en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李志芳(1998—),硕士研究生,主要从事植物基因组学研究,(E-mail)2570810230@qq.com。

通讯作者:

刘天猛,博士,高级实验师,主要从事高原植物多样性与资源利用研究,(E-mail)tianmeng-liu@163.com。

中图分类号:Q943;Q949

文献标识码:A

文章编号:1000-3142(2024)09-1732-14

DOI:10.11931/guihaia.gxzw202310052

参考文献
AHAMEETHUNISA AR, HOPPER W, 2012. In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora [J]. Ann Clin Microbiol Antimicrob, 11(1): 30-36.
参考文献
AMIRYOUSEFI A, HYVONEN J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030-3031.
参考文献
BEIER S, THIEL T, MUNCH T, et al. , 2017. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 33(16): 2583-2585.
参考文献
BISHT D, KUMAR D, KUMAR D, et al. , 2021. Phytochemistry and pharmacological activity of the genus artemisia [J]. Arch Pharm Res, 44(5): 439-474.
参考文献
BORA KS, SHARMA A, 2011. The genus Artemisia: a comprehensive review [J]. Pharm Biol, 49(1): 101-109.
参考文献
FAN SJ, GUO XX, 2022. Advances in research and application of plant chloroplast genome [J]. J Shandong Norm Univ (Nat Sci Ed), 37(1): 22-31. [樊守金, 郭秀秀, 2022. 植物叶绿体基因组研究及应用进展 [J]. 山东师范大学学报(自然科学版), 37(1): 22-31. ]
参考文献
GREINER S, LEHWARK P, BOCK R, 2019. OrganellarGenomeDRAW (OGDRAW) version 1. 3. 1: expanded toolkit for the graphical visualization of organellar genomes [J]. Nucl Acid Res, 47(W1): 59-64.
参考文献
HOBBS CR, BALDWIN BG, 2013. Asian origin and upslope migration of Hawaiian Artemisia (Compositae-Anthemideae) [J]. J Biogeogr, 40: 442-454.
参考文献
IRUM S, AHMED H, MIRZA B, et al. , 2017. In vitro and in vivo anthelmintic activity of extracts from Artemisia parviflora and A. sieversiana [J]. Helminthologia, 54(3): 218-224.
参考文献
JIAO BH, CHEN C, WEI M, et al. , 2023. Phylogenomics and morphological evolution of the mega-diverse genus Artemisia (Asteraceae: Anthemideae): implications for its circumscription and infrageneric taxonomy [J]. Ann Bot, 131(5): 867-883.
参考文献
JIN GZ, LI WJ, SONG F, et al. , 2023. Comparative analysis of complete Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) chloroplast genomes: insights into structural divergence and phylogenetic relationships [J]. BMC Plant Biol, 23(1): 136.
参考文献
JIN JJ, YU WB, YANG JB, et al. , 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J]. Genome Biol, 21(1): 241.
参考文献
KATOH K, MISAWA K, KUMA K, et al. , 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform [J]. Nucl Acid Res, 30(14): 3059-3066.
参考文献
KAUR S, PANESAR PS, BERA MB, et al. , 2015. Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review [J]. Crit Rev Food Sci Nutr, 55(1): 41-49.
参考文献
KEARSE M, MOIR R, WILSON A, et al. , 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 28(12): 1647-1649.
参考文献
KIM GB, LIM CE, KIM JS, et al. , 2020. Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: insights into evolutionary divergence and phylogenomic implications [J]. BMC Genomics, 21(1): 415-431.
参考文献
KUMAR S, NEI M, DUDLEY J, et al. , 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences [J]. Brief Bioinform, 9(4): 299-306.
参考文献
KURTZ S, CHOUDHURI JV, OHLEBUSCH E, et al. , 2001. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucl Acid Res, 29(22): 4633-4642.
参考文献
LAN ZH, TIAN XF, SHI YH, et al. , 2022. Chloroplast genome structure characteristics and phylogenetic analysis of Artemisia indica [J]. Chin J Chin Mat Med, 47(22): 6058-6065. [兰朝辉, 田徐芳, 师玉华, 等, 2022. 五月艾Artemisia indica叶绿体基因组结构及系统发育分析 [J]. 中国中药杂志, 47(22): 6058-6065. ]
参考文献
LI HT, YI TS, GAO LM, et al. , 2019. Origin of angiosperms and the puzzle of the Jurassic gap [J]. Nat Plants, 5(5): 461-470.
参考文献
LIN CH, HAN JY, YAN XL, 2023. Application and prospect of chloroplast genome [J/OL]. Mol Plant Breed: 1-7 [2023-07-03]. https: //kns. cnki. net/kcms2/detail/46. 1068. S. 20230703. 1048. 002. html. [林楚航, 韩俊艳, 闫小玲, 2023. 叶绿体基因组的应用及前景展望 [J/OL] . 分子植物育种: 1-7 [2023-07-03]. https: //kns. cnki. net/kcms2/detail/46. 1068. S. 20230703. 1048. 002. html. ]
参考文献
LIN R, LIN YR, 1991. Flora Reipublicae Popularis Sinicae: Vol. 76 [M]. Beijing: Science Press: 243. [林镕, 林有润, 1991. 中国植物志: 第七十六卷 [M]. 北京: 科学出版社: 243. ]
参考文献
LIN YR, 1995. On the floristics of Artemisia L. in the world [J]. Bull Bot Res, 15(1): 1-37. [林有润, 1995. 论世界蒿属植物区系 [J]. 植物研究, 15(1): 1-37. ]
参考文献
LIU C, LÜ YQ, SHI ZL, et al. , 2023. Characteristics of chloroplast genomes and phylogenetic analysis of Artemisia species [J]. J NW For Univ, 38(3): 78-86. [刘潮, 吕雁秋, 施枝丽, 等, 2023. 蒿属植物叶绿体基因组特征及进化 [J]. 西北林学院学报, 38(3): 78-86. ]
参考文献
LIU J, ZHANG HQ, FAN X, et al. , 2012. Phylogenetic relationships and maternal donor of Hystrix and Leymus species as revealed by chloroplast atpB-rbcL sequences [J]. Acta Pratac Sin, 21(5): 77-85. [刘静, 张海琴, 凡星, 等, 2012. 基于叶绿体atpB-rbcL序列探讨猬草属和赖草属植物的系统发育和母系起源 [J]. 草业学报, 21(5): 77-85. ]
参考文献
LIU T, JI YH, 2009. psbA-trnH sequence analysis from chloroplast on medicinal plants of Artemisia [J]. Chin Agric Sci Bull, 25(12): 46-49. [刘涛, 纪运恒, 2009. 蒿属药用植物叶绿体上的psbA-trnH序列分析 [J]. 中国农学通报, 25(12): 46-49. ]
参考文献
LIU Y, HUO NX, DONG LL, et al. , 2013. Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants [J]. PLoS ONE, 8(2): e57533.
参考文献
LU QF, HUANG ZH, LUO WH, 2021. Characterization of complete chloroplast genome in Firmiana kwangsiensis and F. danxiaensis with extremely small populations [J]. Biodivers Sci, 29(5): 586-595. [陆奇丰, 黄至欢, 骆文华, 2021. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征 [J]. 生物多样性, 29(5): 586-595. ]
参考文献
LU QF, LUO WH, 2023. Analysis of codon usage bias in chloroplast genome of Begonia guangxiensis [J/OL]. Mol Plant Breed: 1-20 [2023-09-05]. https: //link. cnki. net/urlid/46. 1068. S. 20230905. 0920. 002. [陆奇丰, 骆文华, 2023. 广西秋海棠叶绿体基因组密码子偏好性分析 [J/OL]. 分子植物育种: 1-20 [2023-09-05]. https: //link. cnki. net/urlid/46. 1068. S. 20230905. 0920. 002. ]
参考文献
MALIK S, VITALES D, HAYAT MQ, et al. , 2017. Phylogeny and biogeography of Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) [J]. Taxon, 66(4): 934-952.
参考文献
MAO LY, HUANG QW, LONG LY, et al. , 2022. Comparative analysis of codon usage bias in chloroplast genomes of seven Nymphaea species [J]. J NW For Univ, 37(2): 98-107. [毛立彦, 黄秋伟, 龙凌云, 等, 2022. 7种睡莲属植物叶绿体基因组密码子偏好性分析 [J]. 西北林学院学报, 37(2): 98-107. ]
参考文献
MASUDA Y, YUKAWA T, KONDO K, 2009. Molecular phylogenetic analysis of members of Chrysanthemum and its related genera in the tribe Anthemideae, the Asteraceae in East Asia on the basis of the internal transcribed spacer (ITS) region and the external transcribed spacer (ETS) region of nrDNA [J]. Chromosome Bot, 4(2): 25-36.
参考文献
MAYOR C, BRUDNO M, SCHWARTZ JR, et al. , 2000. VISTA: visualizing global DNA sequence alignments of arbitrary length [J]. Bioinformatics, 16 (11): 1046-1047.
参考文献
MCARTHUR ED, POPE CL, FREEMAN DC, 1981. Chromosomal studies of subgenus Tridentatae of Artemisia: evidence for autopolyploidy [J]. Am J Bot, 68(5): 589-605.
参考文献
MCINERNEY JO, 1998. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi [J]. Proc Natl Acad Sci USA, 95(18): 10698-10703.
参考文献
NAJAFABADI HS, GOODARZI H, SALAVATI R, 2009. Universal function-specificity of codon usage [J]. Nucl Acid Res, 37(21): 7014-7023.
参考文献
NIE XJ, DENG PC, FENG KW, et al. , 2014. Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family [J]. Plant Mol Biol Rep, 32(4): 828-840.
参考文献
NYLANDER J, 2004. MrModeltest v2. Program distributed by the author [J]. Bioinformatics, 24: 581-583.
参考文献
QIAN RJ, YE YJ, HU QD, et al. , 2022. Complete chloroplast genome of Gladiolus gandavensis (Gladiolus) and genetic evolutionary analysis [J]. Genes, 13(9): 1599.
参考文献
QU XJ, MOORE MJ, LI DZ, et al. , 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes [J]. Plant Meth, 15(1): 50.
参考文献
RAN R, 2022. Comparison of chloroplast genomes and phylogenetic analysis of 5 Artemisia in north China [D]. Hohhot: Inner Mongolia Agricultural University: 1-48. [冉然, 2022. 北方5种蒿属植物叶绿体基因组比较与系统进化分析 [D]. 呼和浩特: 内蒙古农业大学: 1-48. ]
参考文献
RICE P, LONGDEN I, BLEASBY A, 2000. EMBOSS: the european molecular biology open software suite [J]. Trends Genet, 16(6): 276-277.
参考文献
RONQUIST F, TESLENKO M, MARK PVD, et al. , 2012. MrBayes 3. 2: efficient Bayesian phylogenetic inference and model choice across a large model space [J]. Syst Biol, 61(3): 539-542.
参考文献
ROZAS J, FERRER-MATA A, SANCHEZ-DELBARRIO JC, et al. , 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets [J]. Mol Biol Evol, 34(12): 3299-3302.
参考文献
SHAHZADI I, ADBULLAH, MEHMOOD F, et al. , 2020. Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae [J]. Genomics, 112(2): 1454-1463.
参考文献
SHAW J, LICKEY EB, SCHILLING EE, et al. , 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare Ⅲ [J]. Amer J Bot Mar, 94(3): 275-288.
参考文献
SHEN XF, WU ML, LIAO BS, et al. , 2017. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua [J]. Molecules, 22(8): 1330.
参考文献
SHEN ZF, LU TQ, ZHANG ZR, et al. , 2021. Condon preference chloroplast genomes of Drynaria [J]. Guihaia, 41(2): 266-273. [沈宗芳, 陆添权, 张志荣, 等, 2021. 槲蕨属叶绿体基因组密码子偏好性分析 [J]. 广西植物, 41(2): 266-273. ]
参考文献
SONG WC, CHEN ZM, SHI WB, et al. , 2022. Comparative analysis of complete chloroplast genomes of nine species of Litsea (Lauraceae): hypervariable regions, positive selection, and phylogenetic relationships [J]. Genes, 13(9): 1550.
参考文献
WANG F, ZHAO WZ, DONG ZH, et al. , 2022. Analysis of chloroplast genome characteristics of Prinsepia [J]. Chin J Trop Crop, 43(9): 1759-1770. [王飞, 赵文植, 董章宏, 等, 2022. 扁核木属植物叶绿体基因组特征分析 [J]. 热带作物学报, 43(9): 1759-1770. ]
参考文献
WANG F, ZHAO WZ, DONG ZH, et al. , 2023. Analysis of the chloroplast genome characteristics of 6 species of Yucca [J]. Bull Bot Res, 43(1): 109-119. [王飞, 赵文植, 董章宏, 等, 2023. 丝兰属6种植物叶绿体基因组特征分析 [J]. 植物研究, 43(1): 109-119. ]
参考文献
WANG J, HE WC, XIANG KL, et al. , 2023. Advances in plant phylogeny in the genome era [J]. J Zhejiang A & F Univ, 40(1): 227-236. [王杰, 贺文闯, 向坤莉, 等, 2023. 基因组时代的植物系统发育研究进展 [J]. 浙江农林大学学报, 40(1): 227-236. ]
参考文献
WANG ZK, LIU Y, ZHENG HY, et al. , 2023. Comparative analysis of codon usage patterns in nuclear and chloroplast genome of Dalbergia (Fabaceae) [J]. Genes, 14(5): 1110.
参考文献
WICK RR, SCHULTZ MB, ZOBEL J, et al. , 2015. Bandage: interactive visualization of de novo genome assemblies [J]. Bioinformatics, 31(20): 3350-3352.
参考文献
WU LW, NIE LP, XU ZC, et al. , 2020. Comparative and phylogenetic analysis of the complete chloroplast genomes of three Paeonia Section Moutan species (Paeoniaceae) [J]. Front Genet, 11: 980.
参考文献
YU JY, XIA MZ, WANG YC, et al. , 2022. Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae) [J]. Biologia, 77(4): 915-930.
参考文献
ZHANG DJ, REN J, JIANG H, et al. , 2023. Comparative and phylogenetic analysis of the complete chloroplast genomes of six Polygonatum species (Asparagaceae) [J]. Sci Rep, 13(1): 7237.
参考文献
ZHANG MY, ZHANG YQ, LI YM, et al. , 2021. Complete plastid genomes of Bupleurum chinense DC. and B. boissieuanum H. Wolff, with comparative and phylogenetic analyses of medicinal Bupleurum species [J]. Acta Pharm Sin, 56(2): 618-629. [张明英, 张雨曲, 李依民, 等, 2021. 北柴胡、紫花阔叶柴胡叶绿体全基因组解析及柴胡属药用植物叶绿体基因组比较与系统发育分析 [J]. 药学学报, 56(2): 618-629. ]
参考文献
ZHANG RZ, ZHANG L, WANG W, et al. , 2018. Differences in codon usage bias between photosynthesis-related genes and genetic system-related genes of chloroplast genomes in cultivated and wild solanum species [J]. Int J Mol Sci, 19(10): 3142.
参考文献
ZHOU LJ, SANG XQ, SUN YY, et al. , 2012. Pesticidal activities and active ingredients of Artemisia [J]. Acta Agric Univ Jiangxi, 34(4): 699-705. [周利娟, 桑晓清, 孙永艳, 等, 2012. 蒿属植物的农药活性及其有效成分 [J]. 江西农业大学学报, 34(4): 699-705. ]
参考文献
ZHU TT, ZHANG L, CHEN WS, et al. , 2017. Analysis of chloroplast genomes in 1342 plants [J]. Genomics Appl Biol, 36(10): 4323-4333. [朱婷婷, 张磊, 陈万生, 等, 2017. 1342个植物叶绿体基因组分析 [J]. 基因组学与应用生物学, 36(10): 4323-4333. ]
目录contents

    摘要

    为探究西南牡蒿(Artemisia parviflora)的叶绿体基因组结构特征及其系统位置,该研究利用高通量测序技术对其进行测序,并借助生物信息学工具进行分析。结果表明:(1)西南牡蒿叶绿体基因组长151047 bp,呈现为由4部分组成的环状双链结构,GC含量为37.5%。(2)共注释115个基因,包括81个蛋白编码基因、4个rRNA基因及30个tRNA基因。(3)检测到68个简单重复序列(SSRs)和37个长重复序列。(4)西南牡蒿叶绿体基因组的密码子使用偏性较弱,其主要受自然选择的影响,高频密码子偏向以A/U结尾。(5)西南牡蒿叶绿体基因组的IR区未出现明显的扩张或收缩;筛选出了trnH-psbArpl16-rps3、ycf15-trnL-UAGndhAycf15个高变异区域,可作为鉴定龙蒿亚属植物的潜在分子标记。(6)系统发育分析揭示了西南牡蒿在龙蒿亚属中的系统位置及蒿属内各亚属的系统发育关系。该研究为蒿属植物后续的分子标记开发和系统发育研究提供了参考。

    Abstract

    To explore the structural features of Artemisia parviflora chloroplast genome and its systematic position, high-throughput sequencing technology were employed for genome sequencing and bioinformatics tools for analyzing. The results were as follows: (1) The chloroplast genome of A. parviflora was 151047 bp, with a typical circular double-stranded tetrad structure, and the GC content was 37.5%. (2) Total 115 unique genes were annotated, including 81 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. (3) Sixty-eight simple sequence repeats (SSRs) and 37 long repeat sequences were detected. (4) The codon usage bias was weak in the A. parviflora chloroplast genome, and natural selection mainly contributed to the codon usage bias. High-frequency codons tend to ended with A/U. (5) There was no obvious expansion or contraction of the inverted repeat (IR) regions. Five high variation regions (trnH-psbA, rpl16-rps3, ycf15-trnL-UAG, ndhA, and ycf1) were identified which could be used as potential molecular markers for identifying subgen. Dracunculus species. (6) Phylogenetic analysis revealed the systematic position of A. parviflora within subgen. Dracunculus and elucidated the phylogenetic relationships among the various subgenera of Artemisia. This study provides the reference for future molecular marker development and phylogenetic research of Artemisia species.

  • 叶绿体是植物进行光合作用的主要场所,是拥有相对独立遗传物质的半自主性细胞器。植物的叶绿体基因组大小一般在140~160 kb之间,呈现为由4部分组成的环状双链结构,编码了110~130个基因,按照基因功能可以分为4类(朱婷婷等,2017;林楚航等,2023)。与核基因组相比,叶绿体基因组具有基因组较小、拷贝数高及进化速率适中等优点,常被用于不同分类等级的系统发育研究(樊守金和郭秀秀,2022)。另外,叶绿体基因组的简单重复序列(simple sequence repeats,SSRs)、序列差异性、核苷酸多态性及密码子使用偏性等特征可为物种鉴定和进化生物学研究提供关键信息。近年来,随着高通量测序技术的快速发展,更多的植物叶绿体基因组序列被测序,并广泛应用于系统发育研究。Song等(2022)利用木姜子属(Litsea)物种的叶绿体基因组数据明确了该属内的系统发育关系。Qian等(2022)基于唐菖蒲(Gladiolus gandavensis)叶绿体基因组的分析,证实了唐菖蒲可能起源于南非且唐菖蒲属(Gladiolus)与番红花属(Crocus)的同源性更高,而与鸢尾属(Iris)的同源性较低。可见,叶绿体基因组序列可以促进高等植物的系统发育研究。

  • 蒿属(Artemisia)是菊科中物种最丰富且分布最广泛的属之一,世界约有500种,主要分布在欧洲、亚洲和北美的温带地区,中国约分布186种和44变种(Bora &Sharma,2011;冉然,2022)。蒿属植物中富含的糖类、萜类及黄酮类等多种化学成分在抗寄生虫、抗疟疾和抗COVID-19等方面具有显著的药用价值(Bisht et al.,2021)。然而,由于缺乏明显的分类特征和频繁的自然杂交,蒿属内的系统发育关系一直存在争议(Kim et al.,2020)。林有润(1995)根据形态和地理分布等特征,将蒿属划分为3个亚属和9个组。蒿亚属(Subgen. Artiemisia)、龙蒿亚属(Subgen. Dracunculus)、莳萝蒿亚属(Subgen. Absinthium)和绢蒿亚属(Subgen. Seriphidium)是最早的4个亚属类群。随着不同分类学家的深入研究,Subgen. Tridentatae和Subgen. Pacifica也被提出(Mcarthur et al.,1981;Hobbs &Baldwin,2013)。Jiao等(2023)基于核基因组单核苷酸多态性(single nucleotide polymorphisms,SNPs)数据将蒿属划分为8个亚属,发现大多数先前被认可的亚属并非单系类群,并且传统上用于亚属分类的形态特征与新的系统发育树不相符。此外,基于叶绿体基因组数据的研究结果表明龙蒿亚属为单系类群,但该亚属内的龙蒿组(Sect. Dracunculus)和牡蒿组(Sect. Latilobus)均为多系类群,这与传统的形态分类结果存在一定的分歧(Kim et al.,2020;Yu et al.,2022)。由此可见,蒿属内各亚属的划分一直不明确,分子分类结果与形态分类结果之间存在明显分歧。

  • 西南牡蒿(Artemisia parviflora)是一种多年生草本植物,主要分布在海拔2 200~3 100 m的草丛、坡地、林缘和路旁地带(林镕和林有润,1991)。目前,对于西南牡蒿的研究主要集中在其化学成分和药用价值方面(Ahameethunisa &Hopper,2012;周利娟等,2012;Irum et al.,2017),而关于其系统发育关系的研究相对较少。Masuda等(2009)利用核糖体DNA的ITS区域和ETS区域构建系统发育树,发现西南牡蒿与蒿亚属的魁蒿(A. princeps)和亚洲大花蒿(A. macrantha)聚为一支;而Jiao等(2023)基于核基因组SNPs数据构建系统发育树,则发现西南牡蒿与龙蒿亚属的小亮苞蒿(A. mairei)亲缘关系最近。据《中国植物志》记载,目前西南牡蒿被划分在龙蒿亚属的牡蒿组内,由于西南牡蒿的形态特征与其近缘种牡蒿(A. japonica)十分相似,还曾被认为是牡蒿的变种(林镕和林有润,1991)。因此,有必要利用叶绿体基因组数据来研究西南牡蒿的系统位置及蒿属内各亚属的系统发育关系。

  • 本研究利用高通量测序技术获取西南牡蒿的叶绿体基因组序列,并运用生物信息学软件进行分析,拟探究以下科学问题:(1)西南牡蒿叶绿体基因组的结构特征;(2)西南牡蒿叶绿体基因组的密码子使用偏性特征及影响因素;(3)开发鉴定龙蒿亚属植物的潜在分子标记;(4)西南牡蒿的系统位置及蒿属内各亚属的系统发育关系。以期为蒿属植物后续的分子标记开发和系统发育研究奠定基础。

  • 1 材料与方法

  • 1.1 材料

  • 西南牡蒿的新鲜叶片采自云南省丽江市丽江高山植物园(100°20′05″ E、26°99′68″ N),海拔3 223 m,保存于-80℃的液氮中冷藏以备用。

  • 1.2 测序及组装注释分析

  • 对样品进行DNA提取并质检,构建测序文库后采用Illumina HiSeqTM平台测序。DNA提取和测序工作由上海元莘生物医药科技有限公司完成。对测序数据进行质控和评估后,运用GetOrganelle软件(Jin et al.,2020)进行组装,组装结果使用Bandage软件(Wick et al.,2015)进行查看和校正。使用Plattid Genome Annotator(PGA)软件(Qu et al.,2019)进行注释后用Geneious软件(Kearse et al.,2012)手动检查。组装注释的fasta文件和GenBank文件已提交至NCBI GenBank数据库,GenBank登录号为OP837546.1。利用OGDRAW在线软件(Greiner et al.,2019)绘制叶绿体基因组图谱。

  • 1.3 重复序列分析

  • 使用MISA在线软件(Beier et al.,2017)检测简单重复序列,设置最小重复次数:单核苷酸为10,二核苷酸为5,三核苷酸为4,四核苷酸、五核苷酸和六核苷酸均为3。使用REPuter在线软件(Kurtz et al.,2001)检测长重复序列,设置最小重复长度为30 bp,Hamming距离为3。

  • 1.4 密码子使用偏性分析

  • 去除重复和小于300 bp的蛋白编码序列,运用CodonW(http://codonw.sourceforge.net)软件统计54条蛋白编码序列的有效密码子数(effective number of codons,ENC)和相对同义密码子使用度(relative synonymous codon usage,RSCU)。RSCU值是指密码子的实际使用频率与理论使用频率之比,用于衡量密码子的使用偏性(毛立彦等,2022)。RSCU值>1表明该密码子使用偏性强,称为高频密码子;RSCU值<1表示该密码子使用偏性较弱,称为低频密码子。ENC值用于反映密码子使用偏性程度,理论取值范围为20~61,ENC值越小表明密码子使用偏性越强(Mcinerney,1998;王飞等,2022)。根据陆奇丰和骆文华(2023)的方法计算ENC期望值和ENC比值。使用EMBOSS网站(Rice et al.,2000)的cusp程序计算第1/2/3位密码子的GC含量(GC1/GC2/GC3)。GC12表示GC1与GC2的平均值。

  • 1.5 序列差异分析及IR边界分析

  • 利用mVISTA在线软件(Mayor et al.,2000),在Shuffle-LAGAN模型下进行序列差异分析。使用DnaSP 6软件(Rozas et al.,2017)计算核苷酸多态性,滑动窗口长度设为600 bp,步长设为200 bp。利用IRscope在线软件(Amiryousefi et al.,2018)进行反向重复(invered repeat,IR)区边界收缩与扩张分析。

  • 1.6 系统发育分析

  • 从NCBI数据库中下载已报道的52种近缘蒿属植物叶绿体基因组序列。利用MAFFT软件(Katoh et al.,2002)进行多序列比对。利用MEGA软件(Kumar et al.,2008)(基于GTR + G + I模型)构建最大似然树,Bootstrap值设置为1 000。利用MrModeltest 2软件(Nylander,2004)筛选最优核苷酸替代模型为GTR + G + I,使用MrBayes 3.2软件(Ronquist et al.,2012)构建贝叶斯树,参数设置:马尔可夫链运算10 000 000代,每1 000代取样1次。

  • 2 结果与分析

  • 2.1 西南牡蒿叶绿体基因组的基本特性

  • 西南牡蒿的叶绿体基因组长151 047 bp,呈现为由4部分组成的环状双链结构,由2个反向重复区(IRa和IRb)、1个大单拷贝区(large single copy,LSC)及1个小单拷贝区(small single copy,SSC)组成(图1)。GC含量和AT含量分别为37.5%和62.5%,IR区、LSC区、SSC区的GC含量分别为43.1%、35.6%、30.7%(表1)。共注释出115个基因,包括81个蛋白编码基因、4个rRNA基因和30个tRNA基因(表2)。其中,有19个基因具有内含子,ycf3基因和clpP1基因具有2个内含子,其余基因只有1个内含子。

  • 图1 西南牡蒿叶绿体基因组图谱

  • Fig.1 Gene map of Artemisia parviflora chloroplast genome

  • 2.2 重复序列分析

  • 西南牡蒿的叶绿体基因组中共检测到68个SSRs位点,其中大部分位于LSC区。单核苷酸重复数量最多(42个),其中有97.6%的单核苷酸重复为A/T型,其次是四核苷酸重复和二核苷酸重复(表3)。值得注意的是,A/T、AT/AT、AAT/ATT、AAAT/ATTT、AATT/AATT及AATAT/ATATT的重复单元占比达到了88.2%,表明SSRs偏向使用A/T碱基。共检测到37个长重复序列,其中包括19个正向重复(forward repeat)和18个回文重复(palindromic repeat),没有检测到互补重复(complementary repeat)和反向重复(reverse repeat)(图2)。长重复序列的长度主要集中在30~40 bp之间。

  • 2.3 密子使用偏性特征及影响因素分析

  • 西南牡蒿的ENC值为52.21,表明其密码子使用偏性较弱。在西南牡蒿叶绿体基因组中共检测到28个高频密码子(不包括终止密码子),其中15个以U结尾,11个以A结尾,2个以G结尾;31个低频密码子,其中16个以C结尾,11个以G结尾,1个以U结尾,3个以结尾A(图3)。这表明其高频密码子偏向以A/U结尾,而低频密码子偏向以G/C结尾。

  • 表1 西南牡蒿叶绿体基因组基本特征

  • Table1 Basic features of Artemisia parviflora chloroplast genome

  • 密码子使用偏性受多种因素影响,其中自然选择和突变压力是主要因素。中性绘图分析发现GC12值的范围为0.306~0.550,GC3值的范围为0.178~0.425,大多数基因都位于中线上方(图4:A)。回归曲线斜率为-0.239 5,R2为0.044 4表明GC12值与GC3值相关性不显著,密码子使用偏性主要受自然选择的影响。ENC-plot分析发现大部分基因位于标准曲线下方,即ENC实际值与ENC期望值之间存在较大差异,进一步说明自然选择发挥了主要作用(图4:B)。此外,ENC比值频数分布分析发现有21个基因(占比38.9%)位于组距为-0.05~0.05的范围内,表明这些基因的密码子使用偏性受突变压力的影响(表4)。其余的33个基因(占比61.1%)位于此区间之外,表明这些基因的密码子使用偏性受自然选择的影响。综上所述,自然选择和突变压力共同影响西南牡蒿的叶绿体基因组密码子使用偏性,其中自然选择发挥了主要作用。

  • 2.4 序列差异性分析

  • 使用mVISTA叶绿体基因组比对工具,以雷琼牡蒿(Artemisia hancei)的叶绿体基因组作为参考,对9种龙蒿亚属植物的叶绿体基因组进行序列比对分析。结果表明,这些叶绿体基因组的结构和基因顺序基本相同,非编码区的差异性大于编码区,IR区的差异性明显小于LSC区和SSC区(图5)。核苷酸多态性分析显示,总共检测到498个多态性位点,核苷酸多态性值(Pi)的范围变化为0~0.009 72,平均值为0.001 10。检测出5个Pi>0.005的高变异区域,分别为trnH-psbArpl16-rps3、ycf15-trnL-UAGndhAycf1(图6)。

  • 2.5 IR区边界分析

  • 9种龙蒿亚属物种叶绿体基因组的IR区长度在24 953~24 972 bp之间,IR区边界的基因差异相对较小(图7)。除黑沙蒿(Artemisia ordosica)外,其余物种的LSC区与IRb区边界(LSC/IRb junction,JLB)均位于rps19基因内。所有物种的LSC区与IRa区边界(LSC/IRa junction,JLA)均位于rpl2基因和trnH基因之间。所有物种的SSC区与IRa区边界(SSC/IRa junction,JSA)均位于ycf1基因内。所有物种的SSC区与IRb区边界(SSC/IRb junction,JSB)均距离ndhF基因41~72 bp不等。这表明西南牡蒿叶绿体基因组IR区的长度和边界基因与其他龙蒿亚属植物基本相似,未发现明显的扩张或收缩现象。然而,黑沙蒿的IR边界与其他物种相比存在明显的收缩现象。

  • 2.6 系统发育分析

  • 基于53种蒿属植物叶绿体基因组的蛋白编码序列,以亚菊属(Ajania)的细叶亚菊(A. tenuifolia)和丝裂亚菊(A. nematoloba)作为外类群,利用贝叶斯法(Bayesian inference,BI)和最大似然法(maximum likelihood,ML)构建系统发育树。结果表明,2种建树方法产生相同的拓扑结构且多数节点都具有较高的支持率(图8)。根据Jiao等(2023)对蒿属内各亚属的最新划分,本研究中的蒿属物种主要分为5个分支,包括蒿亚属、龙蒿亚属、莳萝蒿亚属、绢蒿亚属及Subgen. Ponticae分支。其中,蒿亚属和莳萝蒿亚属聚为一支,莳萝蒿亚属嵌套在蒿亚属内,龙蒿亚属为这一支的姊妹类群。而绢蒿亚属则单独聚为一个分支,位于进化树的基部。Subgen. Ponticae的两个物种则分别嵌套在莳萝蒿亚属和绢蒿亚属内。龙蒿亚属的所有物种聚集一个单系分支,其中牡蒿、黑沙蒿、茵陈蒿(Artemisia capillaris)、沙蒿(A. desertorum)及猪毛蒿(A. scoparia)聚为一支,西南牡蒿与雷琼牡蒿聚为另一支,这两支互为姊妹类群。此外,华北米蒿(A. giraldii)与龙蒿(A. dracunculus)聚为一支,位于该亚属分支的基部。

  • 表2 西南牡蒿叶绿体基因组基因功能分类统计

  • Table2 Functional classification statistics of genes of Artemisia parviflora chloroplast genome

  • 注:*和**分别表示该基因包含1个和2个内含子;(×2)和(×3)分别表示该基因有2个和3个拷贝。

  • Note:* and ** indicates that the gene contains 1 and 2 introns respectively; (×2) and (×3) indicates that the gene has 2 and 3 copies respectively.

  • 3 讨论与结论

  • 通过比较分析发现,西南牡蒿叶绿体基因组在长度、结构及基因数量方面与之前报道的蒿属植物相似(刘潮等,2023),并且在IR区边界未发现明显的扩张或收缩,表明西南牡蒿叶绿体基因组相对保守。此外,与LSC区和SSC区相比,IR区的GC含量最高且序列差异性最小。这可能与IR区域内包含高GC含量的RNA基因(GC含量为55.1%)有关。在其他植物中也发现了类似的现象(Wu et al.,2020;Zhang et al.,2023),表明IR区在维持叶绿体基因组结构稳定方面起着关键作用。

  • 表3 西南牡蒿叶绿体基因组SSRs类型及数量

  • Table3 Type and number of SSRs of Artemisia parviflora chloroplast genome

  • 图2 西南牡蒿叶绿体基因组长重复序列类型及数量

  • Fig.2 Type and number of long repeat sequences of Artemisia parviflora chloroplast genome

  • 密码子使用偏性是指编码同一种氨基酸的多个同义密码子的使用频率不同,这是物种长期进化的结果,与基因的功能与表达密切相关 (Najafabadi et al.,2009;Zhang et al.,2018;Wang et al.,2023)。本研究发现西南牡蒿叶绿体基因组的密码子使用偏性较弱且偏向使用A/U结尾。这与黑沙蒿和华北米蒿等龙蒿亚属植物的密码子使用偏性特征相似(冉然,2022)。该物种38.9%的基因密码子使用偏性受突变压力影响,有61.1%的基因密码子使用偏性受自然选择影响。Nie等(2014)对菊科植物叶绿体基因组密码子使用偏性的影响因素分析也表明自然选择是主导因素。然而,沈宗芳等(2021)研究发现槲蕨属(Drynaria)植物叶绿体基因组的密码子使用偏性主要受到突变压力的影响。这表明亲缘关系相近的物种可能会具有相似的密码子使用模式。

  • 表4 ENC比值频数分布

  • Table4 Frequency distribution of ENC ratio

  • 叶绿体基因组的SSRs具有共显性遗传、高重复性和高变异性等特点,常被用作物种鉴定、遗传关系研究及分子标记辅助育种等方面的高效分子标记(Kaur et al.,2015)。本研究在西南牡蒿叶绿体基因组中发现了68个SSRs位点,然而不同蒿属物种中SSRs的数量存在较大差异。在五月艾(Artemisia indica)、甘青蒿(A. tangutica)、华北米蒿及黑沙蒿中分别检测到191个、201个、39个及47个SSRs位点,这说明不同蒿属物种的SSRs突变频率存在一定差异(兰朝辉等,2022;Yu et al.,2022; 冉然,2022)。这一现象在梧桐属(Firmiana)和丝兰属(Yucca)植物叶绿体基因组中同样存在(陆奇丰等,2021;王飞等,2023)。此外,本研究还发现西南牡蒿叶绿体基因组中单核苷酸重复的SSRs最为丰富,其次是四核苷酸重复和二核苷酸重复且倾向于使用A/T碱基,这与其他蒿属植物的研究结果相似(刘潮等,2023)。然而,与扁核木属(Prinsepia)和柴胡属(Bupleurum)的研究不同的是,在蒿属中并未观察到随着拷贝数目增加而SSRs数量明显减少的情况(王飞等,2022;张明英等,2021)。总之,本研究结果有助于未来蒿属植物的SSRs分子标记开发和遗传多样性研究。

  • 图3 西南牡蒿叶绿体基因组相对同义密码子使用度分析

  • Fig.3 Analysis of relative synonymous codon usage of Artemisia parviflora chloroplast genome

  • 图4 西南牡蒿叶绿体基因组密码子使用偏性影响因素分析

  • Fig.4 Analysis of codon usage bias factors of Artemisia parviflora chloroplast genome

  • 图5 9种蒿属龙蒿亚属植物叶绿体基因组序列比对分析

  • Fig.5 Sequence alignment analysis of nine Artemisia subgen. Dracunculus species chloroplast genomes

  • 图6 9种蒿属龙蒿亚属植物叶绿体基因组核苷酸多态性分析

  • Fig.6 Nucleotide polymorphism analysis of nine Artemisia subgen. Dracunculus species chloroplast genomes

  • 图7 9种蒿属龙蒿亚属植物叶绿体基因组IR区边界比较分析

  • Fig.7 Comparative analysis of IR region boundaries of nine Artemisia subgen. Dracunculus species chloroplast genomes

  • 叶绿体基因组的编码区与非编码区的分子进化速率存在差异,适用于不同分类水平的系统发育研究(樊守金和郭秀秀,2022)。编码区的进化速度相对较慢,适用于高级分类水平的系统发育研究,例如目和科的分类(Li et al.,2019)。相反,非编码区的进化速度相对较快,包含大量变异位点,适用于低级分类水平的系统发育研究,如属、种及种下等级的分类(Shaw et al.,2007;刘静等,2012)。本研究发现,9种龙蒿亚属植物叶绿体基因序列的非编码区差异性明显高于编码区,这与先前在大多数蒿属植物中观察到的序列差异性规律一致(Liu et al.,2013;Shen et al.,2017)。值得一提的是,本研究还鉴定出5个高变异区域,分别为trnH-psbArpl16-rps3、ycf15-trnL-UAGndhAycf1。刘涛和纪远恒(2009)利用trnH-psbA区域成功鉴别了黄花蒿(A. annua)、茵陈蒿和青蒿(A. caruifolia)。此外,trnH-psbAycf1区域在其他蒿属植物中也观察到了类似的高度变异性(Shahzadi et al.,2020)。Kim等(2020)研究表明,accD基因和ycf1基因不但在蒿属中表现出高度多态性,而且具有成为菊科植物核心分子标记的潜力。因此,本研究筛选出的高变异区域可作为识别龙蒿亚属物种的潜在分子标记。

  • 本研究发现蒿亚属和莳萝蒿亚属聚为一支,莳萝蒿亚属嵌套在蒿亚属内,表明这两个亚属的亲缘关系较近,莳萝蒿亚属曾被认为是蒿亚属内的一个组。Hobbs和Baldwin(2013)的研究也发现,蒿属亚属和莳萝蒿亚属均为多系群。这结果与Jiao等(2023)基于核基因组SNPs数据的研究结果一致。而龙蒿亚属则为这一大分支的姊妹类群,绢蒿亚属则位于进化树的基部,与Jin等(2023)基于叶绿体基因组数据的研究结果相一致,而与Jiao等(2023)基于核基因组SNPs数据的研究结果存在差异。可见,核基因组数据和叶绿体基因组数据在物种系统发育研究中既表现出一致性又存在差异性。虽然核基因组具有双亲遗传特性,能够揭示双亲谱系的进化关系,在系统发育研究中有较大的潜力(王杰等,2023),但是叶绿体基因组数据丰富,目前仍然是植物系统发育研究的主要方法。此外,还发现原为绢蒿亚属的三裂叶绢蒿(Seriphidium junceum)则与莳萝蒿亚属物种聚为一支。这结果支持Malik等(2017)将三裂叶绢蒿从绢蒿亚属中移除的结论。本研究基于所有已经公布的蒿属植物叶绿体基因组数据对蒿属内各亚属进行重新划分,尽可能保证各亚属的单系性,可为蒿属内各亚属的分类修订提供基础。

  • 图8 基于叶绿体基因组蛋白编码序列构建蒿属系统发育树

  • Fig.8 Phylogenetic tree of Artemisia based on protein-coding sequences of chloroplast genomes

  • 本研究还发现西南牡蒿与雷琼牡蒿亲缘关系最近,两者同属于牡蒿组。然而,西南牡蒿曾被认为是牡蒿的变种,后来以西南牡蒿的茎下部叶一至二回羽状深裂或全裂,中部叶3~5深裂;茎、枝、叶背面初时被黄色或褐黄色柔毛等特征,将其与牡蒿区分开来(林镕和林有润,1991)。本研究的分子系统发育分析表明西南牡蒿与牡蒿亲缘关系较远,并不是牡蒿的变种。此外,本研究还发现龙蒿亚属内的龙蒿组和牡蒿组均呈现多系性,这与最新的分子系统发育研究结果一致(Kim et al.,2020;Yu et al.,2022;Jin et al.,2023),但与传统的形态学分类结果存在一定的分歧。因此,对于蒿属系统发育的研究需要结合形态特征和更多的分子数据以提供全面的支持。

  • 综上所述,本研究首次报道了西南牡蒿叶绿体基因组序列,并分析了其结构特征和蒿属的系统发育关系。结果表明,西南牡蒿叶绿体基因组的大小、结构及IR区边界相对保守。密码子使用偏性较弱,主要受自然选择的影响。此外,筛选得到的重复序列和高变异区域可作为鉴别蒿属植物的潜在分子标记。系统发育分析揭示了西南牡蒿的系统位置及蒿属内各亚属的系统发育关系。这些结果为深入研究蒿属植物的进化特征和系统发育关系提供了重要参考。

  • 参考文献

    • AHAMEETHUNISA AR, HOPPER W, 2012. In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora [J]. Ann Clin Microbiol Antimicrob, 11(1): 30-36.

    • AMIRYOUSEFI A, HYVONEN J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030-3031.

    • BEIER S, THIEL T, MUNCH T, et al. , 2017. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 33(16): 2583-2585.

    • BISHT D, KUMAR D, KUMAR D, et al. , 2021. Phytochemistry and pharmacological activity of the genus artemisia [J]. Arch Pharm Res, 44(5): 439-474.

    • BORA KS, SHARMA A, 2011. The genus Artemisia: a comprehensive review [J]. Pharm Biol, 49(1): 101-109.

    • FAN SJ, GUO XX, 2022. Advances in research and application of plant chloroplast genome [J]. J Shandong Norm Univ (Nat Sci Ed), 37(1): 22-31. [樊守金, 郭秀秀, 2022. 植物叶绿体基因组研究及应用进展 [J]. 山东师范大学学报(自然科学版), 37(1): 22-31. ]

    • GREINER S, LEHWARK P, BOCK R, 2019. OrganellarGenomeDRAW (OGDRAW) version 1. 3. 1: expanded toolkit for the graphical visualization of organellar genomes [J]. Nucl Acid Res, 47(W1): 59-64.

    • HOBBS CR, BALDWIN BG, 2013. Asian origin and upslope migration of Hawaiian Artemisia (Compositae-Anthemideae) [J]. J Biogeogr, 40: 442-454.

    • IRUM S, AHMED H, MIRZA B, et al. , 2017. In vitro and in vivo anthelmintic activity of extracts from Artemisia parviflora and A. sieversiana [J]. Helminthologia, 54(3): 218-224.

    • JIAO BH, CHEN C, WEI M, et al. , 2023. Phylogenomics and morphological evolution of the mega-diverse genus Artemisia (Asteraceae: Anthemideae): implications for its circumscription and infrageneric taxonomy [J]. Ann Bot, 131(5): 867-883.

    • JIN GZ, LI WJ, SONG F, et al. , 2023. Comparative analysis of complete Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) chloroplast genomes: insights into structural divergence and phylogenetic relationships [J]. BMC Plant Biol, 23(1): 136.

    • JIN JJ, YU WB, YANG JB, et al. , 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J]. Genome Biol, 21(1): 241.

    • KATOH K, MISAWA K, KUMA K, et al. , 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform [J]. Nucl Acid Res, 30(14): 3059-3066.

    • KAUR S, PANESAR PS, BERA MB, et al. , 2015. Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review [J]. Crit Rev Food Sci Nutr, 55(1): 41-49.

    • KEARSE M, MOIR R, WILSON A, et al. , 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 28(12): 1647-1649.

    • KIM GB, LIM CE, KIM JS, et al. , 2020. Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: insights into evolutionary divergence and phylogenomic implications [J]. BMC Genomics, 21(1): 415-431.

    • KUMAR S, NEI M, DUDLEY J, et al. , 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences [J]. Brief Bioinform, 9(4): 299-306.

    • KURTZ S, CHOUDHURI JV, OHLEBUSCH E, et al. , 2001. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucl Acid Res, 29(22): 4633-4642.

    • LAN ZH, TIAN XF, SHI YH, et al. , 2022. Chloroplast genome structure characteristics and phylogenetic analysis of Artemisia indica [J]. Chin J Chin Mat Med, 47(22): 6058-6065. [兰朝辉, 田徐芳, 师玉华, 等, 2022. 五月艾Artemisia indica叶绿体基因组结构及系统发育分析 [J]. 中国中药杂志, 47(22): 6058-6065. ]

    • LI HT, YI TS, GAO LM, et al. , 2019. Origin of angiosperms and the puzzle of the Jurassic gap [J]. Nat Plants, 5(5): 461-470.

    • LIN CH, HAN JY, YAN XL, 2023. Application and prospect of chloroplast genome [J/OL]. Mol Plant Breed: 1-7 [2023-07-03]. https: //kns. cnki. net/kcms2/detail/46. 1068. S. 20230703. 1048. 002. html. [林楚航, 韩俊艳, 闫小玲, 2023. 叶绿体基因组的应用及前景展望 [J/OL] . 分子植物育种: 1-7 [2023-07-03]. https: //kns. cnki. net/kcms2/detail/46. 1068. S. 20230703. 1048. 002. html. ]

    • LIN R, LIN YR, 1991. Flora Reipublicae Popularis Sinicae: Vol. 76 [M]. Beijing: Science Press: 243. [林镕, 林有润, 1991. 中国植物志: 第七十六卷 [M]. 北京: 科学出版社: 243. ]

    • LIN YR, 1995. On the floristics of Artemisia L. in the world [J]. Bull Bot Res, 15(1): 1-37. [林有润, 1995. 论世界蒿属植物区系 [J]. 植物研究, 15(1): 1-37. ]

    • LIU C, LÜ YQ, SHI ZL, et al. , 2023. Characteristics of chloroplast genomes and phylogenetic analysis of Artemisia species [J]. J NW For Univ, 38(3): 78-86. [刘潮, 吕雁秋, 施枝丽, 等, 2023. 蒿属植物叶绿体基因组特征及进化 [J]. 西北林学院学报, 38(3): 78-86. ]

    • LIU J, ZHANG HQ, FAN X, et al. , 2012. Phylogenetic relationships and maternal donor of Hystrix and Leymus species as revealed by chloroplast atpB-rbcL sequences [J]. Acta Pratac Sin, 21(5): 77-85. [刘静, 张海琴, 凡星, 等, 2012. 基于叶绿体atpB-rbcL序列探讨猬草属和赖草属植物的系统发育和母系起源 [J]. 草业学报, 21(5): 77-85. ]

    • LIU T, JI YH, 2009. psbA-trnH sequence analysis from chloroplast on medicinal plants of Artemisia [J]. Chin Agric Sci Bull, 25(12): 46-49. [刘涛, 纪运恒, 2009. 蒿属药用植物叶绿体上的psbA-trnH序列分析 [J]. 中国农学通报, 25(12): 46-49. ]

    • LIU Y, HUO NX, DONG LL, et al. , 2013. Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants [J]. PLoS ONE, 8(2): e57533.

    • LU QF, HUANG ZH, LUO WH, 2021. Characterization of complete chloroplast genome in Firmiana kwangsiensis and F. danxiaensis with extremely small populations [J]. Biodivers Sci, 29(5): 586-595. [陆奇丰, 黄至欢, 骆文华, 2021. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征 [J]. 生物多样性, 29(5): 586-595. ]

    • LU QF, LUO WH, 2023. Analysis of codon usage bias in chloroplast genome of Begonia guangxiensis [J/OL]. Mol Plant Breed: 1-20 [2023-09-05]. https: //link. cnki. net/urlid/46. 1068. S. 20230905. 0920. 002. [陆奇丰, 骆文华, 2023. 广西秋海棠叶绿体基因组密码子偏好性分析 [J/OL]. 分子植物育种: 1-20 [2023-09-05]. https: //link. cnki. net/urlid/46. 1068. S. 20230905. 0920. 002. ]

    • MALIK S, VITALES D, HAYAT MQ, et al. , 2017. Phylogeny and biogeography of Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) [J]. Taxon, 66(4): 934-952.

    • MAO LY, HUANG QW, LONG LY, et al. , 2022. Comparative analysis of codon usage bias in chloroplast genomes of seven Nymphaea species [J]. J NW For Univ, 37(2): 98-107. [毛立彦, 黄秋伟, 龙凌云, 等, 2022. 7种睡莲属植物叶绿体基因组密码子偏好性分析 [J]. 西北林学院学报, 37(2): 98-107. ]

    • MASUDA Y, YUKAWA T, KONDO K, 2009. Molecular phylogenetic analysis of members of Chrysanthemum and its related genera in the tribe Anthemideae, the Asteraceae in East Asia on the basis of the internal transcribed spacer (ITS) region and the external transcribed spacer (ETS) region of nrDNA [J]. Chromosome Bot, 4(2): 25-36.

    • MAYOR C, BRUDNO M, SCHWARTZ JR, et al. , 2000. VISTA: visualizing global DNA sequence alignments of arbitrary length [J]. Bioinformatics, 16 (11): 1046-1047.

    • MCARTHUR ED, POPE CL, FREEMAN DC, 1981. Chromosomal studies of subgenus Tridentatae of Artemisia: evidence for autopolyploidy [J]. Am J Bot, 68(5): 589-605.

    • MCINERNEY JO, 1998. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi [J]. Proc Natl Acad Sci USA, 95(18): 10698-10703.

    • NAJAFABADI HS, GOODARZI H, SALAVATI R, 2009. Universal function-specificity of codon usage [J]. Nucl Acid Res, 37(21): 7014-7023.

    • NIE XJ, DENG PC, FENG KW, et al. , 2014. Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family [J]. Plant Mol Biol Rep, 32(4): 828-840.

    • NYLANDER J, 2004. MrModeltest v2. Program distributed by the author [J]. Bioinformatics, 24: 581-583.

    • QIAN RJ, YE YJ, HU QD, et al. , 2022. Complete chloroplast genome of Gladiolus gandavensis (Gladiolus) and genetic evolutionary analysis [J]. Genes, 13(9): 1599.

    • QU XJ, MOORE MJ, LI DZ, et al. , 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes [J]. Plant Meth, 15(1): 50.

    • RAN R, 2022. Comparison of chloroplast genomes and phylogenetic analysis of 5 Artemisia in north China [D]. Hohhot: Inner Mongolia Agricultural University: 1-48. [冉然, 2022. 北方5种蒿属植物叶绿体基因组比较与系统进化分析 [D]. 呼和浩特: 内蒙古农业大学: 1-48. ]

    • RICE P, LONGDEN I, BLEASBY A, 2000. EMBOSS: the european molecular biology open software suite [J]. Trends Genet, 16(6): 276-277.

    • RONQUIST F, TESLENKO M, MARK PVD, et al. , 2012. MrBayes 3. 2: efficient Bayesian phylogenetic inference and model choice across a large model space [J]. Syst Biol, 61(3): 539-542.

    • ROZAS J, FERRER-MATA A, SANCHEZ-DELBARRIO JC, et al. , 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets [J]. Mol Biol Evol, 34(12): 3299-3302.

    • SHAHZADI I, ADBULLAH, MEHMOOD F, et al. , 2020. Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae [J]. Genomics, 112(2): 1454-1463.

    • SHAW J, LICKEY EB, SCHILLING EE, et al. , 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare Ⅲ [J]. Amer J Bot Mar, 94(3): 275-288.

    • SHEN XF, WU ML, LIAO BS, et al. , 2017. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua [J]. Molecules, 22(8): 1330.

    • SHEN ZF, LU TQ, ZHANG ZR, et al. , 2021. Condon preference chloroplast genomes of Drynaria [J]. Guihaia, 41(2): 266-273. [沈宗芳, 陆添权, 张志荣, 等, 2021. 槲蕨属叶绿体基因组密码子偏好性分析 [J]. 广西植物, 41(2): 266-273. ]

    • SONG WC, CHEN ZM, SHI WB, et al. , 2022. Comparative analysis of complete chloroplast genomes of nine species of Litsea (Lauraceae): hypervariable regions, positive selection, and phylogenetic relationships [J]. Genes, 13(9): 1550.

    • WANG F, ZHAO WZ, DONG ZH, et al. , 2022. Analysis of chloroplast genome characteristics of Prinsepia [J]. Chin J Trop Crop, 43(9): 1759-1770. [王飞, 赵文植, 董章宏, 等, 2022. 扁核木属植物叶绿体基因组特征分析 [J]. 热带作物学报, 43(9): 1759-1770. ]

    • WANG F, ZHAO WZ, DONG ZH, et al. , 2023. Analysis of the chloroplast genome characteristics of 6 species of Yucca [J]. Bull Bot Res, 43(1): 109-119. [王飞, 赵文植, 董章宏, 等, 2023. 丝兰属6种植物叶绿体基因组特征分析 [J]. 植物研究, 43(1): 109-119. ]

    • WANG J, HE WC, XIANG KL, et al. , 2023. Advances in plant phylogeny in the genome era [J]. J Zhejiang A & F Univ, 40(1): 227-236. [王杰, 贺文闯, 向坤莉, 等, 2023. 基因组时代的植物系统发育研究进展 [J]. 浙江农林大学学报, 40(1): 227-236. ]

    • WANG ZK, LIU Y, ZHENG HY, et al. , 2023. Comparative analysis of codon usage patterns in nuclear and chloroplast genome of Dalbergia (Fabaceae) [J]. Genes, 14(5): 1110.

    • WICK RR, SCHULTZ MB, ZOBEL J, et al. , 2015. Bandage: interactive visualization of de novo genome assemblies [J]. Bioinformatics, 31(20): 3350-3352.

    • WU LW, NIE LP, XU ZC, et al. , 2020. Comparative and phylogenetic analysis of the complete chloroplast genomes of three Paeonia Section Moutan species (Paeoniaceae) [J]. Front Genet, 11: 980.

    • YU JY, XIA MZ, WANG YC, et al. , 2022. Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae) [J]. Biologia, 77(4): 915-930.

    • ZHANG DJ, REN J, JIANG H, et al. , 2023. Comparative and phylogenetic analysis of the complete chloroplast genomes of six Polygonatum species (Asparagaceae) [J]. Sci Rep, 13(1): 7237.

    • ZHANG MY, ZHANG YQ, LI YM, et al. , 2021. Complete plastid genomes of Bupleurum chinense DC. and B. boissieuanum H. Wolff, with comparative and phylogenetic analyses of medicinal Bupleurum species [J]. Acta Pharm Sin, 56(2): 618-629. [张明英, 张雨曲, 李依民, 等, 2021. 北柴胡、紫花阔叶柴胡叶绿体全基因组解析及柴胡属药用植物叶绿体基因组比较与系统发育分析 [J]. 药学学报, 56(2): 618-629. ]

    • ZHANG RZ, ZHANG L, WANG W, et al. , 2018. Differences in codon usage bias between photosynthesis-related genes and genetic system-related genes of chloroplast genomes in cultivated and wild solanum species [J]. Int J Mol Sci, 19(10): 3142.

    • ZHOU LJ, SANG XQ, SUN YY, et al. , 2012. Pesticidal activities and active ingredients of Artemisia [J]. Acta Agric Univ Jiangxi, 34(4): 699-705. [周利娟, 桑晓清, 孙永艳, 等, 2012. 蒿属植物的农药活性及其有效成分 [J]. 江西农业大学学报, 34(4): 699-705. ]

    • ZHU TT, ZHANG L, CHEN WS, et al. , 2017. Analysis of chloroplast genomes in 1342 plants [J]. Genomics Appl Biol, 36(10): 4323-4333. [朱婷婷, 张磊, 陈万生, 等, 2017. 1342个植物叶绿体基因组分析 [J]. 基因组学与应用生物学, 36(10): 4323-4333. ]

  • 参考文献

    • AHAMEETHUNISA AR, HOPPER W, 2012. In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora [J]. Ann Clin Microbiol Antimicrob, 11(1): 30-36.

    • AMIRYOUSEFI A, HYVONEN J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030-3031.

    • BEIER S, THIEL T, MUNCH T, et al. , 2017. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 33(16): 2583-2585.

    • BISHT D, KUMAR D, KUMAR D, et al. , 2021. Phytochemistry and pharmacological activity of the genus artemisia [J]. Arch Pharm Res, 44(5): 439-474.

    • BORA KS, SHARMA A, 2011. The genus Artemisia: a comprehensive review [J]. Pharm Biol, 49(1): 101-109.

    • FAN SJ, GUO XX, 2022. Advances in research and application of plant chloroplast genome [J]. J Shandong Norm Univ (Nat Sci Ed), 37(1): 22-31. [樊守金, 郭秀秀, 2022. 植物叶绿体基因组研究及应用进展 [J]. 山东师范大学学报(自然科学版), 37(1): 22-31. ]

    • GREINER S, LEHWARK P, BOCK R, 2019. OrganellarGenomeDRAW (OGDRAW) version 1. 3. 1: expanded toolkit for the graphical visualization of organellar genomes [J]. Nucl Acid Res, 47(W1): 59-64.

    • HOBBS CR, BALDWIN BG, 2013. Asian origin and upslope migration of Hawaiian Artemisia (Compositae-Anthemideae) [J]. J Biogeogr, 40: 442-454.

    • IRUM S, AHMED H, MIRZA B, et al. , 2017. In vitro and in vivo anthelmintic activity of extracts from Artemisia parviflora and A. sieversiana [J]. Helminthologia, 54(3): 218-224.

    • JIAO BH, CHEN C, WEI M, et al. , 2023. Phylogenomics and morphological evolution of the mega-diverse genus Artemisia (Asteraceae: Anthemideae): implications for its circumscription and infrageneric taxonomy [J]. Ann Bot, 131(5): 867-883.

    • JIN GZ, LI WJ, SONG F, et al. , 2023. Comparative analysis of complete Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) chloroplast genomes: insights into structural divergence and phylogenetic relationships [J]. BMC Plant Biol, 23(1): 136.

    • JIN JJ, YU WB, YANG JB, et al. , 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J]. Genome Biol, 21(1): 241.

    • KATOH K, MISAWA K, KUMA K, et al. , 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform [J]. Nucl Acid Res, 30(14): 3059-3066.

    • KAUR S, PANESAR PS, BERA MB, et al. , 2015. Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review [J]. Crit Rev Food Sci Nutr, 55(1): 41-49.

    • KEARSE M, MOIR R, WILSON A, et al. , 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 28(12): 1647-1649.

    • KIM GB, LIM CE, KIM JS, et al. , 2020. Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: insights into evolutionary divergence and phylogenomic implications [J]. BMC Genomics, 21(1): 415-431.

    • KUMAR S, NEI M, DUDLEY J, et al. , 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences [J]. Brief Bioinform, 9(4): 299-306.

    • KURTZ S, CHOUDHURI JV, OHLEBUSCH E, et al. , 2001. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucl Acid Res, 29(22): 4633-4642.

    • LAN ZH, TIAN XF, SHI YH, et al. , 2022. Chloroplast genome structure characteristics and phylogenetic analysis of Artemisia indica [J]. Chin J Chin Mat Med, 47(22): 6058-6065. [兰朝辉, 田徐芳, 师玉华, 等, 2022. 五月艾Artemisia indica叶绿体基因组结构及系统发育分析 [J]. 中国中药杂志, 47(22): 6058-6065. ]

    • LI HT, YI TS, GAO LM, et al. , 2019. Origin of angiosperms and the puzzle of the Jurassic gap [J]. Nat Plants, 5(5): 461-470.

    • LIN CH, HAN JY, YAN XL, 2023. Application and prospect of chloroplast genome [J/OL]. Mol Plant Breed: 1-7 [2023-07-03]. https: //kns. cnki. net/kcms2/detail/46. 1068. S. 20230703. 1048. 002. html. [林楚航, 韩俊艳, 闫小玲, 2023. 叶绿体基因组的应用及前景展望 [J/OL] . 分子植物育种: 1-7 [2023-07-03]. https: //kns. cnki. net/kcms2/detail/46. 1068. S. 20230703. 1048. 002. html. ]

    • LIN R, LIN YR, 1991. Flora Reipublicae Popularis Sinicae: Vol. 76 [M]. Beijing: Science Press: 243. [林镕, 林有润, 1991. 中国植物志: 第七十六卷 [M]. 北京: 科学出版社: 243. ]

    • LIN YR, 1995. On the floristics of Artemisia L. in the world [J]. Bull Bot Res, 15(1): 1-37. [林有润, 1995. 论世界蒿属植物区系 [J]. 植物研究, 15(1): 1-37. ]

    • LIU C, LÜ YQ, SHI ZL, et al. , 2023. Characteristics of chloroplast genomes and phylogenetic analysis of Artemisia species [J]. J NW For Univ, 38(3): 78-86. [刘潮, 吕雁秋, 施枝丽, 等, 2023. 蒿属植物叶绿体基因组特征及进化 [J]. 西北林学院学报, 38(3): 78-86. ]

    • LIU J, ZHANG HQ, FAN X, et al. , 2012. Phylogenetic relationships and maternal donor of Hystrix and Leymus species as revealed by chloroplast atpB-rbcL sequences [J]. Acta Pratac Sin, 21(5): 77-85. [刘静, 张海琴, 凡星, 等, 2012. 基于叶绿体atpB-rbcL序列探讨猬草属和赖草属植物的系统发育和母系起源 [J]. 草业学报, 21(5): 77-85. ]

    • LIU T, JI YH, 2009. psbA-trnH sequence analysis from chloroplast on medicinal plants of Artemisia [J]. Chin Agric Sci Bull, 25(12): 46-49. [刘涛, 纪运恒, 2009. 蒿属药用植物叶绿体上的psbA-trnH序列分析 [J]. 中国农学通报, 25(12): 46-49. ]

    • LIU Y, HUO NX, DONG LL, et al. , 2013. Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants [J]. PLoS ONE, 8(2): e57533.

    • LU QF, HUANG ZH, LUO WH, 2021. Characterization of complete chloroplast genome in Firmiana kwangsiensis and F. danxiaensis with extremely small populations [J]. Biodivers Sci, 29(5): 586-595. [陆奇丰, 黄至欢, 骆文华, 2021. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征 [J]. 生物多样性, 29(5): 586-595. ]

    • LU QF, LUO WH, 2023. Analysis of codon usage bias in chloroplast genome of Begonia guangxiensis [J/OL]. Mol Plant Breed: 1-20 [2023-09-05]. https: //link. cnki. net/urlid/46. 1068. S. 20230905. 0920. 002. [陆奇丰, 骆文华, 2023. 广西秋海棠叶绿体基因组密码子偏好性分析 [J/OL]. 分子植物育种: 1-20 [2023-09-05]. https: //link. cnki. net/urlid/46. 1068. S. 20230905. 0920. 002. ]

    • MALIK S, VITALES D, HAYAT MQ, et al. , 2017. Phylogeny and biogeography of Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) [J]. Taxon, 66(4): 934-952.

    • MAO LY, HUANG QW, LONG LY, et al. , 2022. Comparative analysis of codon usage bias in chloroplast genomes of seven Nymphaea species [J]. J NW For Univ, 37(2): 98-107. [毛立彦, 黄秋伟, 龙凌云, 等, 2022. 7种睡莲属植物叶绿体基因组密码子偏好性分析 [J]. 西北林学院学报, 37(2): 98-107. ]

    • MASUDA Y, YUKAWA T, KONDO K, 2009. Molecular phylogenetic analysis of members of Chrysanthemum and its related genera in the tribe Anthemideae, the Asteraceae in East Asia on the basis of the internal transcribed spacer (ITS) region and the external transcribed spacer (ETS) region of nrDNA [J]. Chromosome Bot, 4(2): 25-36.

    • MAYOR C, BRUDNO M, SCHWARTZ JR, et al. , 2000. VISTA: visualizing global DNA sequence alignments of arbitrary length [J]. Bioinformatics, 16 (11): 1046-1047.

    • MCARTHUR ED, POPE CL, FREEMAN DC, 1981. Chromosomal studies of subgenus Tridentatae of Artemisia: evidence for autopolyploidy [J]. Am J Bot, 68(5): 589-605.

    • MCINERNEY JO, 1998. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi [J]. Proc Natl Acad Sci USA, 95(18): 10698-10703.

    • NAJAFABADI HS, GOODARZI H, SALAVATI R, 2009. Universal function-specificity of codon usage [J]. Nucl Acid Res, 37(21): 7014-7023.

    • NIE XJ, DENG PC, FENG KW, et al. , 2014. Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family [J]. Plant Mol Biol Rep, 32(4): 828-840.

    • NYLANDER J, 2004. MrModeltest v2. Program distributed by the author [J]. Bioinformatics, 24: 581-583.

    • QIAN RJ, YE YJ, HU QD, et al. , 2022. Complete chloroplast genome of Gladiolus gandavensis (Gladiolus) and genetic evolutionary analysis [J]. Genes, 13(9): 1599.

    • QU XJ, MOORE MJ, LI DZ, et al. , 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes [J]. Plant Meth, 15(1): 50.

    • RAN R, 2022. Comparison of chloroplast genomes and phylogenetic analysis of 5 Artemisia in north China [D]. Hohhot: Inner Mongolia Agricultural University: 1-48. [冉然, 2022. 北方5种蒿属植物叶绿体基因组比较与系统进化分析 [D]. 呼和浩特: 内蒙古农业大学: 1-48. ]

    • RICE P, LONGDEN I, BLEASBY A, 2000. EMBOSS: the european molecular biology open software suite [J]. Trends Genet, 16(6): 276-277.

    • RONQUIST F, TESLENKO M, MARK PVD, et al. , 2012. MrBayes 3. 2: efficient Bayesian phylogenetic inference and model choice across a large model space [J]. Syst Biol, 61(3): 539-542.

    • ROZAS J, FERRER-MATA A, SANCHEZ-DELBARRIO JC, et al. , 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets [J]. Mol Biol Evol, 34(12): 3299-3302.

    • SHAHZADI I, ADBULLAH, MEHMOOD F, et al. , 2020. Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae [J]. Genomics, 112(2): 1454-1463.

    • SHAW J, LICKEY EB, SCHILLING EE, et al. , 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare Ⅲ [J]. Amer J Bot Mar, 94(3): 275-288.

    • SHEN XF, WU ML, LIAO BS, et al. , 2017. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua [J]. Molecules, 22(8): 1330.

    • SHEN ZF, LU TQ, ZHANG ZR, et al. , 2021. Condon preference chloroplast genomes of Drynaria [J]. Guihaia, 41(2): 266-273. [沈宗芳, 陆添权, 张志荣, 等, 2021. 槲蕨属叶绿体基因组密码子偏好性分析 [J]. 广西植物, 41(2): 266-273. ]

    • SONG WC, CHEN ZM, SHI WB, et al. , 2022. Comparative analysis of complete chloroplast genomes of nine species of Litsea (Lauraceae): hypervariable regions, positive selection, and phylogenetic relationships [J]. Genes, 13(9): 1550.

    • WANG F, ZHAO WZ, DONG ZH, et al. , 2022. Analysis of chloroplast genome characteristics of Prinsepia [J]. Chin J Trop Crop, 43(9): 1759-1770. [王飞, 赵文植, 董章宏, 等, 2022. 扁核木属植物叶绿体基因组特征分析 [J]. 热带作物学报, 43(9): 1759-1770. ]

    • WANG F, ZHAO WZ, DONG ZH, et al. , 2023. Analysis of the chloroplast genome characteristics of 6 species of Yucca [J]. Bull Bot Res, 43(1): 109-119. [王飞, 赵文植, 董章宏, 等, 2023. 丝兰属6种植物叶绿体基因组特征分析 [J]. 植物研究, 43(1): 109-119. ]

    • WANG J, HE WC, XIANG KL, et al. , 2023. Advances in plant phylogeny in the genome era [J]. J Zhejiang A & F Univ, 40(1): 227-236. [王杰, 贺文闯, 向坤莉, 等, 2023. 基因组时代的植物系统发育研究进展 [J]. 浙江农林大学学报, 40(1): 227-236. ]

    • WANG ZK, LIU Y, ZHENG HY, et al. , 2023. Comparative analysis of codon usage patterns in nuclear and chloroplast genome of Dalbergia (Fabaceae) [J]. Genes, 14(5): 1110.

    • WICK RR, SCHULTZ MB, ZOBEL J, et al. , 2015. Bandage: interactive visualization of de novo genome assemblies [J]. Bioinformatics, 31(20): 3350-3352.

    • WU LW, NIE LP, XU ZC, et al. , 2020. Comparative and phylogenetic analysis of the complete chloroplast genomes of three Paeonia Section Moutan species (Paeoniaceae) [J]. Front Genet, 11: 980.

    • YU JY, XIA MZ, WANG YC, et al. , 2022. Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae) [J]. Biologia, 77(4): 915-930.

    • ZHANG DJ, REN J, JIANG H, et al. , 2023. Comparative and phylogenetic analysis of the complete chloroplast genomes of six Polygonatum species (Asparagaceae) [J]. Sci Rep, 13(1): 7237.

    • ZHANG MY, ZHANG YQ, LI YM, et al. , 2021. Complete plastid genomes of Bupleurum chinense DC. and B. boissieuanum H. Wolff, with comparative and phylogenetic analyses of medicinal Bupleurum species [J]. Acta Pharm Sin, 56(2): 618-629. [张明英, 张雨曲, 李依民, 等, 2021. 北柴胡、紫花阔叶柴胡叶绿体全基因组解析及柴胡属药用植物叶绿体基因组比较与系统发育分析 [J]. 药学学报, 56(2): 618-629. ]

    • ZHANG RZ, ZHANG L, WANG W, et al. , 2018. Differences in codon usage bias between photosynthesis-related genes and genetic system-related genes of chloroplast genomes in cultivated and wild solanum species [J]. Int J Mol Sci, 19(10): 3142.

    • ZHOU LJ, SANG XQ, SUN YY, et al. , 2012. Pesticidal activities and active ingredients of Artemisia [J]. Acta Agric Univ Jiangxi, 34(4): 699-705. [周利娟, 桑晓清, 孙永艳, 等, 2012. 蒿属植物的农药活性及其有效成分 [J]. 江西农业大学学报, 34(4): 699-705. ]

    • ZHU TT, ZHANG L, CHEN WS, et al. , 2017. Analysis of chloroplast genomes in 1342 plants [J]. Genomics Appl Biol, 36(10): 4323-4333. [朱婷婷, 张磊, 陈万生, 等, 2017. 1342个植物叶绿体基因组分析 [J]. 基因组学与应用生物学, 36(10): 4323-4333. ]