en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

彭晓容(1998—),硕士研究生,研究方向为植物生理生态,(E-mail)pxr2021@xtbg.ac.cn。

通讯作者:

张教林,博士,研究员,研究方向为植物生理生态,(E-mail)zjl@xtbg.org.cn。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2024)08-1607-10

DOI:10.11931/guihaia.gxzw202308011

参考文献
ANDEREGG WR, HICKE JA, FISHER RA, et al. , 2015. Tree mortality from drought, insects, and their interactions in a changing climate [J]. New Phytol, 208(3): 674-683.
参考文献
BLACKMAN CJ, BRODRIBB TJ, JORDAN GJ, 2009. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species [J]. Plant Cell Environ, 32(11): 1584-1595.
参考文献
BUCCI SJ, SCHOLZ FG, CAMPANELLO PI, et al. , 2012. Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality? [J]. Tree Physiol, 32(7): 880-893.
参考文献
CHEN YJ, BONGERS F, TOMLINSON K, et al. , 2016. Time lags between crown and basal sap flows in tropical lianas and co-occurring trees [J]. Tree Physiol, 36(6): 736-747.
参考文献
CHOAT B, BRODRIBB TJ, BRODERSEN CR, et al. , 2018. Triggers of tree mortality under drought [J]. Nature, 558(7711): 531-539.
参考文献
FONTI PC, RELLSTAB C, MARTINEZ-SANCHO E, 2022. Deciphering ‘time to hydraulic failure’ to select drought-resistant tree provenances [J]. Tree Physiol, 42(4): 704-707.
参考文献
GORA EM, ESQUIVEL-MUELBERT A, 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics [J]. Nat Plants, 7(4): 384-391.
参考文献
GUNJAL J, PATIL M, CHITTAM KP, et al. , 2021. Lannea coromandelica: An overview [J]. Int J Pharm, 9(1): 102-107.
参考文献
HACKE UG, SPERRY JS, 2001. Functional and ecological xylem anatomy [J]. Perspect Plant Ecol Evol Syst, 4(2): 97-115.
参考文献
HACKE UG, SPERRY JS, PITTERMANN J, 2000. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah [J]. Basic Appl Ecol, 1(1): 31-41.
参考文献
JING S, SUN HZ, 2021. The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China [J]. J Nanjing For Univ, 45(4): 159-166. [荆烁, 孙慧珍, 2021. 东北东部山区主要树种枝条及其组分水力特征 [J]. 南京林业大学学报, 45(4): 159-166. ]
参考文献
JIN ZZ, OU XK, 2000. Vegetation of the Yuanjiang, Nujiang, Jinshajiang, Lancang River, dry and hot river valleys [M]. 1st ed. Kunming: Yunnan University Press and Yunnan Science and Technology Press. [金振洲, 欧晓昆, 2000. 元江、怒江、金沙江、澜沧江干热河谷植被 [M]. 1版. 昆明: 云南大学出版社和云南科技出版社. ]
参考文献
KIORAPOSTLOU N, SOIS LD, PETRUZZELLIS F, et al. , 2019. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms [J]. Tree Physiol, 39(10): 1675-1684.
参考文献
KING DA, DAVIES SJ, TAN S, et al, 2006. The role of wood density and stem support costs in the growth and mortality of tropical trees [J]. J Ecol, 94(3): 670-680.
参考文献
LIU LB, 2021. Intraspecific variation in leaf function trait of woody plants in a savanna community in Yuanjiang [D]. Beijing: University of Chinese Academy of Sciences. [刘璐冰, 2021. 元江稀树灌木草丛木本植物叶片功能性状种内变异研究 [D]. 北京: 中国科学院大学. ]
参考文献
LONG YX, 2022. Water regulation strategies of five dominant woody plants in desert forest of Ebinur Lake Basin [D]. Urumqi: Xinjiang University. [隆彦昕, 2022. 艾比湖流域荒漠林5种优势木本植物的水分调节策略 [D]. 乌鲁木齐: 新疆大学. ]
参考文献
MALHADO A, WHITTAKER RJ, MALHI Y, et al. , 2010. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest [J]. Glob Ecol Biogeogr, 19: 852-862.
参考文献
MARCHINI V, BENÍTEZ-MATEOS AI, HUTTER SL, et al. , 2022. Fusion of formate dehydrogenase and alanine de hydrogenase as an amino donor regenerating system coupled to transaminases [J]. ChemBioChem, 23(21): e202200428.
参考文献
MCDOWELL NG, SAPES G, PIVOVAROFF A, et al. , 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit [J]. Nat Rev Earth Environ, 3(5): 294-308.
参考文献
MCGREGOR IR, HELCOSKI R, KUNERT N, et al. , 2021. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest [J]. New Phytol, 231(2): 601-616.
参考文献
NARDINI A, PEDA G, ROCCA N, 2012. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences [J]. New Phytol, 196(3): 788-798.
参考文献
PIVOVAROFF AL, SACK L, SANTIAGO LS, 2014. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis [J]. New Phytol, 203(3): 842-850.
参考文献
PLOMION C, LEPROVOST G, STOKES A, 2001. Wood formation in tress [J]. Plant Physiol, 127(4): 1513-1523.
参考文献
PRATT R, JACOBSEN BA, NORTH G, et al. , 2009. Xylem root and shoot hydraulics are linked to life history type in chaparral species (Rhamnaceae) [J]. New Phytol, 24(1): 70-81.
参考文献
QUEIROZ EC, KUHL C, TERREAUX C, et al. , 2003. New Dihydroalkylhexenones from Lannea edulis [J]. J Nat Prod, 66(4): 578-580.
参考文献
SACK L, FROLE K, 2006. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees [J]. Ecology, 87(2): 483-491.
参考文献
SACK L, HOLBROOK NM, 2006. Leaf hydraulics [J]. Ann Rev Plant Biol, 57: 361-381.
参考文献
SACK L, MELCHER PJ, ZWIENIECKI MA, et al. , 2002. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods [J]. J Exp Bot, 53(378): 2177-2184.
参考文献
SANCHEZ-MARTINEZ P, MARTINEZ-VILALTA J, DEXTER KG, et al. , 2020. Adaptation and coordinated evolution of plant hydraulic traits [J]. Ecol Lett, 23(11): 1599-1610.
参考文献
SCHARWIES JD, DINNENY JR, 2019. Water transport, perception, and response in plants [J]. J Plant Res, 132(3): 311-324.
参考文献
SCOFFONI C, SACK L, ORT D, 2017. The causes and consequences of leaf hydraulic decline with dehydration [J]. J Exp Bot, 68(16): 4479-4496.
参考文献
SHEN R, ZHANG JL, HE B, et al. , 2010. The structure characteristic and analysis on similarity of grassland community in dry-hot valley of Yuanjiang River [J]. Ecol Environ Sci, 19(12): 2821-2825. [沈蕊, 张建利, 何彪, 等, 2010. 元江流域干热河谷草地植物群落结构特征与相似性分析 [J]. 生态环境学报, 19(12): 2821-2825. ]
参考文献
SONG J, SANTIAGO T, YIN XH, et al. , 2022. Hydraulic vulnerability segmentation in compound-leaved trees: Evidence from an embolism visualization technique [J]. Plant Physiol, 189(1): 204-214.
参考文献
SPERRY JS, DONNELLY JR, TYREE MT, 1988. A method for measuring hydraulic conductivity and embolism in xylem [J]. Plant Cell Environ, 11(1): 35-40.
参考文献
TRUGMAN AT, 2022. Integrating plant physiology and community ecology across scales through trait-based models to predict drought mortality [J]. New Phytol, 234(1): 21-27.
参考文献
TYREE MT, EWERS FW, 1991. The hydraulic architecture of trees and other woody plants [J]. New Phytol, 119(3): 345-360.
参考文献
WICKHAM H, 2016. Ggplot2: elegant graphics for data analysis. [M]. New York: Springer-Verlag.
参考文献
WOLFE BT, DETTO M, ZHANG YJ, et al. , 2023. Leaves as bottlenecks: the contribution of tree leaves to hydraulic resistance within the soil-plant-atmosphere continuum [J]. Plant Cell Environ, 46(3): 736-746.
参考文献
YAN YM, FAN ZX, FU PL, et al. , 2021. Size dependent associations between tree diameter growth rates and functional traits in an Asian tropical seasonal rainforest [J]. Funct Plant Biol, 48(2): 231-240.
参考文献
YANG D, WANG YSD, WANG Q, et al. , 2023. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China [J]. Sci Total Environ, 868: 161711.
参考文献
YANG D, ZHANG YJ, SONG J, et al. , 2019. Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China [J]. Tree Physiol, 39(5): 729-739.
参考文献
ZHANG JL, ZHU JJ, CAO KF, 2007. Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China [J]. Trees, 21(6): 631-643.
参考文献
ZHANG YP, DUAN ZX, DOU JX, 2005. Comparison of climate characteristics between a dry-warm valley in upper reaches of Min River and a dry-hot valley of Yuanjiang River [J]. Resour Environ Yangtze Basin, 14(1): 76-82. [张一平, 段泽新, 窦军霞, 2005. 岷江上游干暖河谷与元江干热河谷的气候特征比较研究 [J]. 长江流域资源与环境, 14(1): 76-82. ]
目录contents

    摘要

    为探讨不同胸径径级树木的水力性状变异格局,该研究以元江干热河谷生态系统中优势乔木树种厚皮树(Lannea coromandelica)为研究对象,测定了56棵不同胸径(0<DBH≤9 cm)厚皮树的整枝(叶片和枝条)、叶片和枝条的导水率分布格局及其形态学特征,进而探讨这些性状在胸径径级(0<DBH≤3, 3<DBH≤6和6<DBH≤9 cm)间的变异格局。结果表明:(1)3个胸径径级的厚皮树的枝条导水率均显著大于叶片导水率,表明其枝条和叶片之间存在水力分割现象且水力分割程度相似。(2)在3个胸径径级之间,平均叶柄长度、树皮密度、边材密度、胡伯尔值和比叶重等形态学性状存在显著差异,但是整枝、叶片和枝条导水率无显著差异。(3)在3个胸径径级中,整枝导水率与叶片导水率和枝条导水率均呈显著正相关。枝条导水率与树皮密度呈显著负相关,与边材密度呈显著正相关。叶片导水率与胡伯尔值呈显著负相关。综上所述,尽管一些形态学性状在不同胸径径级之间存在显著差异性,但在不同生长阶段,厚皮树叶片和枝条之间存在着相似的水力分布格局。该研究结果为了解树木体内的水分传输机制具有重要的生理学意义。

    Abstract

    In order to investigate the variation patterns of hydraulic traits of trees with different diameters at breast height (DBH) grades, we focused a dominant tree species (Lannea coromandelica) in the dry and hot ecosystem of the Yuanjiang, and measured the distribution patterns of hydraulic traits including shoot (leaf and stem), leaf, and stem hydraulic conductance, and morphological properties (DBH, leaf area/petiole length, leaf area/mass of petiole, mass of leaf/mass of petiole, average petiole length, bark density, wood density, Huber value and leaf mass per area) for 56 L. coromandelica individuals with different DBH grades (0 < DBH ≤ 9 cm), and then discussed the variation patterns of these traits among three DBH grades (0 < DBH ≤ 3, 3 < DBH ≤ 6 and 6 < DBH ≤ 9 cm). The results were as follows: (1) The stem hydraulic conductance was significantly greater than leaf hydraulic conductance in three DBH grades, indicating that there was a hydraulic segmentation between the stem and leaf, whereas the degree of hydraulic segmentation had a similar pattern. (2) Among the three DBH grades, there were significant differences in morphological traits such as average petiole length, bark density, wood density, Huber value and leaf mass per area, but there were no significant differences in the hydraulic conductance of the shoot, stem, and leaf. (3) Among the three DBH grades, the shoot hydraulic conductance was positively correlated with leaf and stem hydraulic conductance, indicating there was a coordination between leaf and stem hydraulic conductance. The stem hydraulic conductance was negatively correlated with bark density and positively with wood density, and leaf hydraulic conductance was significantly negatively correlated with the Huber value, indicating these leaf and stem morphological traits may impact shoot and leaf hydraulic conductance. Overall, this study suggests that there are similar hydraulic distribution patterns between leaf and stem of L. coromandelica at different growth stages, although some morphological traits differ significantly among different diameter grades. These results have important physiological significance for understanding the water transport mechanism in plants.

  • 在全球气候变化背景下,高温和干旱事件严重影响了树木的生理过程、存活、生长和繁殖(Blackman et al.,2009; Scharwies &Dinneny,2019; Mcdowell et al.,2022)。目前,干旱发生的强度和频率都在持续增加(Fonti et al.,2022),已在全球范围内引起了广泛的森林衰退和树木死亡(Anderegg et al.,2015; Mcgregor et al.,2021),进而严重影响陆地生态系统的结构和服务功能(Choat et al.,2018; Marchin et al.,2022)。Mcdowell等(2022)植物水力学的研究表明,干热事件通过影响植物体内水分传输功能致使植物水力功能紊乱,是诱发植物枯梢、死亡和森林衰退的重要因素。因此,研究植物体内不同器官间的水分传输功能及其变异格局对揭示植物适应干旱的生理机制具有重要意义。

  • 植物可能存在一套适宜自身生长发育的生理生态性状(如形态、结构、生理生化特性等)来适应不同的环境水分条件。随着植物的生长,这套性状越来越成熟。植物的生长速度代表一种适应性,即对光、水和矿物质养分的竞争,因此可以从植物的生理性状(光合作用、水力效率和养分利用效率等)来预测植物的生长速度(King et al.,2006)。例如,植物适应环境而形成的不同形态结构和水分运输策略,揭示了植物从根部吸水通过茎干输送给末端叶片的木质部供水能力,对水的运输效率和木质部抵抗干旱有重要作用,并在解释植物物种在全球和地方尺度上的分布和功能方面具有巨大潜力(Hacke &Sperry,2001)。水分在植物体内各器官中进行传输,最后到达终端器官叶片。此外,叶片中的气孔可控制木质部水分传输和蒸腾速率,水分亏缺时可关闭气孔减少水分散失,气孔的改变会直接影响植物光合气体交换,也能反映水分条件不好时植物的适应能力,并且植物的水分传输能力与植物的光合作用呈显著正相关(Scharwies &Dinneny,2019)。植物的形态特征是反映植物适应能力的有效参数,有研究发现传输水分的导管和提供支撑的纤维都要占据木质部的空间,树皮包裹木质部,使木质部与外界环境隔离,随着植物生长树皮增厚,展示出一定的生存优势 (Plomion et al.,2001)。树皮是维管形成层以外的组织,其功能性状是反映植物生态适应策略的重要研究对象,与植物的光合作用、水和其他化合物的储存及茎的机械支撑等密切相关。因此,研究树木的边材密度、树皮密度和水分传输能力对了解其生态生长策略具有重要意义(Kiorapostolou et al.,2019)。

  • 在植物体内的水分传输过程中,枝条的水力传输路径远长于叶片的水力传输路径,但枝条水分传输阻力却远小于叶片水分传输阻力,叶片在植物水分传输中起到‘安全阀’作用(Sack et al.,2002; Pratt et al.,2009)。Bucci等(2012)在南美洲对6种南青冈属树种进行了水力性状的测量,结果显示叶片始终比枝条更易发生栓塞,并且叶片这样的“廉价”器官脱落更有利于避免水力失败的发生,避免影响枝条这样的“昂贵”器官的水力完整性。荆烁和孙慧珍(2021)通过对中国东北东部山区主要树种枝条水力性状的研究发现,阔叶树种的叶片导水率显著低于茎段导水率,叶片水力阻力占整枝水力阻力60%以上,最大可达80%。也有研究表明,种间的叶片导水率差异显著,其最大值是最小值的65倍(Sack &Frole,2006; Sack &Holbrook,2006)。Pivovaroff等(2014)在圣玛格丽塔生态保护区地中海生态系统中对木本植物进行了水力学研究,结果显示枝条和叶片的水分传输能力呈负相关且支持“水力分割”假说。在新疆艾比湖流域中,对不同胸径的胡杨在响应干旱时发生的机制进行了研究,结果显示不同生长阶段的胡杨采取不同的水分调节策略,在发生水分胁迫时,所有植物器官的导水率都会存在不同程度的下降,并且致死机制主要是水力失败和碳饥饿(Scoffoni et al.,2017; 隆彦昕,2022)。综上可知,植物水力学的研究在跨物种或者群落甚至全球这样的宏观尺度上的研究相对较多(Sanchez-Martinez et al.,2020)。Gora和Esquivel-Muelbert(2021)研究表明,在同一物种不同个体间,随着木本植物胸径增大,其水分传输能力、叶片形态、生长速率等生理生态特性存在差异。然而,目前关于植物水力性状在同种个体间的变异格局研究还相对较少。

  • 我国西南横断山区分布有元江、澜沧江和怒江等重要的国际河流,由于其封闭的地形条件导致的焚风效应而形成了干热叠加的河谷型萨王纳生态系统。其中,元江干热河谷是中国最典型的干热河谷生态系统。元江干热河谷因干热气候特点和局部大气环流影响,形成了非地带性热带稀树灌草丛,有“中国的萨王纳”之称(金振洲和欧晓昆,2000;张一平等,2005)。该区优势植物包括厚皮树(Lannea coromandelica)、老人皮(Polyalthia suberosa)、霸王鞭(Euphorbia royleana)等(Zhang et al.,2007; Chen et al.,2016),尤其以厚皮树在该植被群落中占据绝对优势。厚皮树属于漆树科(Anacardiaceae)厚皮树属(Lannea),为热带落叶乔木,叶型为奇数羽状复叶且树皮很厚叶柄较大,这样的结构有助于厚皮树增强机械抵抗。该属世界上现存约87种,多生长在季节性比较强的地区(Gunjal et al.,2021)。目前,我国有且仅有1种,主要分布于我国南部,生境多为低海拔、较干燥的山坡疏林。近年来关于落叶复叶树种厚皮树的报道有限,多在化学成分和药理活性方面(Queiroz et al.,2003),但对复叶树种来说,已有报道表明复叶树种比单叶树种具有更快的生长速率,可能是因为复叶叶柄较大,在功能上等于小枝,减少了木质部的构建成本(Malhado et al.,2010)。目前,对于复叶树种厚皮树个体间的水力性状变异格局研究还较缺乏。因此,本研究以中国西南地区所特有的干热河谷为研究区,以其中极具优势的复叶乔木树种厚皮树为研究对象,测定了不同胸径(diameter at breast height,DBH)厚皮树枝条水平的水力学和形态学性状,进而探讨这些性状在3个胸径径级 (0<DBH≤3、3<DBH≤6和6<DBH≤9)间随着胸径大小变化在水分传输功能中的变异格局。拟探讨:(1)厚皮树枝条和叶片的水力和形态性状在3个胸径径级之间的差异;(2)厚皮树枝条和叶片的水力和形态性状随胸径大小变化;(3)厚皮树枝条导水率和叶片导水率的分布格局,枝条导水率是否显著大于叶片导水率。

  • 1 材料与方法

  • 1.1 研究区概况和树种选择

  • 本实验研究区位于中国科学院西双版纳热带植物园元江干热河谷生态站(102°10′ E、23°28′ N,海拔为553 m)。该区域年均温为27.4℃,年降水量为733 mm,而年蒸发量大约是降雨量的3倍。旱雨两季分明,光热资源丰富,植被覆盖率低,土壤呈弱酸性,保水性差。该地区植被多为耐旱草本植物,其中混有稀疏乔木和灌木,群落外貌为“稀树-灌木-草丛”状(沈蕊等,2010)。根据野外实地考察和元江生态站1 hm2监测样地木本植物重要值排名(刘璐冰,2021)可知,样地土壤类型为铁铝始成土,土壤有机质和pH值适中,植被为乔灌草3层,乔木层以厚皮树、老人皮和心叶木(Haldina cordifolia)为主,灌木丛以虾子花(Woodfordia fruticosa)和白皮乌口树(Tarenna depauperata)为主,草本层以黄茅(Heteropogon contortus)和锈色蛛毛苣苔(Paraboea rufescens)为主,高度为0.5~8.0 m。选择重要值最大(39.18)的落叶乔木树种厚皮树为实验材料,结合元江生态站1 hm2生物多样性的固定监测样地附近相对均值环境中厚皮树胸径(DBH)范围的实地调查结果(胸径范围为1~10 cm,对应周长范围为3.14~31.40 cm),实验采样个体的范围尽可能覆盖所有DBH范围(胸径范围为1~9 cm,对应周长范围为3.14~28.26 cm)。之后按照小、中、大胸径大致均等分成3个径级。于2022年7月,选择不同胸径大小的厚皮树56棵,并按胸径大小将厚皮树分为3个径级梯度,对每棵厚皮树进行标记,在2022年生长季中期(7—8月)进行取样和植物性状测定。

  • 1.2 导水率测定

  • 本研究采用植物高压流速仪(high pressure flowmeter method,HPFM)测定枝条和叶片导水率(Sperry et al.,1988; Yang et al.,2019)。简而言之,在生长季期间,早晨7点之前用高枝剪采集阳生且自然生长状况良好的枝条并立刻放入水中,并且在保证枝条和叶片完整的情况下带回实验室。在连接高压流速仪时,保证不引入气泡的前提下,在水下连接好样品枝条。首先,在准稳态测定模式下,仪器压力调至0.4 MPa进行导水率测定,待流速稳定(15~30 min)达到平衡时,记录整枝导水率(shoot hydraulic conductance,Kshoot)。然后,摘掉叶片和叶柄,记录枝条导水率(stem hydraulic conductance,Kstem)。因为导水率之间不能直接进行加减且导水率和导水阻力是倒数关系,所以需将导水率求倒换算成水力阻力后再进行加减,最终得到 Kstem和叶片导水率(leaf hydraulic conductance,Kleaf)(Yang et al.,2023)。最后,用叶面积标准化得到相应的KshootKleafKstem,这些数据反映了每根枝条上单位叶片对应的导水率,再用标准化后的导水率进行统计分析(Yang et al.,2023)。

  • 1.3 基本性状的测定

  • 测定完导水率后,测定其他的枝条和叶片性状测定。用便携式扫描仪(CanoScan 9000F Mark II,CANON,Tokyo,Japan)在300 dpi 下扫描所有测定过导水率枝条上的叶片,获取图片后用 Image J (National Institutes of Health,Bethesda,MD,USA,https://imagej.net/software/imagej/)图形处理软件计算叶片面积大小(leaf area,LA);用游标卡尺测量叶柄长度(petiole length,PL),经计算后得到平均叶柄长度(average petiole length,APL);截取一小段枝条,用游标卡尺测量树皮包裹的枝条和去掉树皮的长和宽,并且去除髓,得到木材的横截面积,剩下的木材和树皮根据排水法(Hacke et al.,2000)测定木材密度(wood density,WD)和树皮密度(bark density,BD)。将枝条去除树皮和髓后放入纯净水中12 h 后称取其饱和重(saturation weight,SW),将装有纯净水的烧杯放到万分之一天平上,待天平数据稳定后记录数据V1;用大头针刺入木材并将已用大头针刺入的木材放入烧杯后,天平数据稳定后记录数据V2;大头针刺入树皮将树皮放入烧杯后,天平数据稳定后记录数据V3。将树皮、木材分别置于80℃烘箱烘干至恒重(48~72 h)后称其干重,得到树皮干重(bark weight,BW)、木材干重(wood weight,WW)、叶片干重(mass of leaf,ML)和叶柄干重(mass of petiole,MP)。通过烘干的叶片干重和扫描过的叶片面积比值计算出比叶重(leaf mass per area,LMA)、用去髓后的横截面积与叶片面积的比值计算出胡伯尔值(Huber value,Hv)和叶片面积与叶柄长度之比(the ratio of leaf area to mass of petiole,LA /PL)、叶片面积与叶柄干重之比(the ratio of leaf area to mass of petiole,LA/MP)及叶片干重与叶柄干重之比(the ratio of mass of leaf to mass of petiole,ML /MP)等枝叶性状。相关计算公式如下:WD=SW/(V2-V1);BD=BW/(V3-V1); LMA=LM/LAHv=LA/SA。对于测定的所有性状,每一棵样树为1个重复。因此,对于每个胸径径级,在胸径为0<DBH≤3 cm中,取样20棵厚皮树(n=20);胸径为3<DBH≤6 cm中,取样24棵厚皮树(n=24);胸径为6<DBH≤9 cm中,取样12棵厚皮树(n=12)。

  • 1.4 数据统计

  • 对所测植物性状数据进行初步整理,对偏离正态分布的数据进行log10转换,每个胸径径级个体(n≥10)的性状值用来进行数据分析,采用单因素方差分析和Pearson相关性分析,对12个功能性状进行主成分分析(PCA),对3个胸径径级的双变量关系进行SMA标准主轴回归分析,并对3个胸径径级的枝叶导水率占比进行比较。Pearson相关性分析利用psych包里的corr.test函数,求出r值和P值。用R语言“FactoMineR”包中的“PCA”函数进行主成分分析。所有分析均在 R v.4.3.0中进行(Wickham,2016)。

  • 2 结果与分析

  • 2.1 3个不同胸径径级性状的相关性和水力学性状的比较及变异程度

  • 由表1可知,APL、BD和Hv在3个胸径径级之间有显著差异(P<0.05),但是其他性状在3个胸径径级之间没有显著差异。由表2可知,在胸径为0<DBH≤3时,Kshoot最小为0.557×10-4 kg·s-1·MPa-1·m-2,最大为2.635×10-4 kg·s-1·MPa-1·m-2Kstem最小为1.712×10-4 kg·s-1·MPa-1·m-2,最大为20.518×10-4 kg·s-1·MPa-1·m-2Kleaf最小为0.602×10-4 kg·s-1·MPa-1·m-2,最大为3.024×10-4 kg·s-1·MPa-1·m-2;变异系数(CV)依次为32.52%、64.57%、30.67%,Kstem变异最大。在胸径为3<DBH≤6时,Kshoot最小为0.682×10-4 kg·s-1·MPa-1·m-2,最大为1.838×10-4 kg·s-1·MPa-1·m-2Kstem最小为2.251×10-4 kg·s-1·MPa-1·m-2,最大为10.119×10-4 kg·s-1·MPa-1·m-2Kleaf最小为0.917×10-4 kg·s-1·MPa-1·m-2,最大为2.398×10-4 kg·s-1·MPa-1·m-2;变异系数(CV)依次为23.78%、47.41%、20.08%,Kstem变异最大。在胸径为6<DBH≤9时,Kshoot最小为0.963×10-4 kg·s-1·MPa-1·m-2,最大为2.046×10-4 kg·s-1·MPa-1·m-2Kstem最小为2.877×10-4 kg·s-1·MPa-1·m-2,最大为14.692×10-4 kg·s-1·MPa-1·m-2Kleaf最小为1.235×10-4 kg·s-1·MPa-1·m-2,最大为2.608×10-4 kg·s-1·MPa-1·m-2;变异系数(CV)依次为24.86%、52.33%、23.21%,Kstem变异最大,枝条导水率的变异系数大于叶片导水率的变异系数。

  • 主成分分析结果显示,第一主轴和第二主轴分别解释了性状变异的20.2%和16.1%,3个胸径径级的厚皮树的空间分布存在大的重叠,DBH主要与WD、BD和Hv有关(图1)。

  • 相关性分析表明,KshootKstemKleaf呈显著正相关;DBH与BD呈正相关;Hv与APL、LA/PL和WD均呈负相关,与Kleaf 呈正相关;LA/MP与ML/MP呈正相关;WD与LMA和Kstem呈正相关;其余性状之间无显著相关性(表3)。

  • 2.2 水力性状和结构性状随胸径大小的变异格局

  • 在标准主轴分析SMA中,为了检验性状是否随着DBH的变化而变化,先分析不同性状与DBH之间是否存在共同斜率,如果P<0.05,进一步分析是否存在共同截距。结果显示,APL、LA/MP、BD、WD等一系列性状随DBH的变化有显著的差异,但是在水力性状KshootKshootKleaf中未发现明显差异(表4)。

  • 2.3 3个不同胸径径级厚皮树的枝条和叶片导水率的分布格局

  • 在3个胸径径级中,枝条导水率均显著大于叶片导水率。在胸径为0<DBH≤3时,Kstem占比为78.4%,Kleaf占比为21.6%;在胸径为3<DBH≤6时,Kstem占比为77.0%,Kleaf占比为23.0%;在胸径为6<DBH≤9时,Kstem占比为76.9%,Kleaf占比为23.1%。Kstem在3个胸径径级中的占比范围为76.9%~78.4%,Kleaf在3个胸径径级中的占比范围为21.6%~23.1%,波动的范围很小,在3个胸径径级中Kstem约为Kleaf的3倍(图2)。

  • 3 讨论与结论

  • 根据胸径径级划分,将厚皮树分为不同生活史阶段,在其生长发育期间,其枝条导水率和叶片导水率的最大值并不是出现在大径级中,说明大径级树木的部分生理功能(如导水功能)会有所减弱。这与 Yan等(2021)在西双版纳热带雨林的20个树种的茎叶功能性状与生长速率及其个体发育变化的研究结果一致,大树的生长受到木质部水分传输能力的限制。本研究中,厚皮树叶柄的平均长度随着胸径增加,具有潜在的储水容量,因此每个叶柄着生的叶片数或叶片面积可能也在增加。在面临干旱气候时,植物叶片蒸腾失水也会增加,最终可能导致胸径较大的树木更早出现其生理上的水分胁迫现象(Trugman,2022)。这表明与小径级树木相比,小径级树木在干旱胁迫地区的适应性可能更强。此外,植物的形态性状随着DBH的变化也在不断改变,即在树木的不同生长阶段中,树木大小的改变会导致一些枝叶形态性状上的变化,但始终保持一个相当恒定的水分传输能力,在很大程度上说明水力性状与厚皮树的大小之间无显著相关性。这种显著的种内表型可塑性差异可能是因为厚皮树的树皮比较厚,其特殊的结构对木质部水力系统的水分传输稳定性起到了一定的保护作用,使其在不同生长阶段存在相似的水分传输能力。厚皮树的树皮密度在较大径级中较高,平均叶柄长度在中等径级中较长,胡伯尔值在较小径级中较大,表明厚皮树在其生长的过程中,不同生长阶段有着不同的形态特征以保证一定的水分传输能力。

  • 表1 3个胸径径级的12个功能性状的单因素方差分析结果

  • Table1 Results of one-way ANOVA for 12 functional traits among three DBH grades

  • 注:不同小写字母表示不同胸径径级间性状差异显著。*表示P<0.05;** 表示P<0.01。下同。

  • Note: Different lowercase letters indicate significant differences in traits among different DBH grades.* indicates P<0.05; ** indicates P<0.01. The same below.

  • 表2 3个胸径径级导水率的变异

  • Table2 Variation in hydraulic conductance among three DBH grades

  • 在水分传输的过程中存在一定的水力分割现象。在本研究中,枝条导水率是叶片导水率的3倍,叶片导水率仅占整枝导水率的25%左右。当前也有研究表明,叶片在整个水分传输过程中的路径不到5%(Wolfe et al.,2023),证明了“水力分割假说”中末端器官比中心轴的器官具有更显著的低导水率。在发生水力胁迫时,叶片是比较脆弱的组织更容易受到伤害,因其叶片的更换成本低,叶片脱落有助于将水分更多地保留在茎干中以限制其体内水分的进一步散失,这种补偿性调整是通过牺牲“廉价”的末端器官(叶片)来保护“昂贵”的木质茎干,这有助于降低树木体内水力系统的栓塞率(Tyree &Ewers,1991; Wolfe et al.,2023)。叶片在整个植物水力系统中是水分传输的瓶颈,起着“安全阀”作用,防止叶片过度失水而导致水势过低,保持土壤源与叶片之间的水分传输完整性。此外,Nardini等(2012)研究也表明,叶片导水率可能会影响树木的分布,叶片导水率高低与立地水分条件有关。叶片导水率高,立地水分条件好;叶片导水率低,立地水分条件相对较差。厚皮树能够在干热河谷这种水分有限的环境中采取“避旱”的措施生存,可能与枝叶间的水力分割程度有关,这种强烈的水力分割程度,可能更利于保护树木的茎干水力功能,有助于维持植物体内的水平衡。

  • 表3 3个胸径径级的枝条和叶片功能性状间的相关系数

  • Table3 Coefficients of Pearson’s correlation between stem and leaf functional traits in three DBH grades

  • 注:显著相关加粗表示。性状缩写见表1。下同。

  • Note: Significant correlations are shown in bold. See Table1 for trait abbreviations. The same below.

  • 图1 3个胸径径级厚皮树的12个功能性状的主成分分析

  • Fig.1 Principal component analysis of 12 functional traits of Lannea coromandelica for three DBH grades

  • 表4 3个胸径径级的双变量标准主轴分析

  • Table4 Standardized major axis regression analyses for bivariate relationships among three DBH grades

  • 图2 3个胸径径级枝叶导水率占比

  • Fig.2 Percentage of hydraulic conductance between stem and leaf for three DBH grades

  • 本研究通过研究3个不同胸径径级的落叶树种厚皮树的水力学性状和形态学性状,明确了元江厚皮树在3个不同胸径径级中,都存在枝叶的水力分割现象并且其分布格局相似,枝条导水率约是叶片导水率的3倍。根据“水力分割”假说,树木在受到水分胁迫时,叶片首先发生栓塞,阻断水分传输,因此叶片较低的导水率可以进一步减少植物体内水分散失(Pivovaroff et al.,2014; Song et al.,2022; Yang et al.,2023)。此外,对3个不同胸径径级的形态学和水力学形状之间的比较表明,形态学性状多数存在显著差异,而水力学性状无明显差异。这表明不同胸径的厚皮树的水分传输能力和在枝叶间的分布格局具有一定的相似性。

  • 综上所述,本研究揭示了元江干热河谷不同胸径径级厚皮树在枝条和叶片间的水分传输能力的差异性及其分布格局,其叶片导水率显著小于枝条导水率。此外,树木大小与枝叶水分传输能力之间的相关性并不比树木大小与植物形态特征之间的相关性强。虽然本研究聚焦的是同种间不同大小个体的水分传输能力,但是在划分径级时,仅是以胸径的大小作为依据。考虑到随着树木年龄的增长,有些树木的胸径不再增加,这会在一定程度上造成径级划分时存在误差。目前,在植物水力学研究中,关注更多的是水分传输能力在不同功能类群树种间的差异,在很大程度上忽略了种内水分传输能力的变异格局研究。此外,植物水力系统各器官间水分传输的权衡与协同关系尚未有一个很好的解释,这些是值得进一步去探讨的科学问题。

  • 参考文献

    • ANDEREGG WR, HICKE JA, FISHER RA, et al. , 2015. Tree mortality from drought, insects, and their interactions in a changing climate [J]. New Phytol, 208(3): 674-683.

    • BLACKMAN CJ, BRODRIBB TJ, JORDAN GJ, 2009. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species [J]. Plant Cell Environ, 32(11): 1584-1595.

    • BUCCI SJ, SCHOLZ FG, CAMPANELLO PI, et al. , 2012. Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality? [J]. Tree Physiol, 32(7): 880-893.

    • CHEN YJ, BONGERS F, TOMLINSON K, et al. , 2016. Time lags between crown and basal sap flows in tropical lianas and co-occurring trees [J]. Tree Physiol, 36(6): 736-747.

    • CHOAT B, BRODRIBB TJ, BRODERSEN CR, et al. , 2018. Triggers of tree mortality under drought [J]. Nature, 558(7711): 531-539.

    • FONTI PC, RELLSTAB C, MARTINEZ-SANCHO E, 2022. Deciphering ‘time to hydraulic failure’ to select drought-resistant tree provenances [J]. Tree Physiol, 42(4): 704-707.

    • GORA EM, ESQUIVEL-MUELBERT A, 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics [J]. Nat Plants, 7(4): 384-391.

    • GUNJAL J, PATIL M, CHITTAM KP, et al. , 2021. Lannea coromandelica: An overview [J]. Int J Pharm, 9(1): 102-107.

    • HACKE UG, SPERRY JS, 2001. Functional and ecological xylem anatomy [J]. Perspect Plant Ecol Evol Syst, 4(2): 97-115.

    • HACKE UG, SPERRY JS, PITTERMANN J, 2000. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah [J]. Basic Appl Ecol, 1(1): 31-41.

    • JING S, SUN HZ, 2021. The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China [J]. J Nanjing For Univ, 45(4): 159-166. [荆烁, 孙慧珍, 2021. 东北东部山区主要树种枝条及其组分水力特征 [J]. 南京林业大学学报, 45(4): 159-166. ]

    • JIN ZZ, OU XK, 2000. Vegetation of the Yuanjiang, Nujiang, Jinshajiang, Lancang River, dry and hot river valleys [M]. 1st ed. Kunming: Yunnan University Press and Yunnan Science and Technology Press. [金振洲, 欧晓昆, 2000. 元江、怒江、金沙江、澜沧江干热河谷植被 [M]. 1版. 昆明: 云南大学出版社和云南科技出版社. ]

    • KIORAPOSTLOU N, SOIS LD, PETRUZZELLIS F, et al. , 2019. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms [J]. Tree Physiol, 39(10): 1675-1684.

    • KING DA, DAVIES SJ, TAN S, et al, 2006. The role of wood density and stem support costs in the growth and mortality of tropical trees [J]. J Ecol, 94(3): 670-680.

    • LIU LB, 2021. Intraspecific variation in leaf function trait of woody plants in a savanna community in Yuanjiang [D]. Beijing: University of Chinese Academy of Sciences. [刘璐冰, 2021. 元江稀树灌木草丛木本植物叶片功能性状种内变异研究 [D]. 北京: 中国科学院大学. ]

    • LONG YX, 2022. Water regulation strategies of five dominant woody plants in desert forest of Ebinur Lake Basin [D]. Urumqi: Xinjiang University. [隆彦昕, 2022. 艾比湖流域荒漠林5种优势木本植物的水分调节策略 [D]. 乌鲁木齐: 新疆大学. ]

    • MALHADO A, WHITTAKER RJ, MALHI Y, et al. , 2010. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest [J]. Glob Ecol Biogeogr, 19: 852-862.

    • MARCHINI V, BENÍTEZ-MATEOS AI, HUTTER SL, et al. , 2022. Fusion of formate dehydrogenase and alanine de hydrogenase as an amino donor regenerating system coupled to transaminases [J]. ChemBioChem, 23(21): e202200428.

    • MCDOWELL NG, SAPES G, PIVOVAROFF A, et al. , 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit [J]. Nat Rev Earth Environ, 3(5): 294-308.

    • MCGREGOR IR, HELCOSKI R, KUNERT N, et al. , 2021. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest [J]. New Phytol, 231(2): 601-616.

    • NARDINI A, PEDA G, ROCCA N, 2012. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences [J]. New Phytol, 196(3): 788-798.

    • PIVOVAROFF AL, SACK L, SANTIAGO LS, 2014. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis [J]. New Phytol, 203(3): 842-850.

    • PLOMION C, LEPROVOST G, STOKES A, 2001. Wood formation in tress [J]. Plant Physiol, 127(4): 1513-1523.

    • PRATT R, JACOBSEN BA, NORTH G, et al. , 2009. Xylem root and shoot hydraulics are linked to life history type in chaparral species (Rhamnaceae) [J]. New Phytol, 24(1): 70-81.

    • QUEIROZ EC, KUHL C, TERREAUX C, et al. , 2003. New Dihydroalkylhexenones from Lannea edulis [J]. J Nat Prod, 66(4): 578-580.

    • SACK L, FROLE K, 2006. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees [J]. Ecology, 87(2): 483-491.

    • SACK L, HOLBROOK NM, 2006. Leaf hydraulics [J]. Ann Rev Plant Biol, 57: 361-381.

    • SACK L, MELCHER PJ, ZWIENIECKI MA, et al. , 2002. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods [J]. J Exp Bot, 53(378): 2177-2184.

    • SANCHEZ-MARTINEZ P, MARTINEZ-VILALTA J, DEXTER KG, et al. , 2020. Adaptation and coordinated evolution of plant hydraulic traits [J]. Ecol Lett, 23(11): 1599-1610.

    • SCHARWIES JD, DINNENY JR, 2019. Water transport, perception, and response in plants [J]. J Plant Res, 132(3): 311-324.

    • SCOFFONI C, SACK L, ORT D, 2017. The causes and consequences of leaf hydraulic decline with dehydration [J]. J Exp Bot, 68(16): 4479-4496.

    • SHEN R, ZHANG JL, HE B, et al. , 2010. The structure characteristic and analysis on similarity of grassland community in dry-hot valley of Yuanjiang River [J]. Ecol Environ Sci, 19(12): 2821-2825. [沈蕊, 张建利, 何彪, 等, 2010. 元江流域干热河谷草地植物群落结构特征与相似性分析 [J]. 生态环境学报, 19(12): 2821-2825. ]

    • SONG J, SANTIAGO T, YIN XH, et al. , 2022. Hydraulic vulnerability segmentation in compound-leaved trees: Evidence from an embolism visualization technique [J]. Plant Physiol, 189(1): 204-214.

    • SPERRY JS, DONNELLY JR, TYREE MT, 1988. A method for measuring hydraulic conductivity and embolism in xylem [J]. Plant Cell Environ, 11(1): 35-40.

    • TRUGMAN AT, 2022. Integrating plant physiology and community ecology across scales through trait-based models to predict drought mortality [J]. New Phytol, 234(1): 21-27.

    • TYREE MT, EWERS FW, 1991. The hydraulic architecture of trees and other woody plants [J]. New Phytol, 119(3): 345-360.

    • WICKHAM H, 2016. Ggplot2: elegant graphics for data analysis. [M]. New York: Springer-Verlag.

    • WOLFE BT, DETTO M, ZHANG YJ, et al. , 2023. Leaves as bottlenecks: the contribution of tree leaves to hydraulic resistance within the soil-plant-atmosphere continuum [J]. Plant Cell Environ, 46(3): 736-746.

    • YAN YM, FAN ZX, FU PL, et al. , 2021. Size dependent associations between tree diameter growth rates and functional traits in an Asian tropical seasonal rainforest [J]. Funct Plant Biol, 48(2): 231-240.

    • YANG D, WANG YSD, WANG Q, et al. , 2023. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China [J]. Sci Total Environ, 868: 161711.

    • YANG D, ZHANG YJ, SONG J, et al. , 2019. Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China [J]. Tree Physiol, 39(5): 729-739.

    • ZHANG JL, ZHU JJ, CAO KF, 2007. Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China [J]. Trees, 21(6): 631-643.

    • ZHANG YP, DUAN ZX, DOU JX, 2005. Comparison of climate characteristics between a dry-warm valley in upper reaches of Min River and a dry-hot valley of Yuanjiang River [J]. Resour Environ Yangtze Basin, 14(1): 76-82. [张一平, 段泽新, 窦军霞, 2005. 岷江上游干暖河谷与元江干热河谷的气候特征比较研究 [J]. 长江流域资源与环境, 14(1): 76-82. ]

  • 参考文献

    • ANDEREGG WR, HICKE JA, FISHER RA, et al. , 2015. Tree mortality from drought, insects, and their interactions in a changing climate [J]. New Phytol, 208(3): 674-683.

    • BLACKMAN CJ, BRODRIBB TJ, JORDAN GJ, 2009. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species [J]. Plant Cell Environ, 32(11): 1584-1595.

    • BUCCI SJ, SCHOLZ FG, CAMPANELLO PI, et al. , 2012. Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality? [J]. Tree Physiol, 32(7): 880-893.

    • CHEN YJ, BONGERS F, TOMLINSON K, et al. , 2016. Time lags between crown and basal sap flows in tropical lianas and co-occurring trees [J]. Tree Physiol, 36(6): 736-747.

    • CHOAT B, BRODRIBB TJ, BRODERSEN CR, et al. , 2018. Triggers of tree mortality under drought [J]. Nature, 558(7711): 531-539.

    • FONTI PC, RELLSTAB C, MARTINEZ-SANCHO E, 2022. Deciphering ‘time to hydraulic failure’ to select drought-resistant tree provenances [J]. Tree Physiol, 42(4): 704-707.

    • GORA EM, ESQUIVEL-MUELBERT A, 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics [J]. Nat Plants, 7(4): 384-391.

    • GUNJAL J, PATIL M, CHITTAM KP, et al. , 2021. Lannea coromandelica: An overview [J]. Int J Pharm, 9(1): 102-107.

    • HACKE UG, SPERRY JS, 2001. Functional and ecological xylem anatomy [J]. Perspect Plant Ecol Evol Syst, 4(2): 97-115.

    • HACKE UG, SPERRY JS, PITTERMANN J, 2000. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah [J]. Basic Appl Ecol, 1(1): 31-41.

    • JING S, SUN HZ, 2021. The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China [J]. J Nanjing For Univ, 45(4): 159-166. [荆烁, 孙慧珍, 2021. 东北东部山区主要树种枝条及其组分水力特征 [J]. 南京林业大学学报, 45(4): 159-166. ]

    • JIN ZZ, OU XK, 2000. Vegetation of the Yuanjiang, Nujiang, Jinshajiang, Lancang River, dry and hot river valleys [M]. 1st ed. Kunming: Yunnan University Press and Yunnan Science and Technology Press. [金振洲, 欧晓昆, 2000. 元江、怒江、金沙江、澜沧江干热河谷植被 [M]. 1版. 昆明: 云南大学出版社和云南科技出版社. ]

    • KIORAPOSTLOU N, SOIS LD, PETRUZZELLIS F, et al. , 2019. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms [J]. Tree Physiol, 39(10): 1675-1684.

    • KING DA, DAVIES SJ, TAN S, et al, 2006. The role of wood density and stem support costs in the growth and mortality of tropical trees [J]. J Ecol, 94(3): 670-680.

    • LIU LB, 2021. Intraspecific variation in leaf function trait of woody plants in a savanna community in Yuanjiang [D]. Beijing: University of Chinese Academy of Sciences. [刘璐冰, 2021. 元江稀树灌木草丛木本植物叶片功能性状种内变异研究 [D]. 北京: 中国科学院大学. ]

    • LONG YX, 2022. Water regulation strategies of five dominant woody plants in desert forest of Ebinur Lake Basin [D]. Urumqi: Xinjiang University. [隆彦昕, 2022. 艾比湖流域荒漠林5种优势木本植物的水分调节策略 [D]. 乌鲁木齐: 新疆大学. ]

    • MALHADO A, WHITTAKER RJ, MALHI Y, et al. , 2010. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest [J]. Glob Ecol Biogeogr, 19: 852-862.

    • MARCHINI V, BENÍTEZ-MATEOS AI, HUTTER SL, et al. , 2022. Fusion of formate dehydrogenase and alanine de hydrogenase as an amino donor regenerating system coupled to transaminases [J]. ChemBioChem, 23(21): e202200428.

    • MCDOWELL NG, SAPES G, PIVOVAROFF A, et al. , 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit [J]. Nat Rev Earth Environ, 3(5): 294-308.

    • MCGREGOR IR, HELCOSKI R, KUNERT N, et al. , 2021. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest [J]. New Phytol, 231(2): 601-616.

    • NARDINI A, PEDA G, ROCCA N, 2012. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences [J]. New Phytol, 196(3): 788-798.

    • PIVOVAROFF AL, SACK L, SANTIAGO LS, 2014. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis [J]. New Phytol, 203(3): 842-850.

    • PLOMION C, LEPROVOST G, STOKES A, 2001. Wood formation in tress [J]. Plant Physiol, 127(4): 1513-1523.

    • PRATT R, JACOBSEN BA, NORTH G, et al. , 2009. Xylem root and shoot hydraulics are linked to life history type in chaparral species (Rhamnaceae) [J]. New Phytol, 24(1): 70-81.

    • QUEIROZ EC, KUHL C, TERREAUX C, et al. , 2003. New Dihydroalkylhexenones from Lannea edulis [J]. J Nat Prod, 66(4): 578-580.

    • SACK L, FROLE K, 2006. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees [J]. Ecology, 87(2): 483-491.

    • SACK L, HOLBROOK NM, 2006. Leaf hydraulics [J]. Ann Rev Plant Biol, 57: 361-381.

    • SACK L, MELCHER PJ, ZWIENIECKI MA, et al. , 2002. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods [J]. J Exp Bot, 53(378): 2177-2184.

    • SANCHEZ-MARTINEZ P, MARTINEZ-VILALTA J, DEXTER KG, et al. , 2020. Adaptation and coordinated evolution of plant hydraulic traits [J]. Ecol Lett, 23(11): 1599-1610.

    • SCHARWIES JD, DINNENY JR, 2019. Water transport, perception, and response in plants [J]. J Plant Res, 132(3): 311-324.

    • SCOFFONI C, SACK L, ORT D, 2017. The causes and consequences of leaf hydraulic decline with dehydration [J]. J Exp Bot, 68(16): 4479-4496.

    • SHEN R, ZHANG JL, HE B, et al. , 2010. The structure characteristic and analysis on similarity of grassland community in dry-hot valley of Yuanjiang River [J]. Ecol Environ Sci, 19(12): 2821-2825. [沈蕊, 张建利, 何彪, 等, 2010. 元江流域干热河谷草地植物群落结构特征与相似性分析 [J]. 生态环境学报, 19(12): 2821-2825. ]

    • SONG J, SANTIAGO T, YIN XH, et al. , 2022. Hydraulic vulnerability segmentation in compound-leaved trees: Evidence from an embolism visualization technique [J]. Plant Physiol, 189(1): 204-214.

    • SPERRY JS, DONNELLY JR, TYREE MT, 1988. A method for measuring hydraulic conductivity and embolism in xylem [J]. Plant Cell Environ, 11(1): 35-40.

    • TRUGMAN AT, 2022. Integrating plant physiology and community ecology across scales through trait-based models to predict drought mortality [J]. New Phytol, 234(1): 21-27.

    • TYREE MT, EWERS FW, 1991. The hydraulic architecture of trees and other woody plants [J]. New Phytol, 119(3): 345-360.

    • WICKHAM H, 2016. Ggplot2: elegant graphics for data analysis. [M]. New York: Springer-Verlag.

    • WOLFE BT, DETTO M, ZHANG YJ, et al. , 2023. Leaves as bottlenecks: the contribution of tree leaves to hydraulic resistance within the soil-plant-atmosphere continuum [J]. Plant Cell Environ, 46(3): 736-746.

    • YAN YM, FAN ZX, FU PL, et al. , 2021. Size dependent associations between tree diameter growth rates and functional traits in an Asian tropical seasonal rainforest [J]. Funct Plant Biol, 48(2): 231-240.

    • YANG D, WANG YSD, WANG Q, et al. , 2023. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China [J]. Sci Total Environ, 868: 161711.

    • YANG D, ZHANG YJ, SONG J, et al. , 2019. Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China [J]. Tree Physiol, 39(5): 729-739.

    • ZHANG JL, ZHU JJ, CAO KF, 2007. Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China [J]. Trees, 21(6): 631-643.

    • ZHANG YP, DUAN ZX, DOU JX, 2005. Comparison of climate characteristics between a dry-warm valley in upper reaches of Min River and a dry-hot valley of Yuanjiang River [J]. Resour Environ Yangtze Basin, 14(1): 76-82. [张一平, 段泽新, 窦军霞, 2005. 岷江上游干暖河谷与元江干热河谷的气候特征比较研究 [J]. 长江流域资源与环境, 14(1): 76-82. ]