): 45-53. [徐沙, 龚吉蕊, 张梓榆, 等, 2014. 不同利用方式下草地优势植物的生态化学计量特征 [J]. 草业学报, 23(6): 45-53. ]

    • YU Q, CHEN QS, ELSER JJ, et al. , 2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability [J]. Ecol Lett, 13(11): 1390-1399.

    • ZHAO HY, ZHANG Y, CUI Y, et al. , 2020. Study on the compensatory growth of alpine meadows along a degradation gradient in northwestern Yunnan Province [J]. Pratac Sci, 37(6): 1025-1034. [赵鸿怡, 张勇, 崔媛, 等, 2020. 退化梯度上滇西北高山草甸植物群落的补偿生长能力 [J]. 草业科学, 37(6): 1025-1034. ]

    • ZHANG CP, LI Q, FENG RQ, et al. , 2023. C∶N∶P stoichiometry of plant-soil-microbe in the secondary succession of zokor-made mounds on Qinghai-Tibet Plateau [J]. Environ Res, 222: 115333.

    • ZHANG JH, LI MX, XU L, et al. , 2021. C∶N∶P stoichiometry in terrestrial ecosystems in China [J]. Sci Total Environ, 795: 148849.

    • ZHANG LX, BAI YF, HAN XG, 2003. Application of N∶P stoichiometry to ecology studies [J]. Acta Bot Sin, 45(9): 1009-1018.

    • ZHANG Y, GANJURJAV H, DONG SK, et al. , 2020. Excessive plant compensatory growth: a potential endogenous driver of meadow degradation on the Qinghai-Tibetan Plateau [J]. Ecosyst Health Sust, 6(1): 1816500.