en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王雅楠(1998—),硕士研究生,主要从事植物生态学研究,(E-mail)18863093719@163.com。

通讯作者:

马姜明,博士,教授,博士研究生导师,主要从事退化生态系统的恢复与重建研究,(E-mail)mjming03@gxnu.edu.cn。

中图分类号:Q948

文献标识码:A

文章编号:1000-3142(2024)10-1848-16

DOI:10.11931/guihaia.gxzw202307045

参考文献
BAO SD, 2000. Soil agrochemical analysis [M]. Beijing: China Agriculture Press. [鲍士旦, 2000. 土壤农化分析 [M]. 北京: 中国农业出版社. ]
参考文献
CAI WQ, ZHANG DM, ZHANG X, et al. , 2023. Leaf color change and photosystem function evaluation under heat treatment revealed the stress resistance variation between Loropetalum chinense and L. chinense var. rubrum [J]. PeerJ, 11: e14834.
参考文献
CHALLACOMBE JF, HESSE CN, BRAMER LM, et al. , 2019. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis [J]. BMC Genom, 20(1): 976.
参考文献
CHEN YL, TANG MR, ZHANG H, et al. , 2022. Differences in response of vegetation coverage and net primary productivity to SPEI drought index in karst areas of Guangxi [J]. J Arid Meteorol, 40(6): 1042-1050. [陈燕丽, 唐梅蓉, 张会, 等, 2022. 广西喀斯特地区植被覆盖度和净初级生产力对SPEI干旱指数的响应差异 [J]. 干旱气象, 40(6): 1042-1050. ]
参考文献
CHU HY, LI RN, LI JW, et al. , 2019. The impact of subtropical forest transformation on soil microbial community structure [J]. J Appl Environ Biol, 25 (1): 23-28. [楚海燕, 李若南, 李靖雯, 等, 2019. 中亚热带森林转换对土壤微生物群落结构的影响 [J]. 应用与环境生物学报, 25(1): 23-28. ]
参考文献
HAN W, WANG G, LIU J, et al. , 2021. Effects of vegetation type, season, and soil properties on soil microbial community in subtropical forests [J]. Appl Soil Ecol, 158: 103813.
参考文献
HOU XL, HAN H, TIGABOU M, et al. , 2019. Changes in soil physico-chemical properties following vegetation restoration mediate bacterial community composition and diversity in Changting, China [J]. Ecol Eng, 138: 171-179.
参考文献
HUO CC, ZHAO LJ, ZHU LQ, et al. , 2022. Seasonal dynamics of physiological characteristics of Carya cathayensis leaves in karst regions of Guangxi [J]. Tropical Agric Sci, 42(9): 44-50. [霍灿灿, 招礼军, 朱栗琼, 等, 2022. 广西喀斯特区山核桃叶片生理特性的季节动态 [J]. 热带农业科学, 42(9): 44-50. ]
参考文献
KALAM S, BASU A, PODILE AR, 2022. Difficult-to-culture bacteria in the rhizosphere: the underexplored signature microbial groups [J]. Pedosphere, 32(1): 75-89.
参考文献
LEITNER S, THOMAS D, JOHANNES K, et al. , 2020. Legacy effects of drought on nitrate leaching in a temperate mixed forest on karst [J]. J Environ Manage, 262: 110338.
参考文献
LI J, CHENG XY, CHU GX, et al. , 2023. Continuous cropping of cut chrysanthemum reduces rhizospheric soil bacterial community diversity and co-occurrence network complexity [J]. Appl Soil Ecol, 185: 104801.
参考文献
LI MS, WANG LY, YANG B, et al. , 2022. Effect of biochar on the structure and functional prediction of rhizosphere fungal communities in flue-cured tobacco during maturity [J]. J Agric Resour Environ, 39(5): 1041-1048. [李茂森, 王丽渊, 杨波, 等, 2022. 生物炭对烤烟成熟期根际真菌群落结构的影响及功能预测分析 [J]. 农业资源与环境学报, 39(5): 1041-1048. ]
参考文献
LI YF, GENG YQ, ZHOU HJ, et al. , 2016. Comparison of soil acid phosphatase activity determined by different methods [J]. Chin J Eco-Agric, 24(1): 98-104.
参考文献
LU XK, MO JM, ZHANG W, et al. , 2019. Effect of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview [J]. J Trop Subtrop Bot, 27(5): 500-522.
参考文献
LU ZK, ZENG QM, SUN JC, et al. , 2023. Accumulation characteristics and risk assessment of heavy metals in forest soil of karst areas in western Guizhou [J]. J NW For Univ, 38(6): 81-88. [卢中科, 曾钦朦, 孙建昌, 等, 2023. 贵州西部喀斯特地区森林土壤重金属的累积特征及风险评价 [J]. 西北林学院学报, 38(6): 81-88. ]
参考文献
MA YZ, LIU WW, QIAO YZ, et al. 2023. Effects of soil salinity on foxtail millet osmoregulation, grain yield, and soil water utilization under varying water conditions [J]. Agric Water Manage, 284: 108354.
参考文献
MATIAS L, CASTRO J, ZAMORA R, 2011. Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem [J]. Glob Change Biol, 17(4): 1646-1657.
参考文献
MEN XX, BAO Y, WU MH, et al. , 2023. Soil enzyme activities responded differently to short-term litter input manipulation under coniferous and broad-leaved forests in the subalpine area of Southwest China [J]. For Ecol Manage, 546: 121360.
参考文献
MIAO CP, MI QL, QIAO XG, et al. , 2016. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens [J]. J Ginseng Res, 40(2): 127-134.
参考文献
NEVINS CJ, LACEY C, ARMSTRONG S, 2021. Cover crop enzyme activities and resultant soil ammonium concentrations under different tillage systems [J]. Eur J Agr, 126: 126277.
参考文献
PAN YF, ZHUO WH, JIANG Y, et al. , 2023. Spatial distribution pattern and correlation analysis of dominant populations of Cyclobalanopsis glauca in karst rocky mountains of Guilin [J]. Guihaia, 43(3): 527-535. [盘远方, 卓文花, 姜勇, 等, 2023. 桂林岩溶石山青冈优势种群空间分布格局及关联分析 [J]. 广西植物, 43(3): 527-535. ]
参考文献
PAN YZ, QIU ZL, WANG WH, et al. , 2023. Short term effects of mixed tillage and returning ryegrass and sweet potato on soil enzyme activity and nutrients [J]. Jiangsu Agric Sci, 51(16): 230-239. [潘语卓, 邱泽龙, 王伟虎, 等, 2023. 黑麦草和苕子混合翻压还田对土壤酶活性和养分的短期影响 [J]. 江苏农业科学, 51(16): 230-239. ]
参考文献
QIN YH, MA JM, MEI JL, et al. , 2017. Preliminary dynamics of litter decomposition in different recovery stages of Loropetalum chinense community in karst areas of the Lijiang River Basin [J]. Acta Ecol Sin, 37(20): 6792-6799.
参考文献
SHENG L, STEFFEN B, LIANG X, et al. , 2016. Seasonal changes in the soil moisture distribution around bare rock outcrops within a karst rocky desertification area (Fuyuan County, Yunnan Province, China) [J]. Environ Earth Sci, 75(23): 1-10.
参考文献
SONG JF, JIANG ZH, WEI XL, et al. , 2023. Integrated transcriptomics and lipidomics investigation of the mechanism underlying the gastrointestinal mucosa damage of Loropetalum chinense (R. Br. ) and its representative component [J]. Phytomedicine, 114: 154758.
参考文献
SONG X, FANG C, YUAN ZQ, et al. , 2021. Long-Term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment [J]. Fron Environ Sci, 9: 649346.
参考文献
STEINAUER K, JENSEN B , STRECKER T, et al. , 2016. Convergence of soil microbial properties after plant colonization of an experimental plant diversity gradient [J]. BMC Ecol, 16(1): 19.
参考文献
STEWART CE, ROOSENDAAL D, DENEF K, et al. , 2017. Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought [J]. Soil Biol Biochem, 112: 191-203.
参考文献
THAKUR MP, DEL RIM, CESARZ S, et al. , 2019. Soil microbial, nematode, and enzymatic responses to elevated CO2 N fertilization, warming, and reduced precipitation [J]. Soil Biol Biochem, 135: 184-193.
参考文献
WANG J, LI G, XIU WM, et al. , 2014. Effects of nitrogen and water on soil enzyme activity and microbial biomass in Stipa baicalensis steppe, Inner Mongolia North China [J]. J Agric Resour Environ, 31(3): 237-245. [王杰, 李刚, 修伟明, 等, 2014. 氮素和水分对贝加尔针茅草原土壤酶活性和微生物量碳氮的影响 [J]. 农业资源与环境学报, 31(3): 237-245.
参考文献
WANG JQ, JIANG J, CHI YK, , et al. , 2023. Diversity and community structure of typhlocybinae in the typical karst rocky ecosystem, Southwest China [J]. Diversity, 15(3): 387.
参考文献
WANG JQ, SHI XZ, ZHENG CY, et al. , 2020. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest [J]. Sci Total Environ, 755(1): 142449-142478.
参考文献
WANG XB, SONG DL, LIANG GQ, et al. , 2015. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil [J]. Appl Soil Ecol, 96: 265-272.
参考文献
WU FJ, LIU N, HU PL, et al. , 2020. Soil carbon and nitrogen dynamics during vegetation restoration and their responses to extreme water-logging disasters in a typical karst depression [J]. Chin J Eco-Agr, 28(3): 429-437.
参考文献
WU X, WANG R, HU H, et al. , 2020. Response of bacterial and fungal communities to chemical fertilizer reduction combined with organic fertilizer and straw in fluvo-aquic soil [J]. Environ Sci, 41(10): 4669-4681. [吴宪, 王蕊, 胡菏, 等, 2020. 潮土细菌及真菌群落对化肥减量配施有机肥和秸秆的响应 [J]. 环境科学, 41(10): 4669-4681. ]
参考文献
XIA L, ZHAO B Q, LUO T, et al. , 2022. Microbial functional diversity in rhizosphere and non-rhizosphere soil of different dominant species in a vegetation concrete slope [J]. Biotechnol Biotechnol Equip, 36(1): 379-388.
参考文献
XIAO FN, JIANG M, LI YY, et al. , 2021. Community structure and diversity of soil fungi in Tamarix chinensis shrubs in the lower reaches of Tarim River [J]. Arid Land Geogr, 44(3): 759-768. [肖方南, 姜梦, 李媛媛, 等, 2021. 塔里木河下游柽柳灌丛土壤真菌群落结构及多样性分析 [J]. 干旱区地理, 44(3): 759-768. ]
参考文献
XIONG WJ, ZHU H, LI JB, et al. , 2021. The spatiotemporal distribution and influencing factors of bacterial communities in the rhizosphere and non-rhizosphere soil of Emei fir in Gongga Mountain [J]. J Appl Environ Biol, 27(5): 1130-1138. [熊文君, 祝贺, 李家宝, 等, 2021. 贡嘎山峨眉冷杉根际、非根际土壤细菌群落的时空分布及影响因素 [J]. 应用与环境生物学报, 27(5): 1130-1138. ]
参考文献
XU P, RONG XY, LIU CH, et al. , 2022. The impact of extreme drought on fungal communities and ecological networks in temperate desert soil [J]. Biodivers Sci, 30(3): 70-83. [徐鹏, 荣晓莹, 刘朝红, 等, 2022. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响 [J]. 生物多样性, 30(3): 70-83. ]
参考文献
YAN SY, 2020. Soil enzyme activity and soil nutrient characteristics of wetland pine forests of different ages [J]. J For Environ, 40(1): 24-29. [严绍裕, 2020. 不同林龄湿地松林土壤酶活性与土壤养分特征 [J]. 森林与环境学报, 40(1): 24-29. ]
参考文献
YANG P, ZHAI YP, ZHAO X, et al. , 2020. Effect of interaction between arbuscular mycorrhizal fungi and Rhizobium on Medicago sativa rhizosphere soil bacterial community structure and PICRUSt functional prediction [J]. J Microbiol, 47(11): 3868-3879. [杨盼, 翟亚萍, 赵祥, 等, 2020. 丛枝菌根真菌和根瘤菌互作对苜蓿根际土壤细菌群落结构的影响及PICRUSt功能预测分析 [J]. 微生物学通报, 47(11): 3868-3879. ]
参考文献
YANG XC, ZHU K, LOIK ME, et al. , 2021. Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe [J]. Geoderma, 384: 114812.
参考文献
ZHANG B, KONG W, WU N, et al. , 2016. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China [J]. J Basic Microb, 56(6): 670-679.
参考文献
ZHANG C, LIU GB, XUE S, et al. , 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau [J]. Soil Biol Biochem, 97: 40-49.
参考文献
ZHANG SM, HUANG YM, NI YX, et al. , 2018. Effects of artificial forest and grass on soil fungal community at southern Ningxia Mountain [J]. J Environ Sci-Chin, 38(4): 1449-1458. [张树萌, 黄懿梅, 倪银霞, 等, 2018. 宁南山区人工林草对土壤真菌群落的影响 [J]. 中国环境科学, 38(4): 1449-1458. ]
参考文献
ZHANG T, LIN L, XIAO H, et al. , 2018. Research on occurrence and development of pasture drought events in alpine grassland using the drought threshold [J]. Nat Hazards Earth Syst Sci, 305(9): 1-18.
参考文献
ZHOU ZJ, LUO CS, TAO YH, et al. , 2022. Characteristics of soil enzyme activity and its correlation with physicochemical factors in the Beihai Spartina alterniflora wetland [J]. J Ocean Univ Chin, 42(6): 97-103. [周泽建, 罗昌盛, 陶玉华, 等, 2022. 北海互花米草湿地土壤酶活性特征及与理化因子相关性 [J]. 广东海洋大学学报, 42(6): 97-103. ]
目录contents

    摘要

    为了解喀斯特地区土壤生物活性的季节变化及其影响因素,该文以檵木群落老龄林阶段根际和非根际土壤微生物群落为研究对象,探讨其酶活性变化以及与环境因子的关系。结果表明:(1) 雨季时,根际土壤pH值、有机质、全碳、全氮、全钾、全磷含量和碱性磷酸酶、过氧化氢酶、脲酶活性低于非根际土壤,说明根际土壤养分淋失更严重且影响相关酶活性,旱季变化相反是根际土壤为供植物健康生长所采取的养分富集策略。(2) 根际和非根际土壤真菌多样性为旱季显著高于雨季,非根际土壤细菌多样性为雨季显著高于旱季,但根际土壤细菌多样性季节差异不明显;无论旱季还是雨季,根际和非根际土壤优势真菌门为子囊菌门(Ascomycota)、被孢霉门(Mortierellomycota)和担子菌门(Basidiomycota),优势细菌门为放线菌门(Actinobacteriota)、变形菌门(Proteobacteria)、酸杆菌门(Acidobacteriota);季节变化对根际和非根际土壤微生物群落结构影响差异显著。(3) 不同季节下根际和非根际土壤微生物群落的主导因子不同,雨季时,根际土壤为pH、过氧化氢酶和碱性磷酸酶活性,非根际土壤为过氧化氢酶、碱性磷酸酶、纤维素酶活性和全钾含量;旱季时,根际土壤为过氧化氢酶活性和土壤含水量,非根际土壤为纤维素酶和蔗糖酶活性;土壤酶活性与碳、氮、磷、钾及土壤含水量显著相关。(4) 与细菌相比,根际和非根际土壤真菌功能对季节变化的响应更敏感。综上表明,根际和非根际土壤微生物群落及酶活性在雨季和旱季时所采取的适应性策略明显不同,这为喀斯特地区植被恢复和土壤演替提供了理论参考。

    Abstract

    To understand the seasonal changes and influencing factors of soil biological activity in karst areas, we investigated the changes in rhizosphere and non-rhizosphere soil microbial communities and enzyme activity of the Loropetalum chinense community in the aged forest stage of karst areas, as well as their relationships with environmental factors. The results were as follows: (1) During the rainy season, the pH value, organic matter, total carbon, total nitrogen, total potassium, total phosphorus contents, and alkaline phosphatase, catalase, and urease activities of rhizosphere soil were lower than those of non-rhizosphere soil, indicating that nutrient leaching in rhizosphere soil was more severe and affected the activity of related enzymes. In contrast, the changes in dry season were nutrient enrichment strategies adopted by rhizosphere soil for healthy plant growth. (2) The diversities of fungi in rhizosphere and non-rhizosphere soils were both significantly higher in the dry season than in the rainy season; the bacterial diversity of non-rhizosphere soil was significantly higher in the rainy season than in the dry season, but the seasonal differences in bacterial diversity of rhizosphere soil were not significant. Regardless of the dry and rainy seasons, the dominant fungal phyla in rhizosphere and non-rhizosphere soils were Ascomycota, Mortierellomycota, and Basidiomycota, while the dominant bacterial phyla were Actinobacteriota, Proteobacteria, and Acidobacteriota. The seasonal changes had significant differences in the structure of microbial communities in rhizosphere and non-rhizosphere soils. (3) The dominant factors of rhizosphere and non-rhizosphere soil microbial communities varied in different seasons. During the rainy season, the rhizosphere soil exhibited pH, catalase and alkaline phosphatase activities, while non-rhizosphere soil exhibited catalase, alkaline phosphatase, cellulase activities, and total potassium content; during the dry season, the rhizosphere soil exhibited catalase activity and soil water content, while non-rhizosphere soil exhibited cellulase and sucrase activity. In addition, soil enzyme activity was significantly correlated with carbon, nitrogen, phosphorus, potassium, and soil water content. (4) Compared to bacteria, fungal functions in rhizosphere and non-rhizosphere soils were more sensitive to seasonal changes. In summary, the adaptive strategies adopted for microbial communities and enzyme activities in rhizosphere and non-rhizosphere soils during the rainy and dry seasons are significantly different. The research results provide theoretical references for vegetation restoration and soil succession in karst areas.

  • 根际是连接植物-土壤-微生物之间相互作用的最重要区域,也是物质和能量循环的场所,与非根际土壤间差异性明显(Xia et al.,2022)。根际土壤酶和微生物群落对环境变化十分敏感,能更快地响应旱、雨季节变化导致的土壤变化(Thakur et al.,2019)。旱、雨季变化使得地表土壤一直经历干、湿循环作用,不仅通过改变土壤水分直接影响土壤酶活性和土壤微生物群落(Yang et al.,2021),还通过影响植物群落和其他土壤理化性质对土壤酶活性和微生物群落产生间接影响(Lu et al.,2019)。广西是我国典型喀斯特地貌代表之一,属热带、亚热带季风气候,旱、雨季降水差异极大。喀斯特地区土层浅薄,土壤富钙且储水力差,对气候变化响应敏感且承受力弱(陈燕丽等,2022),其脆弱的生态系统一旦遭受破坏,将会面临植被易退化、难修复等严重石漠化生态问题。Wang等(2023)研究表明,喀斯特石漠化演变是多种因素综合作用的结果,与气候变化关系的探究目前主要集中在宏观层面,若细化到林、草、微生物、动物、土壤养分对月份、季节气候因子的响应研究,则将有助于人们在微观层面上对石漠化演变和气候作用机制更深入了解。目前,国内外已有学者对季节变化下喀斯特生态系统的调控进行研究。霍灿灿等(2022)研究发现广西喀斯特区生长的山核桃叶片生理特性随季节变化存在显著差异,随着不同环境因子变化表现出不同的适应机制;Wu等(2020)研究表明极端气候事件会显著降低喀斯特洼地土壤中的碳氮储量;Leitner等(2020)研究表明全球气候变化下对中欧喀斯特地区温带山地森林的NO3-淋出容易受到夏季干旱的影响;Sheng等(2016)研究表明湿季水分的再分配和干季蒸散发的空间变化是控制露头周围土壤水分格局的因素等。但是,对喀斯特区季节变化下根际土壤研究鲜有报道。因此,从植物根际和非根际土壤理化性质、酶活性与微生物之间的动态变化和关联性对旱、雨季的响应规律展开研究有助于深入理解植被和土壤生态系统的调节机制。

  • 檵木(Loropetalum chinensis)作为喀斯特生境植被恢复的优势木本植物之一,在防治喀斯特石山石漠化、维持物种多样性和生态系统稳定等方面均有重要的生态学意义(盘远方等,2023)。目前,相关檵木的研究较多关注植物本身的变化,如药用价值(Song et al.,2023)、凋落物分解(Qin et al.,2017)、叶性状(Cai et al.,2023)等,而对檵木群落土壤生物因子的研究鲜有报道。因此,本文以檵木群落老龄林根际和非根际土壤为研究对象,采用Illumina高通量测序技术通过对雨、旱季的土壤理化性质、酶活性及微生物结构与多样性指标进行相关性分析,拟探讨:(1)根际和非根际土壤理化性质、酶活性及微生物在旱季和雨季的变化情况;(2)旱季和雨季,根际和非根际土壤生物与非生物因子间的相互作用;(3)旱、雨季节下介导檵木根际和非根际土壤微生物群落和酶活性变化主要环境因子的差异。本研究结果有助于完善喀斯特地区土壤生态系统在微观层面上应对季节变化的理论研究体系,为该地区石漠化治理提供科学依据。

  • 1 研究区概况

  • 研究地位于广西壮族自治区桂林市阳朔县兴坪码头附近(110°31′ E、24°55′ N),处于广西东北部。典型的岩溶地貌,土壤结构简单,由白云岩、石灰岩风化形成的石灰土,土壤发育不全,土层较薄,深浅不一。属中亚热带湿润季风气候,气候温和,海拔100~500 m,年均气温18.9℃,最冷的1月平均气温7.8℃,最热的7月平均气温28℃;雨量充沛,年均降水量1 949.5 mm,降水量年分配不均,秋、冬干燥少雨;光照充足,全年无霜期300 d,年均蒸发量1 490~1 905 mm。本研究中檵木群落主要分布在山坡阳面(坡度15°~25°),呈集群分布。境内植物资源丰富,灌木层主要有楠藤(Mussaenda erosa)、子楝树(Decaspermum gracilentum)、山合欢(Albizia kalkora)、鱼骨木(Canthium dicoccum)和檵木(Loropetalum chinense),乔木层主要有桂花(Osmanthus fragrans)、枫香树(Liquidambar formosana)、南酸枣(Choerospondias axillaris)和檵木。

  • 2 材料与方法

  • 2.1 供试材料

  • 根据研究区气象站点对2018—2022年内雨季(5—7月)和旱季(8—10月)降水量的检测数据(图1),整个雨季为6月降雨量达到最高和整个旱季为10月降雨量达到最低。因此,选择在6月和10月于研究区内采集土样进行研究,并选取重要值≥1的物种进行采样测量。

  • 2.2 土样采集与处理

  • 2.2.1 土样采集

  • 研究区内设置3个20 m × 20 m的大样地(每个样地间距>50 m),每个大样地内设置5个5 m × 5 m的小样地(每个样方间距>20 m)。分别于雨季(2022年6月)和旱季(2022年10月)进行土样采集,每个土样设3个重复。先将檵木周围土壤表面可见的石块和植物残留物清理干净,后用铲子将根部四周的土壤下挖0~20 cm,采用“抖落法”收集附着于细根上的根际土壤(Li et al.,2023),并进行混合作为根际混合样;非根际土则在样地内采用“S”型采样法取样,采集0~20 cm深度的檵木非根际土壤混成一个土样。根际和非根际土壤采样的每个小样点的采土深度、数量力求一致,将采集的土样分别装入自封袋,编号后带回实验室。

  • 2.2.2 样品保存

  • 对采集的土壤样品去除动植物残体、石砾等其他杂物,过2 mm(10目)土筛后分成3部分备用:第一部分,用于测定土壤酶活性的新鲜土样放于4℃冰箱保存;第二部分,用于分析土壤微生物群落结构和多样性的新鲜土样放于超低温冰箱(-80℃)保存;第三部分,用于测定土壤理化性质的土样经风干后研磨过0.125 mm(100目)土筛后常温下保存。

  • 2.3 土壤指标测定

  • 2.3.1 土壤理化性质测定(鲍士旦,2000)

  • 土壤含水量(soil water content,SWC)用烘干法测定;土壤pH值用pH计(Mettler-Toledo,S40 SevenMultiTM, Greifensee,Switzerland)测量,水土比为2.5∶1(m/V);土壤全碳(total carbon,TC)、全氮(total nitrogen,TN)含量用过100目筛的风干土用元素分析仪直接测定;土壤有机质(soil organic matter,SOM)含量用重铬酸钾稀释热法测定;土壤全磷(total phosphorus,TP)含量采用HClO4-H2SO4熔融——钼锑抗比色法测定;土壤全钾(total potassium,TK)含量用NaOH熔融——火焰光度计法测定。

  • 2.3.2 土壤酶活性测定(Li et al.,2016)

  • 土壤蔗糖酶(sucrase,SUC)、纤维素酶(cellulase,CEL)活性用3,5-二硝基水杨酸比色法测定;碱性磷酸酶(alkaline phosphatase,ALP)活性用磷酸苯二钠比色法测定;脲酶(urease,URE)活性用苯酚钠—次氯酸钠比色法测定;过氧化氢酶(catalase,CAT)活性用胞外酶的方法测定。

  • 2.3.3 土壤微生物群落组成和多样性分析

  • 微生物多样性云分析采用高通量测序技术和当前主流的扩增子测序数据降噪方法DADA2/Deblur,对16S/18S/ITS/功能基因等特定区段的高通量测序序列进行错误校正,获得每个样本的ASV代表序列及丰度表,基于序列降噪结果进行微生物多样性分析。完成基因组DNA抽提后用1%琼脂糖凝胶检测DNA完整性,用NanoDrop2000检测DNA的纯度和浓度。细菌16S rRNA基因V3+V4区引物为338F(5′-ACTCCTACGGGAGGCAGCA-3)和 806R(5′-GGACTACHVGGGTWTCTAAT-3′),真菌18S rRNA 基因ITS1区引物为ITS1F(5′-CTTGGTCATTTAGAGGAAGTAA-3′)和ITS2(5′-GCTGCGTTCTTCATCGATGC-3′)。在引物末端加上测序接头进行PCR扩增,并对其产物进行纯化、定量和均一化构建PE文库,将建好的文库先进行文库质检,质检合格的文库用Illumina(上海美吉生物医药科技有限公司)进行测序。

  • 2.4 数据处理

  • 土壤理化性质及酶活性用Excel2022软件进行数据整理,其差异显著性和相关性用SPSS 23.0软件进行分析。土壤微生物群落组成和多样性分析,先根据测序质量对双端Reads进行质控和过滤,再根据双端Reads之间的overlap关系进行拼接,获得质控拼接后的优化数据。使用序列降噪方法(DADA2/Deblur)等处理优化数据,获得ASV(amplicon sequence variant)代表序列和丰度信息。用R语言(V4.1.3)进行群落组成分析及相关性热图分析等,用QIIME软件,对样本Alpha多样性指数(SOBS、ACE、Chao、Shannon、Shannoneven、Pd)和Beta多样性(PCoA)分析,用Cannoco 5.0软件进行RDA分析,用FUNGuild(v1.0)、PICRUSt2(v2.2.0-b)分别进行真菌、细菌群落的功能预测分析。

  • 3 结果与分析

  • 3.1 土壤含水量及理化性质的旱、雨季节动态

  • 由图2可知,根际和非根际的SWC雨季显著高于旱季(P<0.05),旱季时期SWC约占雨季的50%;无论旱季还是雨季,SWC含量均表现为非根际土高于根际土。

  • 檵木群落根际和非根际土壤pH、SOM、TC、TN、TP和TK含量对旱、雨季节变化表现出显著性差异(P<0.05,图3)。雨季根际土偏弱酸性,pH约6.78;旱季根际土偏弱碱性,pH约7.15,而非根际土都偏弱碱性,无季节性差异(P>0.05)。雨季,土壤TC、TN、TK、TP、SOM的含量均表现为非根际土高于根际土,旱季则反之。根际和非根际SOM均为雨季高于旱季,而土壤TP含量为旱季高于雨季;非根际土壤TC、TN、TK含量雨季高于旱季,而根际土壤则相反。

  • 3.2 土壤微生物及酶活性的旱、雨季节动态

  • 3.2.1 土壤酶活性分析

  • 由图4可知,无论旱季还是雨季,土壤SUC、CEL活性为根际土高于非根际土,而土壤ALP、CAT活性则相反;雨季,土壤URE活性为根际土低于非根际土,旱季则反之。旱、雨季节变化对土壤酶活性的影响相对显著(P<0.05)。根际土壤SUC、CEL活性为雨季高于旱季,而URE、ALP活性则相反;非根际土壤SUC、CEL、URE和ALP活性都为雨季高于旱季,而根际和非根际土壤CAT活性为旱季高于雨季。

  • 3.2.2 土壤微生物多样性分析

  • 由表1可知,无论旱季还是雨季,真菌和细菌多样性变化均表现为根际土显著高于非根际土(P<0.05)。此外,根际和非根际土壤真菌多样性变化均表现为旱季显著高于雨季;非根际土壤细菌多样性变化表现为雨季显著高于旱季,而根际土壤细菌多样性旱、雨季节变化不明显(P>0.05),说明根际土壤细菌群落更稳定、更复杂,从而导致较低的微生物代谢活动。

  • 本研究基于BrayCurtis距离的主坐标分析(principal coordinate analysis,PCoA)显示,季节变化对根际和非根际土壤微生物群落结构影响差异显著(P<0.05),能够解释真菌群落结构差异的76.65%(图5:A)和细菌群落结构差异的67.48%(图5:B)。

  • 3.2.3 土壤微生物群落组成

  • 在门水平上,无论旱季还是雨季,根际与非根际土壤真菌群落的优势菌群是子囊菌门、被孢霉门和担子菌门。担子菌门的相对丰度为非根际土高于根际土,而被孢霉门和罗兹菌门(Rozellomycota)则反之。季节变化对真菌群落组成丰度变化影响显著(P<0.05)。根际和非根际土壤被孢霉门的相对丰度为雨季高于旱季;根际土壤子囊菌门的相对丰度为旱季高于雨季;根际土壤担子菌门的相对丰度为雨季高于旱季,而非根际土反之(图6:A)。

  • 在门水平上,无论旱季还是雨季,根际与非根际土壤细菌群落的优势菌群是放线菌门、变形菌门、酸杆菌门。变形菌门的相对丰度根际土高于非根际土,而放线菌门相反。季节变化对细菌群落组成丰度变化影响显著(P<0.05)。根际和非根际土壤变形菌门的相对丰度为雨季高于旱季,而酸杆菌门相反(图6:B)。根际土壤放线菌门的相对丰度为旱季高于雨季,而非根际土相反。这说明植物根系可根据其自身的生命活动选择性地改变(提高或降低)某些细菌的相对丰度或多样性,形成更有利于其自身生长发育的微生物群落结构。

  • 3.3 土壤理化性质、微生物及酶活性间的相关性

  • 由7可知,雨季,根际土壤ALP与TN、TP呈显著正相关,与TK呈极显著正相关,URE与TC呈显著正相关;根际土壤CAT与SWC、TK呈显著负相关,与TP呈极显著负相关;非根际土壤URE与SWC、TC、TK呈显著正相关,与TN呈极显著正相关。旱季,根际土壤SUC与SWC呈显著正相关,根际土壤CEL与SOM呈显著负相关;非根际土壤SUC与pH呈显著正相关,TK与URE、ALP呈显著正相关,CAT与TN呈极显著正相关。可见,根际和非根际土壤因子之间相互作用的活跃性雨季强于旱季,与土壤水分变化密切相关。

  • 冗余分析(redundancy analysis,RDA)结果(图8)表明,根际和非根际土壤的环境因子对真菌和细菌群落结构变异的总解释度分别为64.48%、63.58%。其中,SWC、CEL、CAT、CEL驱动土壤真菌落结构发生分离(图8:A)。pH、TK、SWC、SUC、CAT、ALP、CEL导致细菌群落结构的差异(图8:B)。这表明真菌和细菌群落结构受到不同环境因素的影响。

  • 由图9可知,雨季,影响根际和非根际土壤真菌群落变化的主要环境因子是CAT、ALP,均与土壤真菌群落呈正相关。旱季,驱动根际土壤真菌群落变化的关键因子是CAT,与土壤真菌被孢霉门和罗兹菌门呈负相关;驱动非根际土壤真菌群落变化的关键因子是CEL,与土壤真菌群落呈正相关。总体上,季节变化下影响根际和非根际土壤真菌群落结构的环境因子差异显著(P<0.05),土壤酶活性在调节真菌群落变化中占主要作用。

  • 不同季节影响根际和非根际土壤细菌群落结构的环境因子差异显著(P<0.05,图10)。雨季,影响根际土壤细菌群落变化的主要因子是pH,与土壤细菌群落多呈负相关;影响非根际土壤细菌群落变化的主要因子是ALP、CEL和TK,ALP与绿弯菌门(Chloroflexi)和浮霉菌门(Planctom-ycetota)呈正相关,CEL与放线菌门呈负相关,TK与细菌群落呈正相关。旱季,影响根际土壤细菌群落变化的主要因子是SWC,与土壤细菌群落多呈负相关,影响非根际土壤细菌群落变化的主要因子是SUC,与放线菌门呈负相关,与绿弯菌门和芽单胞菌门(Gemmatimonadota)呈正相关。土壤理化和酶活性在调节细菌群落变化中均占主要作用。

  • 3.4 根际和非根际土壤微生物功能预测

  • 由图11可知,旱、雨季节变化对根际和非根际土壤真菌群落功能的影响更为显著(P<0.05)。无论根际土还是非根际土,土壤真菌中营腐生功能的菌群占比为雨季大于旱季,说明雨季时土壤腐殖质分解速率加快。然而,细菌群落功能的季节性变化并不明显(P>0.05),表明真菌群落功能对季节变化响应更为敏感。

  • 4 讨论

  • 4.1 季节变化对根际和非根际土壤理化性质的影响

  • 本研究结果显示,SWC在雨季和旱季均为非根际土高于根际土,与Zhang等(2018)研究结果不一致,是因为喀斯特区独特的地上地下二元结构,水容易通过落水洞、管道与裂隙流失(卢中科等,2023),植物为维持自生长形成发达的根系,导致根部土层更浅薄,土壤蓄水能力更弱。雨季根际土偏弱酸性,可能是因为土壤含水量高、通透性差,在缺氧条件时林下枯枝落叶的主要分解者产生有机酸溶于水输入土壤中使pH值降低(王杰等,2014);旱季根际土偏弱碱性,与喀斯特地区土壤富钙密切相关;而非根际土都偏弱碱性,无季节性差异,说明土壤水热条件改变对非根际土壤pH的影响较小。旱季变化规律相反是根际土壤应对干旱胁迫的一种适应策略,协调内部机制使养分富集,供植物健康生长。根际和非根际SOM均为雨季高于旱季,而土壤TP含量则反之。Matías等(2011)研究表明,降水多使得凋落物分解效率高,土壤有机质增加。P作为喀斯特区植被生长的限制性因素之一,降水可能会使P淋失严重(Ma et al.,2023)。

  • 图1 研究区2018—2022年的5—10月月平均降水量

  • Fig.1 Monthly average precipitation from May to October in the study area from 2018 to 2022

  • 图2 雨、旱季根际和非根际土壤含水量的差异

  • Fig.2 Difference of rhizosphere soil and non-rhizosphere soil water contents in rainy and dry seasons

  • 图3 根际和非根际土壤的基本理化性质

  • Fig.3 Basic physical and chemical properties of rhizosphere and non-rhizosphere soils

  • 图4 根际和非根际土壤(新鲜土壤)的酶活性

  • Fig.4 Enzyme activities in rhizosphere and non-rhizosphere soils (fresh soils)

  • 4.2 季节变化对根际和非根际土壤微生物及酶活性的影响

  • 季节变化对土壤微生物及酶活性水平波动的影响占主导地位。本研究中,根际土壤SUC、CEL活性和非根际土壤SUC、CEL、URE和ALP活性都为雨季高于旱季,适当水分范围内酶活性较高,土壤物质与能量代谢旺盛;而根际和非根际土壤CAT活性在雨季降低,可能是因水分过多而形成厌氧环境,从而抑制酶活性。本研究高通量测序结果表明,无论旱季还是雨季,根际土壤真菌和细菌多样性均显著高于非根际土,这与Steinauer等(2016)的研究结果相反,说明檵木的根系活动导致其根际土壤真菌和细菌群落出现一定的富集现象。根际和非根际土壤真菌多样性变化均表现为旱季显著高于雨季,这是因为土壤含水量减少,好氧真菌活动增强,促使土壤有机质分解速率加快,有利于增加土壤真菌数量及多样性(张树萌等,2018);而根际土壤细菌多样性旱、雨季节变化不明显,说明根际相比于非根际土壤细菌群落更稳定、更复杂,导致较低的微生物代谢活动(熊文君等,2021)。本研究根际与非根际土壤优势真菌群与Song等(2021)的研究结果一致。无论旱季还是雨季,被孢霉门和罗兹菌门的丰度为根际土高于非根际土,可能是因为其具有促进植物根系吸收养分、抑制病原菌等功能(Miao et al.,2016),在植物根际中占比较大。根际和非根际土壤被孢霉门的丰度在雨季较高,而子囊菌门的丰度在旱季较高,说明不同真菌群具有不同的生活习性。一方面,适宜的土壤水分会增强部分土壤生物活性;另一方面,土壤水分低、通气条件好的环境适合部分土壤生物生存与繁殖(Challacombe et al.,2019);根际土壤担子菌门的丰度为雨季较高,而非根际土反之,原因是担子菌门营腐生或寄生,在潮湿的土壤中分解木质纤维素(徐鹏等,2022),并且可与植物共生形成菌根,提高植株对养分的吸收和利用。此外,本研究中根际和非根际土壤优势细菌群与Wang等(2020)研究结果一致。无论旱季还是雨季,变形菌门的丰度在根际土中较高,放线菌门则相反,是因为变形菌门属富营养菌,能够增强土壤固氮能力,土壤有机质含量越高,其生长状况越好(Zhang et al.,2016)。放线菌门具有分解几丁质、纤维素和脂类等难降解有机物的功能(Kalam et al.,2022),非根际土表层覆盖的枯枝落叶被降解后用于土壤微环境生物生存。根际和非根际土壤变形菌门的丰度在雨季较高,酸杆菌门则相反。吴宪等(2020)研究表明,变形菌门参与土壤有机质、氮、磷循环等过程,维持土壤生态稳定。酸杆菌门为寡营养细菌门,可降解结构复杂的纤维素和木质素,为土壤提供养分。因此,雨季土壤水热条件改变,加快土壤有机物料分解与吸收,变形菌门丰度增加参与养分循环。旱季土壤养分含量降低,为维持植物生长,土壤微生物群落适当调整,增加酸杆菌门丰度为土壤提供营养源。

  • 表1 根际和非根际土壤微生物群落多样性指数

  • Table1 Microbial community diversity indices of rhizosphere and non-rhizosphere soils

  • 注:与图3的图注相同。

  • Note: The same with Fig.3.

  • 图5 根际和非根际土壤中真菌 (A)和细菌 (B)群落的主坐标分析

  • Fig.5 Principal coordinate analysis of fungal (A) and bacterial (B) communities in rhizosphere and non rhizosphere soils

  • 图6 根际和非根际土壤中真菌(A)和细菌(B)群落组成

  • Fig.6 Composition of fungal (A) and bacterial (B) communities in rhizosphere and non-rhizosphere soils

  • 图7 根际和非根际土壤理化性质与土壤酶活性的相关性分析

  • Fig.7 Correlation analysis between physical and chemical properties of rhizosphere and non-rhizosphere soils and soil enzyme activities

  • 图8 真菌(A)和细菌(B)群落结构和环境因素的RDA分析

  • Fig.8 RDA analysis of fungal (A) and bacterial (B) community structures and environmental factors

  • 通过对土壤真菌和细菌群落进行FUNGuild和PICRUSt2功能预测可以更加直观的认识其在土壤微生态环境中的重要作用。根际和非根际土壤真菌中营腐生功能的菌群在雨季占比较大。这可能是雨季时土壤水分增加,表层腐败物质增多,腐生真菌发挥作用提供更多养分(李茂森等,2022)。此外,根际和非根际土壤细菌的新陈代谢功能通路相对丰度最高,土壤细菌可通过代谢活动参与土壤养分循环与转化,进而促进植物生长(杨盼等,2020)。

  • 4.3 季节变化对根际和非根际土壤理化、酶和微生物间相关性的影响

  • 土壤微生物及酶活性与土壤理化因子密切相关。本研究的相关性和冗余分析结果表明,雨季非根际土壤URE与SWC、TC、TN、TK呈显著正相关。URE催化尿素水解成氨,促进植株吸收,可反映土壤的供氮能力(Nevins et al.,2021);土壤脲酶活性与有机质和速效钾含量呈显著正相关(潘语卓等,2023),与本研究结果一致。根际土壤ALP与TN、TP、TK呈显著正相关,这与严绍裕(2020)研究结果相似,反映出土壤碳氮磷钾在土壤酶活性变化中发挥重要作用。土壤CAT、ALP活性是影响根际和非根际土壤真菌群落变化的主要因子,与土壤真菌呈正相关。这是由于微生物群落与土壤酶活性高度的自相关性,CAT、ALP分别参与土壤碳、氮、磷循环,酶活性促进土壤养分相互促进(Wang et al.,2015)。土壤pH在根际土壤细菌群落变化中占主导作用,与土壤细菌群落多呈负相关。Stewart等(2017)研究显示,植物凋落物使根际土壤pH酸化,pH与土壤微生物多样性呈负相关,土壤pH与一些土壤特性密切相关,可能会通过影响土壤条件(养分、水分状况等)共同驱动微生物群落的变化;土壤ALP、CEL活性和TK含量在非根际土壤细菌群落变化中起主要作用,APL与绿弯菌门和浮霉菌门呈正相关,原因是绿弯菌门和浮霉菌门促进土壤碳、氮和磷循环,并且土壤C、N、P循环正向作用于土壤ALP活性,彼此间联系密切(Hou et al.,2019);CEL与放线菌门呈负相关,TK与细菌群落呈正相关,楚海燕等(2019)研究表明土壤细菌可以释放植物可利用的钾、磷和其他微量元素。旱季,根际土壤CEL与SOM呈显著负相关,可能与干旱胁迫抑制土壤CEL活性和植物生长营养需求有关;非根际土壤SUC与pH呈显著正相关,周泽建等(2022)研究表明互花米草土壤有机碳含量与蔗糖酶活性呈显著正相关,而碳源的摄入能显著提高土壤pH值。土壤CAT活性是影响根际土壤真菌变化的主要因子,与土壤真菌被孢霉门和罗兹菌门呈负相关,主要原因是CAT活性受土壤水分影响显著,土壤水分减少在一定程度上对CAT活性起到激活作用(Zhang et al.,2016)。而土壤真菌被孢霉门和罗兹菌门活性减弱与土壤环境条件改变密切相关,如养分、水分含量下降及根系分泌物等(肖方南等,2021);土壤CEL活性是影响非根际土壤真菌变化的主要因子,与土壤真菌呈正相关。土壤CEL和真菌活性均下降,这与土壤中碳含量减少有关,已被证实(Men et al.,2023),土壤CEL活性影响土壤碳素代谢,提供可利用的碳源营养物质。旱季胁迫使得土壤养分匮乏,直接或间接影响富营养型真菌的数量和多样性。SWC在根际土壤细菌群落变化占主导作用,与土壤细菌群落多呈负相关,说明土壤通透性增强,好氧细菌和寡营养型细菌占比较大。土壤SUC活性在非根际土壤细菌群落变化中起主要作用,与放线菌门呈负相关。Han等(2021)研究发现放线菌门对干旱具有较强的抵抗性,较差土壤环境质量会抑制土壤生物活性,需要调整细菌丰度来分解提供植物及自身生长所需的营养物质。

  • 图9 主要真菌与环境因子和酶活性的Pearson相关网络图

  • Fig.9 Pearson correlation network diagram of main fungi with environmental factors and enzyme activities

  • 图10 主要细菌与环境因素和酶活性的Pearson相关网络图

  • Fig.10 Pearson correlation network diagram of main bacteria with environmental factors and enzyme activities

  • 图11 FUNGuild和PICRUSt2预测真菌(A) 和细菌(B)的功能

  • Fig.11 FUNGuild and PICRUSt2 predicted the function of fungi (A) and bacteria (B)

  • 5 结论

  • 旱、雨季节变化对根际和非根际土壤pH、SWC、SOM、TC、TN、TP、TK、SUC、CEL、CAT、URE和ALP的影响差异显著。其中,雨季根际土偏弱酸性,旱季根际土偏弱碱性,而非根际土都偏弱碱性,无季节性差异。旱季显著提高根际和非根际土壤真菌多样性,雨季显著提高非根际土壤细菌多样性,但根际土壤细菌多样性旱、雨季节变化不明显。无论旱季还是雨季,根际和非根际土壤真菌群落的优势类群为子囊菌门、被孢霉门和担子菌门,细菌群落的优势类群为放线菌门、变形菌门、酸杆菌门。虽然群落组成相似,但在不同季节和土壤类型的影响下各菌门相对丰度差异显著。根际和非根际土壤生物与非生物因子间相互作用的活跃性雨季强于旱季。土壤酶活性与C、N、P、K及SWC含量显著相关。季节变化下驱动根际和非根际土壤真菌和细菌群落发生变化的关键因子差异显著,土壤CAT、ALP和CEL主要影响真菌群落,土壤pH、ALP、CEL、TK、SUC和SWC主要影响细菌群落。旱、雨季节变化对根际和非根际土壤真菌群落功能的影响较为显著,而对细菌群落功能的影响不显著,可能是因为真菌对各种环境变化更敏感。

  • 参考文献

    • BAO SD, 2000. Soil agrochemical analysis [M]. Beijing: China Agriculture Press. [鲍士旦, 2000. 土壤农化分析 [M]. 北京: 中国农业出版社. ]

    • CAI WQ, ZHANG DM, ZHANG X, et al. , 2023. Leaf color change and photosystem function evaluation under heat treatment revealed the stress resistance variation between Loropetalum chinense and L. chinense var. rubrum [J]. PeerJ, 11: e14834.

    • CHALLACOMBE JF, HESSE CN, BRAMER LM, et al. , 2019. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis [J]. BMC Genom, 20(1): 976.

    • CHEN YL, TANG MR, ZHANG H, et al. , 2022. Differences in response of vegetation coverage and net primary productivity to SPEI drought index in karst areas of Guangxi [J]. J Arid Meteorol, 40(6): 1042-1050. [陈燕丽, 唐梅蓉, 张会, 等, 2022. 广西喀斯特地区植被覆盖度和净初级生产力对SPEI干旱指数的响应差异 [J]. 干旱气象, 40(6): 1042-1050. ]

    • CHU HY, LI RN, LI JW, et al. , 2019. The impact of subtropical forest transformation on soil microbial community structure [J]. J Appl Environ Biol, 25 (1): 23-28. [楚海燕, 李若南, 李靖雯, 等, 2019. 中亚热带森林转换对土壤微生物群落结构的影响 [J]. 应用与环境生物学报, 25(1): 23-28. ]

    • HAN W, WANG G, LIU J, et al. , 2021. Effects of vegetation type, season, and soil properties on soil microbial community in subtropical forests [J]. Appl Soil Ecol, 158: 103813.

    • HOU XL, HAN H, TIGABOU M, et al. , 2019. Changes in soil physico-chemical properties following vegetation restoration mediate bacterial community composition and diversity in Changting, China [J]. Ecol Eng, 138: 171-179.

    • HUO CC, ZHAO LJ, ZHU LQ, et al. , 2022. Seasonal dynamics of physiological characteristics of Carya cathayensis leaves in karst regions of Guangxi [J]. Tropical Agric Sci, 42(9): 44-50. [霍灿灿, 招礼军, 朱栗琼, 等, 2022. 广西喀斯特区山核桃叶片生理特性的季节动态 [J]. 热带农业科学, 42(9): 44-50. ]

    • KALAM S, BASU A, PODILE AR, 2022. Difficult-to-culture bacteria in the rhizosphere: the underexplored signature microbial groups [J]. Pedosphere, 32(1): 75-89.

    • LEITNER S, THOMAS D, JOHANNES K, et al. , 2020. Legacy effects of drought on nitrate leaching in a temperate mixed forest on karst [J]. J Environ Manage, 262: 110338.

    • LI J, CHENG XY, CHU GX, et al. , 2023. Continuous cropping of cut chrysanthemum reduces rhizospheric soil bacterial community diversity and co-occurrence network complexity [J]. Appl Soil Ecol, 185: 104801.

    • LI MS, WANG LY, YANG B, et al. , 2022. Effect of biochar on the structure and functional prediction of rhizosphere fungal communities in flue-cured tobacco during maturity [J]. J Agric Resour Environ, 39(5): 1041-1048. [李茂森, 王丽渊, 杨波, 等, 2022. 生物炭对烤烟成熟期根际真菌群落结构的影响及功能预测分析 [J]. 农业资源与环境学报, 39(5): 1041-1048. ]

    • LI YF, GENG YQ, ZHOU HJ, et al. , 2016. Comparison of soil acid phosphatase activity determined by different methods [J]. Chin J Eco-Agric, 24(1): 98-104.

    • LU XK, MO JM, ZHANG W, et al. , 2019. Effect of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview [J]. J Trop Subtrop Bot, 27(5): 500-522.

    • LU ZK, ZENG QM, SUN JC, et al. , 2023. Accumulation characteristics and risk assessment of heavy metals in forest soil of karst areas in western Guizhou [J]. J NW For Univ, 38(6): 81-88. [卢中科, 曾钦朦, 孙建昌, 等, 2023. 贵州西部喀斯特地区森林土壤重金属的累积特征及风险评价 [J]. 西北林学院学报, 38(6): 81-88. ]

    • MA YZ, LIU WW, QIAO YZ, et al. 2023. Effects of soil salinity on foxtail millet osmoregulation, grain yield, and soil water utilization under varying water conditions [J]. Agric Water Manage, 284: 108354.

    • MATIAS L, CASTRO J, ZAMORA R, 2011. Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem [J]. Glob Change Biol, 17(4): 1646-1657.

    • MEN XX, BAO Y, WU MH, et al. , 2023. Soil enzyme activities responded differently to short-term litter input manipulation under coniferous and broad-leaved forests in the subalpine area of Southwest China [J]. For Ecol Manage, 546: 121360.

    • MIAO CP, MI QL, QIAO XG, et al. , 2016. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens [J]. J Ginseng Res, 40(2): 127-134.

    • NEVINS CJ, LACEY C, ARMSTRONG S, 2021. Cover crop enzyme activities and resultant soil ammonium concentrations under different tillage systems [J]. Eur J Agr, 126: 126277.

    • PAN YF, ZHUO WH, JIANG Y, et al. , 2023. Spatial distribution pattern and correlation analysis of dominant populations of Cyclobalanopsis glauca in karst rocky mountains of Guilin [J]. Guihaia, 43(3): 527-535. [盘远方, 卓文花, 姜勇, 等, 2023. 桂林岩溶石山青冈优势种群空间分布格局及关联分析 [J]. 广西植物, 43(3): 527-535. ]

    • PAN YZ, QIU ZL, WANG WH, et al. , 2023. Short term effects of mixed tillage and returning ryegrass and sweet potato on soil enzyme activity and nutrients [J]. Jiangsu Agric Sci, 51(16): 230-239. [潘语卓, 邱泽龙, 王伟虎, 等, 2023. 黑麦草和苕子混合翻压还田对土壤酶活性和养分的短期影响 [J]. 江苏农业科学, 51(16): 230-239. ]

    • QIN YH, MA JM, MEI JL, et al. , 2017. Preliminary dynamics of litter decomposition in different recovery stages of Loropetalum chinense community in karst areas of the Lijiang River Basin [J]. Acta Ecol Sin, 37(20): 6792-6799.

    • SHENG L, STEFFEN B, LIANG X, et al. , 2016. Seasonal changes in the soil moisture distribution around bare rock outcrops within a karst rocky desertification area (Fuyuan County, Yunnan Province, China) [J]. Environ Earth Sci, 75(23): 1-10.

    • SONG JF, JIANG ZH, WEI XL, et al. , 2023. Integrated transcriptomics and lipidomics investigation of the mechanism underlying the gastrointestinal mucosa damage of Loropetalum chinense (R. Br. ) and its representative component [J]. Phytomedicine, 114: 154758.

    • SONG X, FANG C, YUAN ZQ, et al. , 2021. Long-Term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment [J]. Fron Environ Sci, 9: 649346.

    • STEINAUER K, JENSEN B , STRECKER T, et al. , 2016. Convergence of soil microbial properties after plant colonization of an experimental plant diversity gradient [J]. BMC Ecol, 16(1): 19.

    • STEWART CE, ROOSENDAAL D, DENEF K, et al. , 2017. Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought [J]. Soil Biol Biochem, 112: 191-203.

    • THAKUR MP, DEL RIM, CESARZ S, et al. , 2019. Soil microbial, nematode, and enzymatic responses to elevated CO2 N fertilization, warming, and reduced precipitation [J]. Soil Biol Biochem, 135: 184-193.

    • WANG J, LI G, XIU WM, et al. , 2014. Effects of nitrogen and water on soil enzyme activity and microbial biomass in Stipa baicalensis steppe, Inner Mongolia North China [J]. J Agric Resour Environ, 31(3): 237-245. [王杰, 李刚, 修伟明, 等, 2014. 氮素和水分对贝加尔针茅草原土壤酶活性和微生物量碳氮的影响 [J]. 农业资源与环境学报, 31(3): 237-245.

    • WANG JQ, JIANG J, CHI YK, , et al. , 2023. Diversity and community structure of typhlocybinae in the typical karst rocky ecosystem, Southwest China [J]. Diversity, 15(3): 387.

    • WANG JQ, SHI XZ, ZHENG CY, et al. , 2020. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest [J]. Sci Total Environ, 755(1): 142449-142478.

    • WANG XB, SONG DL, LIANG GQ, et al. , 2015. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil [J]. Appl Soil Ecol, 96: 265-272.

    • WU FJ, LIU N, HU PL, et al. , 2020. Soil carbon and nitrogen dynamics during vegetation restoration and their responses to extreme water-logging disasters in a typical karst depression [J]. Chin J Eco-Agr, 28(3): 429-437.

    • WU X, WANG R, HU H, et al. , 2020. Response of bacterial and fungal communities to chemical fertilizer reduction combined with organic fertilizer and straw in fluvo-aquic soil [J]. Environ Sci, 41(10): 4669-4681. [吴宪, 王蕊, 胡菏, 等, 2020. 潮土细菌及真菌群落对化肥减量配施有机肥和秸秆的响应 [J]. 环境科学, 41(10): 4669-4681. ]

    • XIA L, ZHAO B Q, LUO T, et al. , 2022. Microbial functional diversity in rhizosphere and non-rhizosphere soil of different dominant species in a vegetation concrete slope [J]. Biotechnol Biotechnol Equip, 36(1): 379-388.

    • XIAO FN, JIANG M, LI YY, et al. , 2021. Community structure and diversity of soil fungi in Tamarix chinensis shrubs in the lower reaches of Tarim River [J]. Arid Land Geogr, 44(3): 759-768. [肖方南, 姜梦, 李媛媛, 等, 2021. 塔里木河下游柽柳灌丛土壤真菌群落结构及多样性分析 [J]. 干旱区地理, 44(3): 759-768. ]

    • XIONG WJ, ZHU H, LI JB, et al. , 2021. The spatiotemporal distribution and influencing factors of bacterial communities in the rhizosphere and non-rhizosphere soil of Emei fir in Gongga Mountain [J]. J Appl Environ Biol, 27(5): 1130-1138. [熊文君, 祝贺, 李家宝, 等, 2021. 贡嘎山峨眉冷杉根际、非根际土壤细菌群落的时空分布及影响因素 [J]. 应用与环境生物学报, 27(5): 1130-1138. ]

    • XU P, RONG XY, LIU CH, et al. , 2022. The impact of extreme drought on fungal communities and ecological networks in temperate desert soil [J]. Biodivers Sci, 30(3): 70-83. [徐鹏, 荣晓莹, 刘朝红, 等, 2022. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响 [J]. 生物多样性, 30(3): 70-83. ]

    • YAN SY, 2020. Soil enzyme activity and soil nutrient characteristics of wetland pine forests of different ages [J]. J For Environ, 40(1): 24-29. [严绍裕, 2020. 不同林龄湿地松林土壤酶活性与土壤养分特征 [J]. 森林与环境学报, 40(1): 24-29. ]

    • YANG P, ZHAI YP, ZHAO X, et al. , 2020. Effect of interaction between arbuscular mycorrhizal fungi and Rhizobium on Medicago sativa rhizosphere soil bacterial community structure and PICRUSt functional prediction [J]. J Microbiol, 47(11): 3868-3879. [杨盼, 翟亚萍, 赵祥, 等, 2020. 丛枝菌根真菌和根瘤菌互作对苜蓿根际土壤细菌群落结构的影响及PICRUSt功能预测分析 [J]. 微生物学通报, 47(11): 3868-3879. ]

    • YANG XC, ZHU K, LOIK ME, et al. , 2021. Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe [J]. Geoderma, 384: 114812.

    • ZHANG B, KONG W, WU N, et al. , 2016. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China [J]. J Basic Microb, 56(6): 670-679.

    • ZHANG C, LIU GB, XUE S, et al. , 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau [J]. Soil Biol Biochem, 97: 40-49.

    • ZHANG SM, HUANG YM, NI YX, et al. , 2018. Effects of artificial forest and grass on soil fungal community at southern Ningxia Mountain [J]. J Environ Sci-Chin, 38(4): 1449-1458. [张树萌, 黄懿梅, 倪银霞, 等, 2018. 宁南山区人工林草对土壤真菌群落的影响 [J]. 中国环境科学, 38(4): 1449-1458. ]

    • ZHANG T, LIN L, XIAO H, et al. , 2018. Research on occurrence and development of pasture drought events in alpine grassland using the drought threshold [J]. Nat Hazards Earth Syst Sci, 305(9): 1-18.

    • ZHOU ZJ, LUO CS, TAO YH, et al. , 2022. Characteristics of soil enzyme activity and its correlation with physicochemical factors in the Beihai Spartina alterniflora wetland [J]. J Ocean Univ Chin, 42(6): 97-103. [周泽建, 罗昌盛, 陶玉华, 等, 2022. 北海互花米草湿地土壤酶活性特征及与理化因子相关性 [J]. 广东海洋大学学报, 42(6): 97-103. ]

  • 参考文献

    • BAO SD, 2000. Soil agrochemical analysis [M]. Beijing: China Agriculture Press. [鲍士旦, 2000. 土壤农化分析 [M]. 北京: 中国农业出版社. ]

    • CAI WQ, ZHANG DM, ZHANG X, et al. , 2023. Leaf color change and photosystem function evaluation under heat treatment revealed the stress resistance variation between Loropetalum chinense and L. chinense var. rubrum [J]. PeerJ, 11: e14834.

    • CHALLACOMBE JF, HESSE CN, BRAMER LM, et al. , 2019. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis [J]. BMC Genom, 20(1): 976.

    • CHEN YL, TANG MR, ZHANG H, et al. , 2022. Differences in response of vegetation coverage and net primary productivity to SPEI drought index in karst areas of Guangxi [J]. J Arid Meteorol, 40(6): 1042-1050. [陈燕丽, 唐梅蓉, 张会, 等, 2022. 广西喀斯特地区植被覆盖度和净初级生产力对SPEI干旱指数的响应差异 [J]. 干旱气象, 40(6): 1042-1050. ]

    • CHU HY, LI RN, LI JW, et al. , 2019. The impact of subtropical forest transformation on soil microbial community structure [J]. J Appl Environ Biol, 25 (1): 23-28. [楚海燕, 李若南, 李靖雯, 等, 2019. 中亚热带森林转换对土壤微生物群落结构的影响 [J]. 应用与环境生物学报, 25(1): 23-28. ]

    • HAN W, WANG G, LIU J, et al. , 2021. Effects of vegetation type, season, and soil properties on soil microbial community in subtropical forests [J]. Appl Soil Ecol, 158: 103813.

    • HOU XL, HAN H, TIGABOU M, et al. , 2019. Changes in soil physico-chemical properties following vegetation restoration mediate bacterial community composition and diversity in Changting, China [J]. Ecol Eng, 138: 171-179.

    • HUO CC, ZHAO LJ, ZHU LQ, et al. , 2022. Seasonal dynamics of physiological characteristics of Carya cathayensis leaves in karst regions of Guangxi [J]. Tropical Agric Sci, 42(9): 44-50. [霍灿灿, 招礼军, 朱栗琼, 等, 2022. 广西喀斯特区山核桃叶片生理特性的季节动态 [J]. 热带农业科学, 42(9): 44-50. ]

    • KALAM S, BASU A, PODILE AR, 2022. Difficult-to-culture bacteria in the rhizosphere: the underexplored signature microbial groups [J]. Pedosphere, 32(1): 75-89.

    • LEITNER S, THOMAS D, JOHANNES K, et al. , 2020. Legacy effects of drought on nitrate leaching in a temperate mixed forest on karst [J]. J Environ Manage, 262: 110338.

    • LI J, CHENG XY, CHU GX, et al. , 2023. Continuous cropping of cut chrysanthemum reduces rhizospheric soil bacterial community diversity and co-occurrence network complexity [J]. Appl Soil Ecol, 185: 104801.

    • LI MS, WANG LY, YANG B, et al. , 2022. Effect of biochar on the structure and functional prediction of rhizosphere fungal communities in flue-cured tobacco during maturity [J]. J Agric Resour Environ, 39(5): 1041-1048. [李茂森, 王丽渊, 杨波, 等, 2022. 生物炭对烤烟成熟期根际真菌群落结构的影响及功能预测分析 [J]. 农业资源与环境学报, 39(5): 1041-1048. ]

    • LI YF, GENG YQ, ZHOU HJ, et al. , 2016. Comparison of soil acid phosphatase activity determined by different methods [J]. Chin J Eco-Agric, 24(1): 98-104.

    • LU XK, MO JM, ZHANG W, et al. , 2019. Effect of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview [J]. J Trop Subtrop Bot, 27(5): 500-522.

    • LU ZK, ZENG QM, SUN JC, et al. , 2023. Accumulation characteristics and risk assessment of heavy metals in forest soil of karst areas in western Guizhou [J]. J NW For Univ, 38(6): 81-88. [卢中科, 曾钦朦, 孙建昌, 等, 2023. 贵州西部喀斯特地区森林土壤重金属的累积特征及风险评价 [J]. 西北林学院学报, 38(6): 81-88. ]

    • MA YZ, LIU WW, QIAO YZ, et al. 2023. Effects of soil salinity on foxtail millet osmoregulation, grain yield, and soil water utilization under varying water conditions [J]. Agric Water Manage, 284: 108354.

    • MATIAS L, CASTRO J, ZAMORA R, 2011. Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem [J]. Glob Change Biol, 17(4): 1646-1657.

    • MEN XX, BAO Y, WU MH, et al. , 2023. Soil enzyme activities responded differently to short-term litter input manipulation under coniferous and broad-leaved forests in the subalpine area of Southwest China [J]. For Ecol Manage, 546: 121360.

    • MIAO CP, MI QL, QIAO XG, et al. , 2016. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens [J]. J Ginseng Res, 40(2): 127-134.

    • NEVINS CJ, LACEY C, ARMSTRONG S, 2021. Cover crop enzyme activities and resultant soil ammonium concentrations under different tillage systems [J]. Eur J Agr, 126: 126277.

    • PAN YF, ZHUO WH, JIANG Y, et al. , 2023. Spatial distribution pattern and correlation analysis of dominant populations of Cyclobalanopsis glauca in karst rocky mountains of Guilin [J]. Guihaia, 43(3): 527-535. [盘远方, 卓文花, 姜勇, 等, 2023. 桂林岩溶石山青冈优势种群空间分布格局及关联分析 [J]. 广西植物, 43(3): 527-535. ]

    • PAN YZ, QIU ZL, WANG WH, et al. , 2023. Short term effects of mixed tillage and returning ryegrass and sweet potato on soil enzyme activity and nutrients [J]. Jiangsu Agric Sci, 51(16): 230-239. [潘语卓, 邱泽龙, 王伟虎, 等, 2023. 黑麦草和苕子混合翻压还田对土壤酶活性和养分的短期影响 [J]. 江苏农业科学, 51(16): 230-239. ]

    • QIN YH, MA JM, MEI JL, et al. , 2017. Preliminary dynamics of litter decomposition in different recovery stages of Loropetalum chinense community in karst areas of the Lijiang River Basin [J]. Acta Ecol Sin, 37(20): 6792-6799.

    • SHENG L, STEFFEN B, LIANG X, et al. , 2016. Seasonal changes in the soil moisture distribution around bare rock outcrops within a karst rocky desertification area (Fuyuan County, Yunnan Province, China) [J]. Environ Earth Sci, 75(23): 1-10.

    • SONG JF, JIANG ZH, WEI XL, et al. , 2023. Integrated transcriptomics and lipidomics investigation of the mechanism underlying the gastrointestinal mucosa damage of Loropetalum chinense (R. Br. ) and its representative component [J]. Phytomedicine, 114: 154758.

    • SONG X, FANG C, YUAN ZQ, et al. , 2021. Long-Term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment [J]. Fron Environ Sci, 9: 649346.

    • STEINAUER K, JENSEN B , STRECKER T, et al. , 2016. Convergence of soil microbial properties after plant colonization of an experimental plant diversity gradient [J]. BMC Ecol, 16(1): 19.

    • STEWART CE, ROOSENDAAL D, DENEF K, et al. , 2017. Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought [J]. Soil Biol Biochem, 112: 191-203.

    • THAKUR MP, DEL RIM, CESARZ S, et al. , 2019. Soil microbial, nematode, and enzymatic responses to elevated CO2 N fertilization, warming, and reduced precipitation [J]. Soil Biol Biochem, 135: 184-193.

    • WANG J, LI G, XIU WM, et al. , 2014. Effects of nitrogen and water on soil enzyme activity and microbial biomass in Stipa baicalensis steppe, Inner Mongolia North China [J]. J Agric Resour Environ, 31(3): 237-245. [王杰, 李刚, 修伟明, 等, 2014. 氮素和水分对贝加尔针茅草原土壤酶活性和微生物量碳氮的影响 [J]. 农业资源与环境学报, 31(3): 237-245.

    • WANG JQ, JIANG J, CHI YK, , et al. , 2023. Diversity and community structure of typhlocybinae in the typical karst rocky ecosystem, Southwest China [J]. Diversity, 15(3): 387.

    • WANG JQ, SHI XZ, ZHENG CY, et al. , 2020. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest [J]. Sci Total Environ, 755(1): 142449-142478.

    • WANG XB, SONG DL, LIANG GQ, et al. , 2015. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil [J]. Appl Soil Ecol, 96: 265-272.

    • WU FJ, LIU N, HU PL, et al. , 2020. Soil carbon and nitrogen dynamics during vegetation restoration and their responses to extreme water-logging disasters in a typical karst depression [J]. Chin J Eco-Agr, 28(3): 429-437.

    • WU X, WANG R, HU H, et al. , 2020. Response of bacterial and fungal communities to chemical fertilizer reduction combined with organic fertilizer and straw in fluvo-aquic soil [J]. Environ Sci, 41(10): 4669-4681. [吴宪, 王蕊, 胡菏, 等, 2020. 潮土细菌及真菌群落对化肥减量配施有机肥和秸秆的响应 [J]. 环境科学, 41(10): 4669-4681. ]

    • XIA L, ZHAO B Q, LUO T, et al. , 2022. Microbial functional diversity in rhizosphere and non-rhizosphere soil of different dominant species in a vegetation concrete slope [J]. Biotechnol Biotechnol Equip, 36(1): 379-388.

    • XIAO FN, JIANG M, LI YY, et al. , 2021. Community structure and diversity of soil fungi in Tamarix chinensis shrubs in the lower reaches of Tarim River [J]. Arid Land Geogr, 44(3): 759-768. [肖方南, 姜梦, 李媛媛, 等, 2021. 塔里木河下游柽柳灌丛土壤真菌群落结构及多样性分析 [J]. 干旱区地理, 44(3): 759-768. ]

    • XIONG WJ, ZHU H, LI JB, et al. , 2021. The spatiotemporal distribution and influencing factors of bacterial communities in the rhizosphere and non-rhizosphere soil of Emei fir in Gongga Mountain [J]. J Appl Environ Biol, 27(5): 1130-1138. [熊文君, 祝贺, 李家宝, 等, 2021. 贡嘎山峨眉冷杉根际、非根际土壤细菌群落的时空分布及影响因素 [J]. 应用与环境生物学报, 27(5): 1130-1138. ]

    • XU P, RONG XY, LIU CH, et al. , 2022. The impact of extreme drought on fungal communities and ecological networks in temperate desert soil [J]. Biodivers Sci, 30(3): 70-83. [徐鹏, 荣晓莹, 刘朝红, 等, 2022. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响 [J]. 生物多样性, 30(3): 70-83. ]

    • YAN SY, 2020. Soil enzyme activity and soil nutrient characteristics of wetland pine forests of different ages [J]. J For Environ, 40(1): 24-29. [严绍裕, 2020. 不同林龄湿地松林土壤酶活性与土壤养分特征 [J]. 森林与环境学报, 40(1): 24-29. ]

    • YANG P, ZHAI YP, ZHAO X, et al. , 2020. Effect of interaction between arbuscular mycorrhizal fungi and Rhizobium on Medicago sativa rhizosphere soil bacterial community structure and PICRUSt functional prediction [J]. J Microbiol, 47(11): 3868-3879. [杨盼, 翟亚萍, 赵祥, 等, 2020. 丛枝菌根真菌和根瘤菌互作对苜蓿根际土壤细菌群落结构的影响及PICRUSt功能预测分析 [J]. 微生物学通报, 47(11): 3868-3879. ]

    • YANG XC, ZHU K, LOIK ME, et al. , 2021. Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe [J]. Geoderma, 384: 114812.

    • ZHANG B, KONG W, WU N, et al. , 2016. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China [J]. J Basic Microb, 56(6): 670-679.

    • ZHANG C, LIU GB, XUE S, et al. , 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau [J]. Soil Biol Biochem, 97: 40-49.

    • ZHANG SM, HUANG YM, NI YX, et al. , 2018. Effects of artificial forest and grass on soil fungal community at southern Ningxia Mountain [J]. J Environ Sci-Chin, 38(4): 1449-1458. [张树萌, 黄懿梅, 倪银霞, 等, 2018. 宁南山区人工林草对土壤真菌群落的影响 [J]. 中国环境科学, 38(4): 1449-1458. ]

    • ZHANG T, LIN L, XIAO H, et al. , 2018. Research on occurrence and development of pasture drought events in alpine grassland using the drought threshold [J]. Nat Hazards Earth Syst Sci, 305(9): 1-18.

    • ZHOU ZJ, LUO CS, TAO YH, et al. , 2022. Characteristics of soil enzyme activity and its correlation with physicochemical factors in the Beihai Spartina alterniflora wetland [J]. J Ocean Univ Chin, 42(6): 97-103. [周泽建, 罗昌盛, 陶玉华, 等, 2022. 北海互花米草湿地土壤酶活性特征及与理化因子相关性 [J]. 广东海洋大学学报, 42(6): 97-103. ]