en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

修志莹(2000—),学士,研究方向为植物分子进化,(E-mail)2407271335@qq.com。

通讯作者:

杨颜慈,博士,副教授,研究方向为植物分子进化与分子生态,(E-mail)yycjyl@163.com。

中图分类号:Q943;Q949

文献标识码:A

文章编号:1000-3142(2024)09-1755-17

DOI:10.11931/guihaia.gxzw202307027

参考文献
BENSON G, 1999. Tandem repeats finder: a program to analyze DNA sequences [J]. Nucl Acid Res, 27(2): 573-580.
参考文献
BRAMLEY GL, FOREST F, DE KOK RP, 2009. Troublesome tropical mints: re-examining generic limits of Vitex and relations (Lamiaceae) in South East Asia [J]. Taxon, 58(2): 500-510.
参考文献
BREDENKAMP CL, BOTHA DJ, 1993. A synopsis of the genus Vitex L. (Verbenaceae) in southern Africa [J]. S Afr J Bot, 59(6): 611-622.
参考文献
CANTINO PD, 1992. Evidence for a polyphyletic origin of the Labiatae [J]. Ann Mo Bot Gard, 79(2): 361-379.
参考文献
CAUZ-SANTOS LA, DA COSTA ZP, CALLOT C, et al. , 2020. Repertory of rearrangements and the loss of an inverted repeat region in Passiflora chloroplast genomes [J]. Genome Biol Evol, 12(10): 1841-1857.
参考文献
CHEVREUX B, PFISTERER T, DRESCHER B, et al. , 2004. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs [J]. Genome Res, 14(6): 1147-1159.
参考文献
DARLING ACE, MAU B, BLATTNER FR, et al. , 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements [J]. Genome Res, 14(7): 1394-1403.
参考文献
DE KOK R, 2008. The genus Vitex (Labiatae) in the flora Malesiana region, excluding New Guinea [J]. Kew Bull, 63: 17-40.
参考文献
DENG W, WANG Y, LIU Z, et al. , 2014. HemI: a toolkit for illustrating heatmaps [J]. PLoS ONE, 9(11): e111988.
参考文献
DONG W, LIU J, YU J, et al. , 2012. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding [J]. PLoS ONE, 7(4): e35071.
参考文献
DOYLE JJ, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue [J]. Biol Pharm Bull, 19(1): 11-15.
参考文献
Editorial Committee of China Flora of Chinese Academy of Sciences, 1982. Flora Reipublicae Popularis Sinicae (Verbenaceae): Vol. 65 [M]. Beijing: Science Press: 131-150. [中国科学院中国植物志编辑委员会, 1982. 中国植物志 (马鞭草科): 第65卷 [M]. 北京: 科学出版社: 131-150. ]
参考文献
FAIRCLOTH BC, 2008. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design [J]. Mol Ecol Resour, 8(1): 92-94.
参考文献
Flora of China Editorial Committee, 1994. Flora of China: Verbenaceae (Vol. 17) [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press: 28-32.
参考文献
FRAZER KA, PACHTER L, POLIAKOV K, et al. , 2004. VISTA: Computational tools for comparative genomics [J]. Nucl Acid Res, 32(Suppl. 2): W273-W279.
参考文献
FU G, LIU Y, CARABALLO-ORTIZ MA, et al. , 2022. Characterization of the complete chloroplast genome of the dragonhead herb, Dracocephalum heterophyllum (Lamiaceae), and comparative analyses with related species [J]. Diversity, 14(2): 110.
参考文献
GENTALLAN RP, QUINONES KJO, BARTOLOME MCB, et al. , 2022. The complete chloroplast genome of Vitex trifolia L. (Lamiaceae) [J]. Mitochondrial DNA B, 7(7): 1316-1318.
参考文献
GENTALLAN RP, QUINONES KJO, BARTOLOME MCB, et al. , 2023. Characterization of the complete chloroplast genome of Vitex bicolor Willd. and its comparative analyses with other species belonging to the Vitex trifolia complex [J]. Plant Genet Resour-C, 21(1): 19-27.
参考文献
HAHN C, BACHMANN L, CHEVREUX B, 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads — a baiting and iterative mapping approach [J]. Nucl Acid Res, 41(13): e129.
参考文献
HARLEY RM, ATKINS S, BUDANTSEV AL, et al. , 2004. The families and genera of vascular plants: Labiatae [M]. Berlin: Springer Verlag: 167-275.
参考文献
HOLLINGSWORTH PM, FORREST LL, SPOUGE JL, et al. , 2009. A DNA barcode for land plants [J]. Proc Nat Acad Sci USA, 106(31): 12794-12797.
参考文献
HOLLINGSWORTH PM, GRAHAM SW, LITTLE DP, 2011. Choosing and using a plant DNA barcode [J]. PLoS ONE, 6: e19254.
参考文献
HUANG T, TANG M, CHEN XL, et al. , 2023. Comparison of chloroplast genomes and phylogenic analysis of four species of Quercus subg. Cyclobalanopsis [J]. Guihaia, 43 (4): 741-754. [黄婷, 唐梦, 陈晓丽, 等, 2023. 四种栎属青冈亚属植物叶绿体基因组特征及系统发育研究 [J]. 广西植物, 43(4): 741-754. ]
参考文献
JANGWAN JS, AQUINO RP, MENCHERINI T, et al. , 2013. Chemical constituents of ethanol extract of leaves and molluscicidal activity of crude extracts from Vitex trifolia Linn [J]. Herba Polonic, 59(4): 19-32.
参考文献
KAMAL N, MIO ASNI NS, ROZLAN INA, et al. , 2022. Traditional medicinal uses, phytochemistry, biological properties, and health applications of Vitex sp. [J]. Plants, 11(15): 1944.
参考文献
KARAGUZEL O, GIRMEN B, 2009. Morphological variations of chaste tree (Vitex agnus-castus) genotypes from southern Anatolia, Turkey [J]. New Zeal J Crop Hortic, 37(3): 253-261.
参考文献
KATOH K, STANDLEY DM, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Mol Biol Evol, 30(4): 772-780.
参考文献
KIKUCHI S, BEDARD J, HIRANO M, et al. , 2013. Uncovering the protein translocon at the chloroplast inner envelope membrane [J]. Science, 339: 571-574.
参考文献
KURTZ S, CHOUDHURI JV, OHLEBUSCH E, et al. , 2001. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucl Acid Res, 29(22): 4633-4642.
参考文献
LI B, CANTINO PD, OLMSTEAD RG, et al. , 2016. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification [J]. Sci Rep, 6(1): 34343.
参考文献
LI B, OLMSTEAD RG, 2017. Two new subfamilies in Lamiaceae [J]. Phytotaxa, 313(2): 222-226.
参考文献
LI G, ZHANG L, XUE P, 2021. Codon usage pattern and genetic diversity in chloroplast genomes of Panicum species [J]. Gene, 802: 145866.
参考文献
LIBRADO P, ROZAS J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data [J]. Bioinformatics, 25(11): 1451-1452.
参考文献
LU DZ, WANG JL, XIE L, 2015. Analysis on clustering and evolutionary trends of infraspecific taxa of Vitex negundo L. [J]. J Beijing For Univ, 37 (2): 55-58. [路端正, 王九丽, 谢磊, 2015. 黄荆种以下分类群的聚类与演化趋势分析 [J]. 北京林业大学学报, 37(2): 55-58. ]
参考文献
MARX HE, O′LEARY N, YUAN YW, et al. , 2010. A molecular phylogeny and classification of Verbenaceae [J]. Am J Bot, 97(10): 1647-1663.
参考文献
MUNIR AA, 1987. A taxonomic revision of the genus Vitex L. (Verbenaceae) in Australia [J]. J Adelaide Bot Gard, 31-79.
参考文献
NIROUMAND MC, HEYDARPOUR F, FARZAEI MH, 2018. Pharmacological and therapeutic effects of Vitex agnus-castus L. : A review [J]. Pharmacol Rev, 12(23): 103.
参考文献
POWELL W, MORGANTE M, ANDRE C, et al. , 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis [J]. Mol Breed, 2(3): 225-238.
参考文献
REFULIO-RODRIGUEZ NF, OLMSTEAD RG, 2014. Phylogeny of Lamiidae [J]. Am J Bot, 101(2): 287-299.
参考文献
RONQUIST F, HUELSENBECK JP, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 19(12): 1572-1574.
参考文献
SCHÄFERHOFF B, FLEISCHMANN A, FISCHER E, et al. , 2010. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences [J]. BMC Evol Biol, 10: 352.
参考文献
SHARP PM, LI WH, 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms [J]. J Mol Evol, 24(1): 28-38.
参考文献
STAMATAKIS A, 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models [J]. Bioinformatics, 22(21): 2688-2690.
参考文献
SUN XH, 2020. Floral biology characteristics and mating system of Vitex negundo L. var. heterophylla (Franch. ) Rehder. [D]. Jinan: Shandong University. [孙小涵, 2020. 荆条开花生物学特性和交配系统研究 [D]. 济南: 山东大学. ]
参考文献
SUN Y, YANG H, ZHANG Q, et al. , 2019. Genetic diversity and its conservation implications of Vitex rotundifolia (Lamiaceae) populations in East Asia [J]. PeerJ, 7: e6194.
参考文献
TAMURA K, PETERSON D, PETERSON N, et al. , 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 28(10): 2731-2739.
参考文献
TIMME RE, KUEHL JV, BOORE JL, et al. , 2007. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats [J]. Am J Bot, 94(3): 302-312.
参考文献
VISHWANATHAN AS, BASAVARAJU RA, 2010. A review on Vitex negundo L. : A medicinally important plant [J]. Eur J Soil Biol, 3(1): 30-42.
参考文献
WENG ML, BLAZIER JC, GOVINDU M, et al. , 2014. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats and nucleotide substitution rates [J]. Mol Biol Evol, 31(3): 645-659.
参考文献
XIN HM, 2005. The chemical constituents of anti-PMS activity, intraspecific variation and quality evaluation of Fructus Viticis [D]. Shanghai: Second Military Medical University. [辛海量, 2005. 蔓荆子抗PMS物质基础、种内变异和品质评价研究 [D]. 上海: 第二军医大学. ]
参考文献
XU C, CAI XN, CHEN QZ, et al. , 2011. Factors affecting synonymous codon usage bias in chloroplast genome of Oncidium Gower Ramsey [J]. Evol Bioinform, 7: 271-278.
参考文献
YANG YC, JIA Y, ZHAO YL, et al. , 2022. Comparative chloroplast genomics provides insights into the genealogical relationships of endangered Tetraena mongolica and the chloroplast genome evolution of related Zygophyllaceae species [J]. Front Genet: 13: 1026919.
参考文献
YANG YC, ZHOU T, DUAN D, et al. , 2016. Comparative analysis of the complete chloroplast genomes of five Quercus species [J]. Front Plant Sci, 7: 959.
参考文献
YANG YC, ZHOU T, QIAN Z, et al. , 2021. Phylogenetic relationships in Chinese oaks (Fagaceae, Quercus): Evidence from plastid genome using low-coverage whole genome sequencing [J]. Genomics, 113(3): 1438-1447.
参考文献
YI RZ, 2022. Effects of pruning and paclobutrazol on ornamental qualities of Vitex agnus-castus [D]. Shanghai: Shanghai University of Applied Technology. [易仁知, 2022. 修剪和多效唑对穗花牡荆观赏品质的影响 [D]. 上海: 上海应用技术大学. ]
参考文献
YU F, HAN M, 2021. Analysis of codon usage bias in the chloroplast genome of alfalfa (Medicago sativa) [J]. Guihaia, 41 (12): 2069-2076. [喻凤, 韩明, 2021. 紫花苜蓿叶绿体基因组密码子偏好性分析 [J]. 广西植物, 41(12): 2069-2076. ]
参考文献
ZHANG CY, LIU TJ, MO XL, et al. , 2020. Comparative analyses of the chloroplast genomes of patchouli plants and their relatives in Pogostemon (Lamiaceae) [J]. Plants, 9(11): 1497.
参考文献
ZHANG L, WANG S, SU C, et al. , 2021. Comparative chloroplast genomics and phylogenetic analysis of Zygophyllum (Zygophyllaceae) of China [J]. Front Plant Sci, 12: 723622.
参考文献
ZHAO F, CHEN YP, SALMAKI Y, et al. , 2021. An updated tribal classification of Lamiaceae based on plastome phylogenomics [J]. BMC Biol, 19(1): 1-27.
参考文献
ZHAO F, DREW BT, CHEN YP, et al. , 2020a. The chloroplast genome of Salvia: Genomic characterization and phylogenetic analysis [J]. Int J Plant Sci, 181(8): 812-830.
参考文献
ZHAO F, LI B, DREW BT, et al. , 2020b. Leveraging plastomes for comparative analysis and phylogenomic inference within Scutellarioideae (Lamiaceae) [J]. PLoS ONE, 15(5): e0232602.
参考文献
ZHU A, GUO WH, GUPTA S, et al. , 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates [J]. New Phytol, 209(4): 1747-1756.
目录contents

    摘要

    牡荆属(Vitex L.)广布于热带和亚热带地区,多为乔木或灌木,包含众多具有药用价值、观赏价值和生态价值的植物。为了解牡荆属的叶绿体基因组特征、系统位置及种间关系,该研究从头组装、注释获得穗花牡荆(V. agnus-castus)的叶绿体基因组,与牡荆属公布的11条叶绿体基因组序列进行基因组结构、密码子偏好性、高变区和重复序列分析,并进行系统发育分析。结果表明:(1)穗花牡荆叶绿体基因组呈典型的四段式结构,全长154444 bp,其中大单拷贝(LSC)区、小单拷贝(SSC)区、反向重复(IR)区长度分别是85229、17915、51400 bp,编码132个基因,包含87个蛋白编码基因、37个tRNA基因和8个rRNA基因。(2)牡荆属12个叶绿体基因组在长度、反向重复区边界位置、编码的基因及数目、GC含量方面均具有高保守性。(3)共检测到31个高频密码子和6个共有最优密码子,ENC-plot、PR2-plot和中性绘图分析表明密码子偏好性主要受自然选择的影响。(4)共检测到14个叶绿体基因组高变区和519个简单重复序列。(5)分子系统发育结果支持牡荆属隶属于唇形科牡荆亚科,而非马鞭草科。另外,系统发育推断也为存在争议的蔓荆(V. trifolia)、V. bicolor和单叶蔓荆(V. rotundifolia)之间关系的理解提供一定参考,建议将单叶蔓荆作为独立的种。该研究结果不仅丰富了穗花牡荆的遗传资源信息,增加了对牡荆属叶绿体基因组的理解,提供了牡荆属群体遗传学研究的候选分子标记,还证明了叶绿体基因组序列在牡荆属系统发育重建中的有效性。

    Abstract

    Vitex L. is widely distributed in tropical and subtropical areas, mostly as woody trees or shrubs, and contains many plants with medicinal, ornamental and ecological values. To understand the characteristics of Vitex chloroplast genomes, the phylogenetic position and interspecific relationships of the genus, the chloroplast genome sequence of V. agnus-castus was firstly obtained by de novo assembly and annotation, the genome structure, codon preference, high variation region and repeat sequence were then analyzed with 11 published chloroplast genome sequences of Vitex, and then phylogenetic analysis was conducted. The results were as follows: (1) The chloroplast genome of V. agnus-castus was a typically quadripartite structure with a total length of 154444 bp, in which the length of the large single copy (LSC) region, the small single copy (SSC) region and the inverted repeat (IR) region were 85229, 17915 and 51400 bp, respectively. The chloroplast genome encoded 132 genes, including 87 protein-coding genes, 37 tRNA genes and 8 rRNA genes. (2) The 12 chloroplast genomes of Vitex were highly conserved in terms of genome length, boundary position of IR region, number of encoded genes and GC content. (3) A total of 31 high frequency codons and six common optimal codons were detected in 12 chloroplast genomes of Vitex. Further, the results of ENC-plot, PR2-plot and neutral plot analysis indicated that codon preference was mainly influenced by natural selection. (4) In addition, a total of 14 highly variable regions and 519 simple sequence repeats (SSRs) were detected in the 12 chloroplast genomes of Vitex. (5) The molecular phylogenetic inference in this study supported that Vitex belonged to the subfamily Viticoideae (Lamiaceae), not Verbenaceae. Moreover, phylogenetic inference also provided some understanding of the controversial relationships among V. trifolia, V. bicolor and V. rotundifolia, suggesting that V. rotundifolia was considered as a separate species. This study not only enriches the information of genetic resources of V. agnus-castus, increases the understanding of the chloroplast genomes of Vitex, provides candidate molecular markers for population genetics studies of Vitex, but also proves the effectiveness of chloroplast genome sequence in the phylogenetic reconstruction of Vitex.

  • 牡荆属(Vitex L.)隶属于唇形科(Lamiaceae)牡荆亚科(Viticoideae),包含的植物约250种,主要分布在热带区域,少数分布在北半球温带地区(Bramley et al.,2009;Li et al.,2016)。在许多国家,该属的穗花牡荆(V. agnus-castus)、黄荆(V. negundo)、蔓荆(V. trifolia)等入药历史悠久,广泛用于治疗妇产科疾病、炎症性疾病、风湿性疼痛、癌症等(Vishwanathan &Basavaraju,2010; Jangwan et al.,2013; Niroumand et al.,2018; Kamal et al.,2022)。除药用价值外,该属植物还具有观赏价值、经济价值和生态价值,如穗花牡荆花色美丽且花期较长,观赏效果佳,是良好的园林植物(Karaguzel &Girmen,2009),蔓荆、荆条(V. negundo var. heterophylla)和单叶蔓荆(V. rotundifolia)是水土保持、防风固沙的良好树种(辛海量,2005;Sun et al.,2019;孙小涵,2020),穗花牡荆和荆条是良好的蜜源植物(孙小涵,2020;易仁知,2022)。

  • 唇形科一直被认为是由马鞭草科类的祖先进化而来,长久以来,唇形科和马鞭草科(Verbenaceae)的界定发生了显著变化,一些学者将马鞭草科中的莸亚科(Caryopteridoideae)、Chloanthoideae亚科、牡荆亚科和Monochileae族,约50个属划分到唇形科(Cantino,1992; Li et al.,2016)。近年的分子系统发育研究显示唇形科包含12个亚科,230余属,7 000种植物,是被子植物的第六大科(Li et al.,2016;Zhao et al.,2021);马鞭草科则仅保留马鞭草亚科的大多数物种,包含8族,约35属,1 000种(Marx et al.,2010)。

  • 牡荆属是上述系统位置发生了变化的植物类群之一。早期一些学者可能因牡荆属植物的木本或灌木、肉质果实等特征而将其划分在马鞭草科(Munir,1987),《中国植物志》同样采用该分类系统(中国科学院中国植物志编辑委员会,1982);近来许多分子研究表明与狭义马鞭草科相比,牡荆属与传统唇形科有更近的亲缘关系,并提议将其从马鞭草科划分到唇形科(Schäferhoff et al.,2010; Refulio-Rodriguez &Olmstead,2014; Li et al.,2016)。另外,牡荆属的界定存在一定争议,如Li等(2016)认为应将Harley等(2004)分类系统中的属ViticipremnaTsoongiaParaVitexPetitia归并到牡荆属,Bramley等(2009)建议将Harley等(2004)分类系统中的属ViticipremnaTsoongiaParaVitex归并到牡荆属。

  • 已有的研究虽加深了对牡荆亚科及牡荆属系统关系的理解,但受到传统分子标记提供的信息位点有限的影响,属间及属内的一些系统关系仍存在争议。高通量测序技术可为探究系统关系提供更多的分子数据,这使得叶绿体基因组数据广泛用于探究不同分类单元的系统发育关系并获得高分辨率(Cauz-Santos et al.,2020;Yang et al.,2021;Zhao et al.,2021)。因此,本研究从头组装注释获得穗花牡荆的完整叶绿体基因组,与牡荆属所有公布的11条完整准确的叶绿体基因组进行密码子偏好性分析和比较分析,如反向重复(inverted repeat,IR)区收缩扩张分析、mVISTA分析、重排分析,并且选择35条代表唇形科所有12个亚科和马鞭草科3个族的叶绿体基因组进行系统发育分析,拟探究以下问题:(1)牡荆属叶绿体基因组的结构特征;(2)牡荆属叶绿体基因组的密码子偏好性;(3)牡荆属的系统位置及其种间关系推断。以期增加对牡荆属叶绿体基因组的理解,为重建牡荆属全面系统发育关系提供一定思路。

  • 1 材料与方法

  • 1.1 植物材料

  • 穗花牡荆样品采集自西安植物园(陕西,西安),采集的植物叶片硅胶干燥保存。目前,NCBI(https://www.ncbi.nlm.nih.gov)共公布了牡荆属9种2变种的16条叶绿体基因组序列,我们选取并下载其中11条完整序列以代表这9种2变种,这12种/变种分别是穗花牡荆、V. bicolor、光叶牡荆(V. glabrata)、黄荆、牡荆(V. negundo var. cannabifolia)、荆条、V. parviflora、山牡荆(V. quinata)、单叶蔓荆、蔓荆、越南牡荆(V. tripinnata)和滇牡荆(V. yunnanensis)。

  • 1.2 DNA提取、测序和组装注释

  • 采用改良的CTAB法提取穗花牡荆叶片的总DNA(Doyle,1987)。使用Illumina Hiseq平台完成高通量测序。总DNA提取和高通量测序工作均委托百迈克生物科技公司完成。使用MIRA v.4.0.2(Chevreux et al.,2004)和MITObim v.1.7(Hahn et al.,2013) 组装叶绿体基因组序列;在组装过程中,近缘种越南牡荆的叶绿体基因组作为参考基因组。叶绿体基因组注释则使用GENEIOUS v.12(Biomatters Ltd.,Auckland,New Zealand)。使用在线程序OGDRAW(http://ogdraw.mpimp-golm.mpg.de/index.shtml)绘制穗花牡荆的叶绿体基因组图谱。

  • 1.3 牡荆属叶绿体基因组比较分析

  • 1.3.1 IR区收缩扩张分析、mVISTA分析和重排分析

  • 为检测可能的IR区收缩扩张事件,我们分析了12个叶绿体基因组的IR/SC边界位置。牡荆属12个叶绿体基因组的可视化比对结果由mVISTA程序(Frazer et al.,2004)获取,该分析以黄荆叶绿体基因组为参考。此外,使用Progressive Mauve v.2.4.0(Darling et al.,2004)检测12个叶绿体基因组中可能存在的重排事件,并使用拟南芥(Arabidopsis thaliana,GenBank accession number: NC_000932)和烟草(Nicotiana tabacum,GenBank accession number: Z00044)的叶绿体基因组作为参考。

  • 1.3.2 序列分化和高变区分析

  • 为评估牡荆属12个叶绿体基因组序列的分化水平,首先使用MAFFT v.7.520(Katoh &Standley,2013)进行叶绿体基因组序列比对,之后使用DnaSP v.5.0(Librado &Rozas,2009)分别计算完整叶绿体基因组、蛋白编码区和非编码区的变异位点数目以及核苷酸多态性(Pi)。为寻找牡荆属叶绿体基因组的高变区,使用DnaSP v.5.0进行滑动窗口分析(sliding window analysis)以计算Pi,其中窗口长度和步幅长度分别设置为600 bp和200 bp。

  • 1.3.3 密码子偏好分析

  • 1.3.3.1 同义密码子分析

  • 相对同义密码子使用度(relative synonymous codon usage,RSCU)是密码子使用偏好的良好指标,RSCU值大于1是指该密码子使用较高,等于1是指该密码子没有使用偏好性,小于1是指该密码子使用较低(Sharp &Li,1986)。使用MEGA v.5.0(Tamura et al.,2011)计算牡荆属12个叶绿体基因组的RSCU值,之后使用HemI(Deng et al.,2014)制作密码子偏好热图。

  • 1.3.3.2 中性绘图分析

  • 对牡荆属12个叶绿体基因组进行中性绘图分析。中性图是以GC3值作为横坐标,GC12作为纵坐标进行散点图的绘制,插入y=x的函数图像。

  • 1.3.3.3 ENC-Plot分析

  • 以GC3值为横坐标,ENC值为纵坐标绘制散点图,并根据下方公式绘制标准曲线,标准曲线表示基因突变是密码子偏好性的决定因素,进一步分析突变压力对密码子偏好性的影响。

  • 计算公式:ENC=2+GC3+29/ [GC32+(1-GC3)2]。

  • 1.3.3.4 PR2-Plot分析

  • G3/(G3+C3)为横坐标,A3/(A3+T3)为纵坐标绘制散点图,通过中心点(A=T,C=G)发出的矢量,分析各核苷酸偏移的程度和方向。

  • 1.3.3.5 最优密码子分析

  • 选取RSCU>1的密码子为高频密码子,将提取的CDS基因的ENC值按照从低到高排列,从两端各自选取基因总数的10%(5条)建立高低表达库并计算RSCU值,2个库的△RSCU≥0.08(△RSCU=RSCU高表达-RSCU低表达)的密码子作为高表达密码子。将既为高频又为高表达的密码子定义为最优密码子。

  • 1.3.4 重复序列分析

  • 分别检测分布于12个叶绿体基因组序列中的散在重复(dispersed repeat)、串联重复(tandem repeat)和简单重复序列(simple sequence repeats,SSRs)。首先,使用REPuter(Kurtz et al.,2001)识别各种散在重复,包括正向(forward)、反向(reverse)、互补(complement)和回文(palindromic)重复;散在重复的重复单元长度需不少于30 bp且高于90%的相似性。其次,使用在线程序Tandem Repeats Finder(TRF)(Benson,1999)(默认参数)检测重复单元长度大于10 bp的串联重复。所有检测到的散在重复和串联重复都需手工校对,并去除冗余结果。最后,使用Msatcommander(Faircloth,2008)检测SSRs,单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸和六核苷酸重复的次数分别设置为不低于10、5、4、3、3和3。

  • 1.4 牡荆属系统关系分析

  • 为探究牡荆属的系统位置,根据近来的分子研究结果,系统发育分析包含了目前所有公布了可靠叶绿体基因组数据的牡荆属和马鞭草科物种,除牡荆亚科之外,在唇形科的11个亚科各随机选择1个物种,鉴于《中国植物志》中划分在马鞭草科的莸亚科、六苞藤亚科(Symphorematoideae)和牡荆亚科在近来的分子研究中均属于唇形科,我们对《中国植物志》中描述的这3个亚科14属进行叶绿体基因组数据查询,发现其中11个属公布了叶绿体基因组数据。最终,共有35条序列用于构建系统发育树,包含牡荆属10种、2变种,共12条叶绿体基因组序列,唇形科除牡荆亚科之外所有亚科的17个物种,即短柄野芝麻(Lamium album)、歧伞花(Cymaria dichotoma)、藏黄芩(Scutellaria kingiana)、冬红(Holmskioldia sanguinea)、膜萼藤(Hymenopyramis cana)、辣莸(Garrettia siamensis)、赪桐(Clerodendrum japonicum)、九味一枝蒿(Ajuga bracteosa)、蒙古莸(Caryopteris mongholica)、豆腐柴(Premna microphylla)、苦梓(Gmelina hainanensis)、柚木(Tectona grandis)、绒苞藤(Congea tomentosa)、毛楔翅藤(Sphenodesme mollis)、藏荆芥(Nepeta hemsleyana)、枇杷叶紫珠(Callicarpa kochiana)和Dasymalla teckiana的叶绿体基因组序列以及马鞭草科3个族的6个物种,即马樱丹(Lantana camara)、Lippia origanoidesAloysia citrodora、细叶美女樱(Glandularia tenera)、马鞭草(Verbena officinalis)和假连翘(Duranta erecta)的叶绿体基因组序列。此外,选择列当科(Orobanchaceae)的欧亚马先蒿(Pedicularis oederi)和返顾马先蒿(P. resupinata)为外类群。使用上述37条完整叶绿体基因组的比对序列分别构建最大似然(maximum likelihood,ML)树和贝叶斯(Bayesian inference,BI)树,ML树由RAxML v.7.2.8(Stamatakis,2006)构建,BI树由MrBayes v.3.1.2(Ronquist &Huelsenbeck,2003)构建。

  • 2 结果与分析

  • 2.1 叶绿体基因组特征

  • 本研究获得的穗花牡荆叶绿体基因组呈典型的四段式结构,全长154 544 bp,其中大单拷贝(large single copy,LSC)区、小单拷贝(small single copy,SSC)区、2个IR区长度分别是85 229、17 915、51 400 bp。共编码132个基因,包含87个蛋白编码基因、37个tRNA基因和8个rRNA基因(图1)。

  • 牡荆属12个叶绿体基因组均呈四段式结构。由表1可知,这些叶绿体基因组总长度在153 354~154 444 bp之间;LSC区长度在84 258~85 445 bp之间;SSC区长度在17 598~17 931 bp之间;IR区长度在51 106 bp~51 400 bp之间。总基因数在130~133个之间;GC含量在38.2%~38.4%之间。

  • 2.2 叶绿体基因组IR区收缩扩张和重排分析

  • IR区收缩扩张分析结果显示,牡荆属12个叶绿体基因组的LSC/IRa、IRa/SSC和边界位置较为稳定,而SSC/IRb和IRb/LSC边界位置则呈现出一定变化,如ycf1 3′端到SSC/IRb边界位置在V. parviflora中为264 bp,在牡荆中为1 080 bp,在剩余物种中为1 077 bp(图2)。牡荆属植物12条叶绿体基因组序列显示出保守的线性基因顺序,并未检测到重排事件(附图1)。

  • 图1 穗花牡荆叶绿体基因组图谱

  • Fig.1 Map of Vitex agnus-castus chloroplast genome

  • 2.3 叶绿体基因组的mVISTA分析和序列分化

  • mVISTA分析显示,牡荆属12个物种的叶绿体基因组具有高相似性,差异主要存在于非编码区,如rps16-trnQUUG)、ycf3-trnSGGA)、ndhF-rpl32-trnLUAG)(图3)。牡荆属12个叶绿体基因组全长比对长度为156 965 bp,包含3 087个变异位点、1 423个信息位点和598个插入缺失,核苷酸多态性(Pi)为0.005 69。另外,蛋白编码区显示出高保守性,具有最低的变异位点数目和Pi;反之,非编码区具有最高的变异位点数目和Pi(表2)。滑动窗口分析结果显示Pi在0~0.027 45之间,并检测到14个Pi大于0.015的高变区(trnH-psbArps16-trnQtrnS-trnGatpH-atpIpetN-psbMpetA-psbJpsbE-petLndhF-rpl32-trnLccsA-ndhD-psaCrps15-ycf1、ndhFndhAycf1)。14个高变区中的7个位于LSC区、7个位于SSC区。这些高变区中10个位于基因间隔区,剩余4个位于ndhFndhAycf1基因区(图4)。

  • 表1 牡荆属12个叶绿体基因组特征

  • Table1 Features of 12 Vitex chloroplast genomes

  • 2.4 叶绿体基因组密码子偏好分析

  • 2.4.1 同义密码子分析

  • 牡荆属12个叶绿体基因组的密码子数目在26 037个(V. parviflora)~26 796个(蔓荆)之间。64种密码子中,甲硫氨酸(M)和色氨酸(W)分别仅由密码子AUG和UGG编码,因此这2种密码子未显示出使用偏好性(RSCU=1);有31种密码子显示出偏好性(RSCU>1)。值得注意的是,除密码子UCC和UUG外,其他具有使用偏好性的密码子第3位均为嘌呤(A/U)(图5)。

  • 2.4.2 中性绘图分析

  • 若基因均匀地分布在坐标轴对角线两侧且回归系数接近1,则表明GC12与GC3变异更多地受到突变的影响,自然选择对其影响较小;若基因呈现不对称分布且回归系数离1较远,则表明GC12与GC3的变异主要受自然选择的影响,突变对其的影响较小。由附图2可知,GC12和GC3的分布范围较窄,表明突变对密码子使用偏好性影响较小,中性图斜率为0.080 4~0.179 9,表明突变对密码子使用偏好性影响仅占8.04%~17.99%,而选择压力占82.01%~91.96%。结果表明,牡荆属12个叶绿体基因组密码子使用偏好性主要受选择压力的影响。

  • 2.4.3 ENC-Plot分析

  • 以12个牡荆属植物叶绿体基因组的GC3s为横坐标,ENC值为纵坐标绘制ENC图。附图3中牡荆属12个叶绿体基因组的ENC-Plot图相似,大多数基因位于标准曲线的下方,离标准曲线距离较远,说明大多数基因密码子偏好性主要受自然选择的影响,有少部分基因紧靠标准曲线上方,表明这部分基因密码子偏好性受突变的影响。

  • 2.4.4 PR2-Plot分析

  • 附图4结果显示,坐标点不相等地分布在4个区域内,坐标点主要分布在右下方区域,这表明密码子第3位核苷酸使用频率为T>A、G>C,即密码子的第3位核苷酸在选择上具有偏好性。在其他区域也有部分基因散落,说明密码子使用偏好性不仅受突变压力的影响,还受选择压力等因素的影响。

  • 图2 牡荆属12个叶绿体基因组的IR/SC边界分析

  • Fig.2 Analysis of IR/SC boundaries of 12 Vitex chloroplast genomes

  • 2.4.5 最优密码子分析

  • 由表3可知,最优密码子数量介于10~19个之间,其中V. parviflora和滇牡荆的最优密码子数量最多,穗花牡荆、牡荆、荆条、单叶蔓荆和越南牡荆的最优密码子数量最少。分析它们的最优密码子数据可知,牡荆属12个叶绿体基因组的最优密码子大多以A或U作为第3位核苷酸,说明其最优密码子偏向于使用A和U作为结尾。对其共有最优密码子进行分析,发现其共有最优密码子6个,分别为UGU、CAC、AUU、UUG、ACU和GUU。

  • 图3 牡荆属12个叶绿体基因组的可视化比对图

  • Fig.3 Visualization for comparison of 12 Vitex chloroplast genomes

  • 2.5 叶绿体基因组重复序列分析

  • 牡荆属12个叶绿体基因组中共检测到328个串联重复,其中山牡荆具有最多的串联重复(32个),V. bicolorV. parviflora具有最少的串联重复,均为24个(图6:A)。串联重复的长度范围为22~90 bp;串联重复单元长度范围为11~42 bp;串联重复次数为2~5次。另外,在12条叶绿体基因组序列中共检测到215个散在重复,其中数目最多的是正向重复(137个,63.7%);回文重复数目次之(76个,35.3%);反向重复和互补重复仅各检测到1个,分别存在于V. parviflora和穗花牡荆(图6:B)。12条叶绿体基因组序列中共检测到519个SSRs,其中占比最大的是单核苷酸重复(407个,78.4%),其次是四核苷酸重复(76个,14.6%)和二核苷酸重复(34个,6.6%),五核苷酸重复和六核苷酸重复各检测到1个,未检测到三核苷酸重复(图6:C)。

  • 表2 牡荆属12个叶绿体基因组的遗传多样性

  • Table2 Genetic diversity of 12 Vitex chloroplast genomes

  • 2.6 系统发育关系分析

  • 共37条完整叶绿体基因组用于分析系统发育关系,具体的物种信息见表4。基于完整叶绿体基因组序列构建的ML树和BI树得到了一致的拓扑结构并获得了较高支持率(图7)。内类群分为两大支,分别对应唇形科和马鞭草科。唇形科中,12个亚科均为单系支且获得了高度支持。牡荆属所在的牡荆亚科和六苞藤亚科拥有最近的亲缘关系。牡荆属分为两支,其中一支包含V. parviflora、滇牡荆、山牡荆和光叶牡荆;第二支包含剩余的物种和变种。值得注意的是,黄荆与其变种牡荆聚为一支,但其另一变种荆条却与其他物种聚为另一小支,支持率较低(MLBS=48%,BIPP=0.95)。马鞭草科中,6个物种划分在3个单系族,其中马缨丹族(Lantaneae)和马鞭草族(Verbeneae)具有更近的亲缘关系。

  • 图4 牡荆属12个叶绿体基因组滑动窗口分析

  • Fig.4 Sliding window analysis of 12 Vitex chloroplast genomes

  • 3 讨论与结论

  • 3.1 牡荆属叶绿体基因组特征

  • 与大多数陆地植物叶绿体基因组一样,牡荆属的12个叶绿体基因组均呈现典型的环状四分体结构,并且长度、GC含量和基因组成均展示出高度保守性。大多数陆地植物叶绿体基因组的IR边界会发生一定变化(可达数百个核苷酸),但是显著的IR区边界变化(高达数千核苷酸)相对较少(Zhu et al.,2016)。与一些唇形科植物,如鼠尾草属(Salvia)(Zhao et al.,2020a)、青兰属(Dracocephalum)及近缘属(Fu et al.,2022)、刺蕊草属(Pogostemon)(Zhang et al.,2020)、黄芩亚科(Zhao et al.,2020b)的叶绿体基因组类似,牡荆属12个叶绿体基因组的IR区发生了低程度的收缩扩张且仅发生在SSC/IRb和IRb/LSC边界。与其他11个叶绿体基因组相比,V. parviflora 的SSC/IRb边界发生了较明显的不同,这可能是由ycf1基因注释误差引起的;IRb/LSC边界发生的收缩扩张现象同样与基因注释差异相关。mVISTA的结果显示,12个叶绿体基因组序列相似性较高且与预期一致,物种间的序列差异主要发生在非编码区。滑动窗口分析共检测到14个高变区,可用作推断牡荆属系统发育关系的候选分子标记。高变区中的trnH-psbA是植物DNA条形码推荐的片段之一(Hollingsworth et al.,2009,2011);ycf1编码叶绿体内膜蛋白易位子组分蛋白,是叶绿体基因组中最大的基因之一(Kikuchi et al.,2013),ycf1基因在不同分类群(甚至是低等分类单元)间高度变异,常用作系统发育研究的分子标记(Dong et al.,2012)。

  • 图5 牡荆属12个叶绿体基因组蛋白编码基因密码子RSCU值热图

  • Fig.5 Heat map of RSCU values of protein-coding genes for 12 Vitex chloroplast genomes

  • 图6 重复序列类型及数目

  • Fig.6 Numbers and types of repeat elements

  • 表3 牡荆属12个叶绿体基因组最优密码子分析

  • Table3 Optimal codon analysis of 12 Vitex chloroplast genomes

  • 注:下划线代表牡荆属12个叶绿体基因组共有的最优密码子。

  • Note: The underlines represent the optimal codons shared by 12 chloroplast genomes of Vitex.

  • 3.2 密码子使用偏好和重复序列

  • 牡荆属12个叶绿体基因组具有一致的密码子使用偏好,31种密码子均显示出使用偏好性(RSCU>1),除密码子UCC和UUG外,剩余29个密码子的第3位均为嘌呤(A/U),这可能是叶绿体基因组进化历程中受自然选择和突变偏好性共同作用的结果(Xu et al.,2011; Li et al.,2021)。密码子偏好性分析结果显示,影响牡荆属12个物种密码子使用偏好性的因素有选择压力、突变压力等,但受选择压力的影响较大,这与栎属青冈亚属(Quercus subg. Cyclobalanopsis)(黄婷等,2023)、紫花苜蓿(Medicago sativa)(喻凤和韩明,2021)等叶绿体基因组密码子偏好性的研究结果相似。

  • 作为一类重要的分子标记,SSRs广泛用于群体遗传学研究(Powell et al.,1996)。与多数被子植物的研究结果一样,如栎属(Quercus)(Yang et al.,2016)、驼蹄瓣属(Zygophyllum)(Yang et al.,2022)和蒺藜科(Zygophyllaceae)(Zhang et al.,2021),牡荆属叶绿体基因组中占比最高的SSRs是单核苷酸重复;不同于上述列举的被子植物,牡荆属占比第二的SSR类型是四核苷酸重复,而非二核苷酸重复。相比之下,牡荆属各类型SSRs占比情况与唇形科鼠尾草属植物的研究结果高度相似(Zhao et al.,2020a)。另外,本研究检测到的SSRs可作为该属群体遗传学研究的候选分子标记。

  • 表4 本研究用于系统发育分析的物种信息

  • Table4 Species information for phylogenetic analysis in this study

  • 续表4

  • 注: *表示该属在不同分类系统中隶属于不同的科。—表示没有相关信息。

  • Note: * indicates the genus is circumscribed to different families. — indicates there is no related information.

  • 一些研究认为长而复杂的重复序列在叶绿体基因组重排和序列分化中发挥着重要作用(Timme et al.,2007; Weng et al.,2014)。一些叶绿体基因组发生高度重排的植物类群中检测到了大量长而复杂的重复序列,如Geranium palmatum的叶绿体基因组中检测到505个重复序列(Weng et al.,2014),Passiflora costaricensis的叶绿体基因组中最长的重复序列为1 070 bp(Cauz-Santos et al.,2020)。本研究在12个叶绿体基因组中共检测到328个串联重复和215个散在重复,并且这些重复序列的长度较短(均未超过100 bp),与牡荆属叶绿体基因组序列的高度保守、未检测到重排的结果一致。

  • 3.3 牡荆属系统位置推断及种间关系分析

  • 近年来,在唇形科7个亚科,即筋骨草亚科(Ajugoideae)、野芝麻亚科(Lamioideae)、荆芥亚科(Nepetoideae)、Prostantheroideae、黄芩亚科(Scutellarioideae)、六苞藤亚科(Symphorematoideae)和牡荆亚科的分类基础上(Harley et al.,2004),Li等(2016)的分子研究结果首次描述发表了歧伞花亚科(Cymarioideae)、佩龙木亚科(Peronematoideae)和豆腐柴亚科(Premnoideae)这3个新的亚科,之后分别对紫珠属和柚木属构成的进化支命名为亚科,即紫珠亚科(Callicarpoideae)和柚木亚科(Tectonoideae)(Li &Olmstead,2017);Zhao等(2021)的分子研究结果同样高度支持唇形科的12个单系亚科。本研究的进化树同样支持上述分子研究结果,即牡荆属应划分到唇形科的牡荆亚科且牡荆亚科与六苞藤亚科拥有最近的亲缘关系。

  • 目前牡荆属的物种的界定仍存在一定争议(Harley et al.,2004; Bramley et al.,2009; Li et al.,2016),已有的研究仍未能全面地厘清该属的系统发育关系。例如,形态学、解剖学和孢粉学结果揭示非洲南部的牡荆属植物(9种、3亚种和2变种)分为Vitex subg. VitexVitex subg. Holmskioldiopsis 2个亚属(Bredenkamp &Botha,1993);《中国植物志》将我国分布的14种牡荆属植物分为腋序组(Vitex sect. Axillares)和顶序组(Vitex sect. Vitex);Bramley等(2009)和Li等(2016)基于分子片段探究了一定数量牡荆类植物的关系,前者显示牡荆类植物分为多支,后者显示牡荆类植物分为2支(支持率较低)。本研究对牡荆属10种和2变种的系统学分析显示,大多数分支具有较高的支持率,这表明叶绿体全基因组序列在牡荆属系统发育重建中具有一定有效性,可为后续进一步全面探究该属系统发育关系提供研究思路。另外,本研究为一些具有争议的种间关系的确定提供了一定参考。蔓荆、V. bicolor和单叶蔓荆三者间的关系目前存在不同看法:单叶蔓荆或被看作是蔓荆的亚种,命名为V. trifolia subsp. littoralis(de Kok,2008; Gentallan et al.,2022),或是蔓荆的变种(中国科学院中国植物志编辑委员会,1982),或是独立的种(Flora of China Editorial Committee,1994; Sun et al.,2019),或将三者看作蔓荆复合体(V. trifolia complex)(Gentallan et al.,2023);V. bicolor或被看作是蔓荆的异名(Flora of China Editorial Committee,1994),或被看作是蔓荆的变种,即V. trifolia var. bicolor(Munir,1987; Gentallan et al.,2023)。在本研究中,单叶蔓荆与V. bicolor和蔓荆的姐妹支聚为一支,结合Sun等(2019)研究得到的蔓荆和单叶蔓荆具有显著遗传分化的结果,我们更支持Flora of China的分类结果,即将单叶蔓荆看作是独立的种;而V. bicolor是蔓荆的异名或是变种,仍需要更多的数据去探究。本研究另一值得注意的种间关系:黄荆与其两变种并未展示出姐妹关系,而是黄荆与牡荆聚为一支,但荆条与其他物种聚在另一支(支持率较低),这表明黄荆可能存在较大的种内变异(至少在叶绿体基因组水平)。黄荆种下分类群聚类的研究结果显示,黄荆与其两变种虽均为花序狭窄型,但荆条和牡荆的关系更近(路端正等,2015),与我们的研究结果不同。因此,黄荆种下不同类群是否因适应不同生态环境而发生了遗传分化,是否处于物种形成阶段,仍需进一步探究。

  • 图7 基于完整叶绿体基因组构建的唇形科系统发育树

  • Fig.7 Phylogenetic tree of Lamiaceae inferred based on complete chloroplast genomes

  • 附录请到本刊网站(http://www.guihaia-journal.com/gxzw/ch/reader/view_abstract.aspx?file_no=20240915&flag=1)下载

  • 参考文献

    • BENSON G, 1999. Tandem repeats finder: a program to analyze DNA sequences [J]. Nucl Acid Res, 27(2): 573-580.

    • BRAMLEY GL, FOREST F, DE KOK RP, 2009. Troublesome tropical mints: re-examining generic limits of Vitex and relations (Lamiaceae) in South East Asia [J]. Taxon, 58(2): 500-510.

    • BREDENKAMP CL, BOTHA DJ, 1993. A synopsis of the genus Vitex L. (Verbenaceae) in southern Africa [J]. S Afr J Bot, 59(6): 611-622.

    • CANTINO PD, 1992. Evidence for a polyphyletic origin of the Labiatae [J]. Ann Mo Bot Gard, 79(2): 361-379.

    • CAUZ-SANTOS LA, DA COSTA ZP, CALLOT C, et al. , 2020. Repertory of rearrangements and the loss of an inverted repeat region in Passiflora chloroplast genomes [J]. Genome Biol Evol, 12(10): 1841-1857.

    • CHEVREUX B, PFISTERER T, DRESCHER B, et al. , 2004. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs [J]. Genome Res, 14(6): 1147-1159.

    • DARLING ACE, MAU B, BLATTNER FR, et al. , 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements [J]. Genome Res, 14(7): 1394-1403.

    • DE KOK R, 2008. The genus Vitex (Labiatae) in the flora Malesiana region, excluding New Guinea [J]. Kew Bull, 63: 17-40.

    • DENG W, WANG Y, LIU Z, et al. , 2014. HemI: a toolkit for illustrating heatmaps [J]. PLoS ONE, 9(11): e111988.

    • DONG W, LIU J, YU J, et al. , 2012. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding [J]. PLoS ONE, 7(4): e35071.

    • DOYLE JJ, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue [J]. Biol Pharm Bull, 19(1): 11-15.

    • Editorial Committee of China Flora of Chinese Academy of Sciences, 1982. Flora Reipublicae Popularis Sinicae (Verbenaceae): Vol. 65 [M]. Beijing: Science Press: 131-150. [中国科学院中国植物志编辑委员会, 1982. 中国植物志 (马鞭草科): 第65卷 [M]. 北京: 科学出版社: 131-150. ]

    • FAIRCLOTH BC, 2008. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design [J]. Mol Ecol Resour, 8(1): 92-94.

    • Flora of China Editorial Committee, 1994. Flora of China: Verbenaceae (Vol. 17) [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press: 28-32.

    • FRAZER KA, PACHTER L, POLIAKOV K, et al. , 2004. VISTA: Computational tools for comparative genomics [J]. Nucl Acid Res, 32(Suppl. 2): W273-W279.

    • FU G, LIU Y, CARABALLO-ORTIZ MA, et al. , 2022. Characterization of the complete chloroplast genome of the dragonhead herb, Dracocephalum heterophyllum (Lamiaceae), and comparative analyses with related species [J]. Diversity, 14(2): 110.

    • GENTALLAN RP, QUINONES KJO, BARTOLOME MCB, et al. , 2022. The complete chloroplast genome of Vitex trifolia L. (Lamiaceae) [J]. Mitochondrial DNA B, 7(7): 1316-1318.

    • GENTALLAN RP, QUINONES KJO, BARTOLOME MCB, et al. , 2023. Characterization of the complete chloroplast genome of Vitex bicolor Willd. and its comparative analyses with other species belonging to the Vitex trifolia complex [J]. Plant Genet Resour-C, 21(1): 19-27.

    • HAHN C, BACHMANN L, CHEVREUX B, 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads — a baiting and iterative mapping approach [J]. Nucl Acid Res, 41(13): e129.

    • HARLEY RM, ATKINS S, BUDANTSEV AL, et al. , 2004. The families and genera of vascular plants: Labiatae [M]. Berlin: Springer Verlag: 167-275.

    • HOLLINGSWORTH PM, FORREST LL, SPOUGE JL, et al. , 2009. A DNA barcode for land plants [J]. Proc Nat Acad Sci USA, 106(31): 12794-12797.

    • HOLLINGSWORTH PM, GRAHAM SW, LITTLE DP, 2011. Choosing and using a plant DNA barcode [J]. PLoS ONE, 6: e19254.

    • HUANG T, TANG M, CHEN XL, et al. , 2023. Comparison of chloroplast genomes and phylogenic analysis of four species of Quercus subg. Cyclobalanopsis [J]. Guihaia, 43 (4): 741-754. [黄婷, 唐梦, 陈晓丽, 等, 2023. 四种栎属青冈亚属植物叶绿体基因组特征及系统发育研究 [J]. 广西植物, 43(4): 741-754. ]

    • JANGWAN JS, AQUINO RP, MENCHERINI T, et al. , 2013. Chemical constituents of ethanol extract of leaves and molluscicidal activity of crude extracts from Vitex trifolia Linn [J]. Herba Polonic, 59(4): 19-32.

    • KAMAL N, MIO ASNI NS, ROZLAN INA, et al. , 2022. Traditional medicinal uses, phytochemistry, biological properties, and health applications of Vitex sp. [J]. Plants, 11(15): 1944.

    • KARAGUZEL O, GIRMEN B, 2009. Morphological variations of chaste tree (Vitex agnus-castus) genotypes from southern Anatolia, Turkey [J]. New Zeal J Crop Hortic, 37(3): 253-261.

    • KATOH K, STANDLEY DM, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Mol Biol Evol, 30(4): 772-780.

    • KIKUCHI S, BEDARD J, HIRANO M, et al. , 2013. Uncovering the protein translocon at the chloroplast inner envelope membrane [J]. Science, 339: 571-574.

    • KURTZ S, CHOUDHURI JV, OHLEBUSCH E, et al. , 2001. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucl Acid Res, 29(22): 4633-4642.

    • LI B, CANTINO PD, OLMSTEAD RG, et al. , 2016. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification [J]. Sci Rep, 6(1): 34343.

    • LI B, OLMSTEAD RG, 2017. Two new subfamilies in Lamiaceae [J]. Phytotaxa, 313(2): 222-226.

    • LI G, ZHANG L, XUE P, 2021. Codon usage pattern and genetic diversity in chloroplast genomes of Panicum species [J]. Gene, 802: 145866.

    • LIBRADO P, ROZAS J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data [J]. Bioinformatics, 25(11): 1451-1452.

    • LU DZ, WANG JL, XIE L, 2015. Analysis on clustering and evolutionary trends of infraspecific taxa of Vitex negundo L. [J]. J Beijing For Univ, 37 (2): 55-58. [路端正, 王九丽, 谢磊, 2015. 黄荆种以下分类群的聚类与演化趋势分析 [J]. 北京林业大学学报, 37(2): 55-58. ]

    • MARX HE, O′LEARY N, YUAN YW, et al. , 2010. A molecular phylogeny and classification of Verbenaceae [J]. Am J Bot, 97(10): 1647-1663.

    • MUNIR AA, 1987. A taxonomic revision of the genus Vitex L. (Verbenaceae) in Australia [J]. J Adelaide Bot Gard, 31-79.

    • NIROUMAND MC, HEYDARPOUR F, FARZAEI MH, 2018. Pharmacological and therapeutic effects of Vitex agnus-castus L. : A review [J]. Pharmacol Rev, 12(23): 103.

    • POWELL W, MORGANTE M, ANDRE C, et al. , 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis [J]. Mol Breed, 2(3): 225-238.

    • REFULIO-RODRIGUEZ NF, OLMSTEAD RG, 2014. Phylogeny of Lamiidae [J]. Am J Bot, 101(2): 287-299.

    • RONQUIST F, HUELSENBECK JP, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 19(12): 1572-1574.

    • SCHÄFERHOFF B, FLEISCHMANN A, FISCHER E, et al. , 2010. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences [J]. BMC Evol Biol, 10: 352.

    • SHARP PM, LI WH, 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms [J]. J Mol Evol, 24(1): 28-38.

    • STAMATAKIS A, 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models [J]. Bioinformatics, 22(21): 2688-2690.

    • SUN XH, 2020. Floral biology characteristics and mating system of Vitex negundo L. var. heterophylla (Franch. ) Rehder. [D]. Jinan: Shandong University. [孙小涵, 2020. 荆条开花生物学特性和交配系统研究 [D]. 济南: 山东大学. ]

    • SUN Y, YANG H, ZHANG Q, et al. , 2019. Genetic diversity and its conservation implications of Vitex rotundifolia (Lamiaceae) populations in East Asia [J]. PeerJ, 7: e6194.

    • TAMURA K, PETERSON D, PETERSON N, et al. , 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 28(10): 2731-2739.

    • TIMME RE, KUEHL JV, BOORE JL, et al. , 2007. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats [J]. Am J Bot, 94(3): 302-312.

    • VISHWANATHAN AS, BASAVARAJU RA, 2010. A review on Vitex negundo L. : A medicinally important plant [J]. Eur J Soil Biol, 3(1): 30-42.

    • WENG ML, BLAZIER JC, GOVINDU M, et al. , 2014. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats and nucleotide substitution rates [J]. Mol Biol Evol, 31(3): 645-659.

    • XIN HM, 2005. The chemical constituents of anti-PMS activity, intraspecific variation and quality evaluation of Fructus Viticis [D]. Shanghai: Second Military Medical University. [辛海量, 2005. 蔓荆子抗PMS物质基础、种内变异和品质评价研究 [D]. 上海: 第二军医大学. ]

    • XU C, CAI XN, CHEN QZ, et al. , 2011. Factors affecting synonymous codon usage bias in chloroplast genome of Oncidium Gower Ramsey [J]. Evol Bioinform, 7: 271-278.

    • YANG YC, JIA Y, ZHAO YL, et al. , 2022. Comparative chloroplast genomics provides insights into the genealogical relationships of endangered Tetraena mongolica and the chloroplast genome evolution of related Zygophyllaceae species [J]. Front Genet: 13: 1026919.

    • YANG YC, ZHOU T, DUAN D, et al. , 2016. Comparative analysis of the complete chloroplast genomes of five Quercus species [J]. Front Plant Sci, 7: 959.

    • YANG YC, ZHOU T, QIAN Z, et al. , 2021. Phylogenetic relationships in Chinese oaks (Fagaceae, Quercus): Evidence from plastid genome using low-coverage whole genome sequencing [J]. Genomics, 113(3): 1438-1447.

    • YI RZ, 2022. Effects of pruning and paclobutrazol on ornamental qualities of Vitex agnus-castus [D]. Shanghai: Shanghai University of Applied Technology. [易仁知, 2022. 修剪和多效唑对穗花牡荆观赏品质的影响 [D]. 上海: 上海应用技术大学. ]

    • YU F, HAN M, 2021. Analysis of codon usage bias in the chloroplast genome of alfalfa (Medicago sativa) [J]. Guihaia, 41 (12): 2069-2076. [喻凤, 韩明, 2021. 紫花苜蓿叶绿体基因组密码子偏好性分析 [J]. 广西植物, 41(12): 2069-2076. ]

    • ZHANG CY, LIU TJ, MO XL, et al. , 2020. Comparative analyses of the chloroplast genomes of patchouli plants and their relatives in Pogostemon (Lamiaceae) [J]. Plants, 9(11): 1497.

    • ZHANG L, WANG S, SU C, et al. , 2021. Comparative chloroplast genomics and phylogenetic analysis of Zygophyllum (Zygophyllaceae) of China [J]. Front Plant Sci, 12: 723622.

    • ZHAO F, CHEN YP, SALMAKI Y, et al. , 2021. An updated tribal classification of Lamiaceae based on plastome phylogenomics [J]. BMC Biol, 19(1): 1-27.

    • ZHAO F, DREW BT, CHEN YP, et al. , 2020a. The chloroplast genome of Salvia: Genomic characterization and phylogenetic analysis [J]. Int J Plant Sci, 181(8): 812-830.

    • ZHAO F, LI B, DREW BT, et al. , 2020b. Leveraging plastomes for comparative analysis and phylogenomic inference within Scutellarioideae (Lamiaceae) [J]. PLoS ONE, 15(5): e0232602.

    • ZHU A, GUO WH, GUPTA S, et al. , 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates [J]. New Phytol, 209(4): 1747-1756.

  • 参考文献

    • BENSON G, 1999. Tandem repeats finder: a program to analyze DNA sequences [J]. Nucl Acid Res, 27(2): 573-580.

    • BRAMLEY GL, FOREST F, DE KOK RP, 2009. Troublesome tropical mints: re-examining generic limits of Vitex and relations (Lamiaceae) in South East Asia [J]. Taxon, 58(2): 500-510.

    • BREDENKAMP CL, BOTHA DJ, 1993. A synopsis of the genus Vitex L. (Verbenaceae) in southern Africa [J]. S Afr J Bot, 59(6): 611-622.

    • CANTINO PD, 1992. Evidence for a polyphyletic origin of the Labiatae [J]. Ann Mo Bot Gard, 79(2): 361-379.

    • CAUZ-SANTOS LA, DA COSTA ZP, CALLOT C, et al. , 2020. Repertory of rearrangements and the loss of an inverted repeat region in Passiflora chloroplast genomes [J]. Genome Biol Evol, 12(10): 1841-1857.

    • CHEVREUX B, PFISTERER T, DRESCHER B, et al. , 2004. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs [J]. Genome Res, 14(6): 1147-1159.

    • DARLING ACE, MAU B, BLATTNER FR, et al. , 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements [J]. Genome Res, 14(7): 1394-1403.

    • DE KOK R, 2008. The genus Vitex (Labiatae) in the flora Malesiana region, excluding New Guinea [J]. Kew Bull, 63: 17-40.

    • DENG W, WANG Y, LIU Z, et al. , 2014. HemI: a toolkit for illustrating heatmaps [J]. PLoS ONE, 9(11): e111988.

    • DONG W, LIU J, YU J, et al. , 2012. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding [J]. PLoS ONE, 7(4): e35071.

    • DOYLE JJ, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue [J]. Biol Pharm Bull, 19(1): 11-15.

    • Editorial Committee of China Flora of Chinese Academy of Sciences, 1982. Flora Reipublicae Popularis Sinicae (Verbenaceae): Vol. 65 [M]. Beijing: Science Press: 131-150. [中国科学院中国植物志编辑委员会, 1982. 中国植物志 (马鞭草科): 第65卷 [M]. 北京: 科学出版社: 131-150. ]

    • FAIRCLOTH BC, 2008. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design [J]. Mol Ecol Resour, 8(1): 92-94.

    • Flora of China Editorial Committee, 1994. Flora of China: Verbenaceae (Vol. 17) [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press: 28-32.

    • FRAZER KA, PACHTER L, POLIAKOV K, et al. , 2004. VISTA: Computational tools for comparative genomics [J]. Nucl Acid Res, 32(Suppl. 2): W273-W279.

    • FU G, LIU Y, CARABALLO-ORTIZ MA, et al. , 2022. Characterization of the complete chloroplast genome of the dragonhead herb, Dracocephalum heterophyllum (Lamiaceae), and comparative analyses with related species [J]. Diversity, 14(2): 110.

    • GENTALLAN RP, QUINONES KJO, BARTOLOME MCB, et al. , 2022. The complete chloroplast genome of Vitex trifolia L. (Lamiaceae) [J]. Mitochondrial DNA B, 7(7): 1316-1318.

    • GENTALLAN RP, QUINONES KJO, BARTOLOME MCB, et al. , 2023. Characterization of the complete chloroplast genome of Vitex bicolor Willd. and its comparative analyses with other species belonging to the Vitex trifolia complex [J]. Plant Genet Resour-C, 21(1): 19-27.

    • HAHN C, BACHMANN L, CHEVREUX B, 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads — a baiting and iterative mapping approach [J]. Nucl Acid Res, 41(13): e129.

    • HARLEY RM, ATKINS S, BUDANTSEV AL, et al. , 2004. The families and genera of vascular plants: Labiatae [M]. Berlin: Springer Verlag: 167-275.

    • HOLLINGSWORTH PM, FORREST LL, SPOUGE JL, et al. , 2009. A DNA barcode for land plants [J]. Proc Nat Acad Sci USA, 106(31): 12794-12797.

    • HOLLINGSWORTH PM, GRAHAM SW, LITTLE DP, 2011. Choosing and using a plant DNA barcode [J]. PLoS ONE, 6: e19254.

    • HUANG T, TANG M, CHEN XL, et al. , 2023. Comparison of chloroplast genomes and phylogenic analysis of four species of Quercus subg. Cyclobalanopsis [J]. Guihaia, 43 (4): 741-754. [黄婷, 唐梦, 陈晓丽, 等, 2023. 四种栎属青冈亚属植物叶绿体基因组特征及系统发育研究 [J]. 广西植物, 43(4): 741-754. ]

    • JANGWAN JS, AQUINO RP, MENCHERINI T, et al. , 2013. Chemical constituents of ethanol extract of leaves and molluscicidal activity of crude extracts from Vitex trifolia Linn [J]. Herba Polonic, 59(4): 19-32.

    • KAMAL N, MIO ASNI NS, ROZLAN INA, et al. , 2022. Traditional medicinal uses, phytochemistry, biological properties, and health applications of Vitex sp. [J]. Plants, 11(15): 1944.

    • KARAGUZEL O, GIRMEN B, 2009. Morphological variations of chaste tree (Vitex agnus-castus) genotypes from southern Anatolia, Turkey [J]. New Zeal J Crop Hortic, 37(3): 253-261.

    • KATOH K, STANDLEY DM, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Mol Biol Evol, 30(4): 772-780.

    • KIKUCHI S, BEDARD J, HIRANO M, et al. , 2013. Uncovering the protein translocon at the chloroplast inner envelope membrane [J]. Science, 339: 571-574.

    • KURTZ S, CHOUDHURI JV, OHLEBUSCH E, et al. , 2001. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucl Acid Res, 29(22): 4633-4642.

    • LI B, CANTINO PD, OLMSTEAD RG, et al. , 2016. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification [J]. Sci Rep, 6(1): 34343.

    • LI B, OLMSTEAD RG, 2017. Two new subfamilies in Lamiaceae [J]. Phytotaxa, 313(2): 222-226.

    • LI G, ZHANG L, XUE P, 2021. Codon usage pattern and genetic diversity in chloroplast genomes of Panicum species [J]. Gene, 802: 145866.

    • LIBRADO P, ROZAS J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data [J]. Bioinformatics, 25(11): 1451-1452.

    • LU DZ, WANG JL, XIE L, 2015. Analysis on clustering and evolutionary trends of infraspecific taxa of Vitex negundo L. [J]. J Beijing For Univ, 37 (2): 55-58. [路端正, 王九丽, 谢磊, 2015. 黄荆种以下分类群的聚类与演化趋势分析 [J]. 北京林业大学学报, 37(2): 55-58. ]

    • MARX HE, O′LEARY N, YUAN YW, et al. , 2010. A molecular phylogeny and classification of Verbenaceae [J]. Am J Bot, 97(10): 1647-1663.

    • MUNIR AA, 1987. A taxonomic revision of the genus Vitex L. (Verbenaceae) in Australia [J]. J Adelaide Bot Gard, 31-79.

    • NIROUMAND MC, HEYDARPOUR F, FARZAEI MH, 2018. Pharmacological and therapeutic effects of Vitex agnus-castus L. : A review [J]. Pharmacol Rev, 12(23): 103.

    • POWELL W, MORGANTE M, ANDRE C, et al. , 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis [J]. Mol Breed, 2(3): 225-238.

    • REFULIO-RODRIGUEZ NF, OLMSTEAD RG, 2014. Phylogeny of Lamiidae [J]. Am J Bot, 101(2): 287-299.

    • RONQUIST F, HUELSENBECK JP, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 19(12): 1572-1574.

    • SCHÄFERHOFF B, FLEISCHMANN A, FISCHER E, et al. , 2010. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences [J]. BMC Evol Biol, 10: 352.

    • SHARP PM, LI WH, 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms [J]. J Mol Evol, 24(1): 28-38.

    • STAMATAKIS A, 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models [J]. Bioinformatics, 22(21): 2688-2690.

    • SUN XH, 2020. Floral biology characteristics and mating system of Vitex negundo L. var. heterophylla (Franch. ) Rehder. [D]. Jinan: Shandong University. [孙小涵, 2020. 荆条开花生物学特性和交配系统研究 [D]. 济南: 山东大学. ]

    • SUN Y, YANG H, ZHANG Q, et al. , 2019. Genetic diversity and its conservation implications of Vitex rotundifolia (Lamiaceae) populations in East Asia [J]. PeerJ, 7: e6194.

    • TAMURA K, PETERSON D, PETERSON N, et al. , 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 28(10): 2731-2739.

    • TIMME RE, KUEHL JV, BOORE JL, et al. , 2007. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats [J]. Am J Bot, 94(3): 302-312.

    • VISHWANATHAN AS, BASAVARAJU RA, 2010. A review on Vitex negundo L. : A medicinally important plant [J]. Eur J Soil Biol, 3(1): 30-42.

    • WENG ML, BLAZIER JC, GOVINDU M, et al. , 2014. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats and nucleotide substitution rates [J]. Mol Biol Evol, 31(3): 645-659.

    • XIN HM, 2005. The chemical constituents of anti-PMS activity, intraspecific variation and quality evaluation of Fructus Viticis [D]. Shanghai: Second Military Medical University. [辛海量, 2005. 蔓荆子抗PMS物质基础、种内变异和品质评价研究 [D]. 上海: 第二军医大学. ]

    • XU C, CAI XN, CHEN QZ, et al. , 2011. Factors affecting synonymous codon usage bias in chloroplast genome of Oncidium Gower Ramsey [J]. Evol Bioinform, 7: 271-278.

    • YANG YC, JIA Y, ZHAO YL, et al. , 2022. Comparative chloroplast genomics provides insights into the genealogical relationships of endangered Tetraena mongolica and the chloroplast genome evolution of related Zygophyllaceae species [J]. Front Genet: 13: 1026919.

    • YANG YC, ZHOU T, DUAN D, et al. , 2016. Comparative analysis of the complete chloroplast genomes of five Quercus species [J]. Front Plant Sci, 7: 959.

    • YANG YC, ZHOU T, QIAN Z, et al. , 2021. Phylogenetic relationships in Chinese oaks (Fagaceae, Quercus): Evidence from plastid genome using low-coverage whole genome sequencing [J]. Genomics, 113(3): 1438-1447.

    • YI RZ, 2022. Effects of pruning and paclobutrazol on ornamental qualities of Vitex agnus-castus [D]. Shanghai: Shanghai University of Applied Technology. [易仁知, 2022. 修剪和多效唑对穗花牡荆观赏品质的影响 [D]. 上海: 上海应用技术大学. ]

    • YU F, HAN M, 2021. Analysis of codon usage bias in the chloroplast genome of alfalfa (Medicago sativa) [J]. Guihaia, 41 (12): 2069-2076. [喻凤, 韩明, 2021. 紫花苜蓿叶绿体基因组密码子偏好性分析 [J]. 广西植物, 41(12): 2069-2076. ]

    • ZHANG CY, LIU TJ, MO XL, et al. , 2020. Comparative analyses of the chloroplast genomes of patchouli plants and their relatives in Pogostemon (Lamiaceae) [J]. Plants, 9(11): 1497.

    • ZHANG L, WANG S, SU C, et al. , 2021. Comparative chloroplast genomics and phylogenetic analysis of Zygophyllum (Zygophyllaceae) of China [J]. Front Plant Sci, 12: 723622.

    • ZHAO F, CHEN YP, SALMAKI Y, et al. , 2021. An updated tribal classification of Lamiaceae based on plastome phylogenomics [J]. BMC Biol, 19(1): 1-27.

    • ZHAO F, DREW BT, CHEN YP, et al. , 2020a. The chloroplast genome of Salvia: Genomic characterization and phylogenetic analysis [J]. Int J Plant Sci, 181(8): 812-830.

    • ZHAO F, LI B, DREW BT, et al. , 2020b. Leveraging plastomes for comparative analysis and phylogenomic inference within Scutellarioideae (Lamiaceae) [J]. PLoS ONE, 15(5): e0232602.

    • ZHU A, GUO WH, GUPTA S, et al. , 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates [J]. New Phytol, 209(4): 1747-1756.