-
作为植物基因功能研究和作物遗传改良的有力工具,规律成簇间隔短回文重复序列及其相关系统(clustered regularly interspaced short palindromic repeat/CRISPR-associated 9,CRISPR/Cas9)是目前应用最广的一项基因编辑技术,主要由单导RNA(single guide RNA,sgRNA)和Cas9组成(Mali et al.,2013)。sgRNA通过识别目的基因前间区邻近基序(protospacer aceradjacent motif,PAM),引导Cas9对靶序列进行切割,产生双链断裂,修复过程中引起靶点突变,进而产生表型变异。
-
MLO(mildew resistance locus O)是一类最早在大麦(Hordeum vulgare)中发现并克隆的白粉病易感基因(Buschges et al.,1997),其隐性突变mlo对白粉菌的几乎所有生理小种都具有高效和持久抗性(Reinstädler et al.,2010)。此后,在多种高等植物中相继发现其同源基因,突变同样具有白粉病抗性(Kusch &Panstruga,2017)。利用基因编辑技术,多个mlo被证明是白粉病抗性基因,如番茄(Solanum lycopersicum)Slmlo1、辣椒(Capsicum annuum)Camlo1/2、茄子(Solanum melongena)Smmlo1、烟草(Nicotiana tabacum)Ntmlo1和黄瓜(Cucumis sativus)Csmlo1等(Zheng et al.,2013; Appiano et al.,2015; Nie et al.,2015; Bracuto et al.,2017)。除白粉病以外,mlo也参与假单胞菌、黄单胞菌、卵菌、尖孢镰刀菌、炭疽菌和稻瘟病菌等多种病原体引起的植物病害反应(Kim &Hwang,2012; Kim et al.,2014; Acevedo-Garcia et al.,2017)。
-
番茄是全球范围内重要的蔬菜作物,也是一种理想的基因编辑作物,但在生产中频繁遭受各种逆境胁迫。作为最重要的植物病原细菌之一,青枯菌(Ralstonia solanacearum)引起的青枯病对番茄危害尤为严重,因此建立快速高效的抗病品种选育方法势在必行。前期研究发现,SlMLO1/6均含有7个跨膜结构域,定位于原生质膜,SlMLO1含1个钙调素结合区(calmodulin binding domain,CaMBD)(Shi et al.,2020)。同时,SlMLO1是已知的白粉病易感基因,SlMLO6与辣椒感青枯病基因CaMLO6同源(Bai et al.,2008; Yang et al.,2020)。RT-qPCR显示两者均能在转录水平上响应番茄青枯病害(Shi et al.,2020)。本研究以番茄青枯病抗性突变体创制为对象,依托植物广谱抗性因子mlo和番茄遗传转化体系,基于已有MLO生物信息学和基因定量表达研究,采用CRISPR/Cas9基因编辑技术,通过构建SlMLO1/6基因敲除载体并转化番茄,拟探讨以下问题:(1)番茄中MLO的精准敲除和纯合突变体的创制;(2)靶点突变类型和突变前后目的基因的表达变化;(3)突变株的青枯病抗性表型。旨在为抗青枯病基因功能研究和品种改良提供理论基础和遗传工程材料。
-
1 材料与方法
-
1.1 材料试剂
-
供试番茄(Solanum lycopersicum)Ailsa Craig(AC),是分子功能研究的模式品种。CRISPR系统pBGK购自百格基因科技(江苏)有限公司。大肠杆菌(Escherichia coli)DH5α和根癌农杆菌(Agobacterium tumefaciens)GV3101为本实验室保存。
-
Trizol总RNA提取试剂盒、凝胶回收试剂盒、荧光定量染料SYBR Premix Ex Taq等购自生工生物工程(上海)股份有限公司;PCR Master Mix、DNA Marker、T4 DNA连接酶(Ligase)、T4多聚核苷酸激酶(PNK)等购自宝生物工程(大连)有限公司;限制性核酸内切酶Bsa I和Sph I购自TaKaRa公司;卡那霉素和潮霉素购自鼎国生物公司。培养基组分等所需生化试剂均为国产分析纯。PCR引物由生工生物工程(上海)股份有限公司合成。
-
1.2 试验方法
-
1.2.1 靶点设计与载体构建
-
利用在线工具CRISPR-P2.0(http://cbi.hzau.edu.cn/CRISPR2/)于目的基因第1和第3外显子处设计2个CRISPR靶位点,选取高效靶点设计引物(表1)。将gRNA靶点序列复性形成Oligo二聚体后,连接至经Bsa I酶切的CRISPR载体pBGK。反应体系如下:gRNA-U6片段1 μL、Oligo二聚体0.3 μL、T4 ligase 0.3 μL和T4 PNK 0.1 μL 23℃反应1 h后,加T4 ligase 0.3 μL、ddH2O 4 μL和pBGK 1 μL 23℃连接反应1 h。取5 μL上述反应液,加入20 μL大肠杆菌DH5α感受态细胞,混合后冰浴静置30 min;轻轻取出,42℃热激35 s,立即置于冰上2 min;加入100 μL LB,37℃振荡培养1 h;取60 μL菌液涂布于含50 μg·mL-1卡那霉素的LB平板上,37℃倒置培养过夜。挑选阳性单克隆送样测序。测序引物SR:CTGCAGAATTGGCGCACGCGCTACG。
-
1.2.2 根癌农杆菌介导的遗传转化
-
利用冻融法转入根癌农杆菌GV3101,经鉴定正确的单菌落用叶盘法转化番茄AC(简兴等,2015)。主要操作如下:1/2 MS培养基播种番茄无菌种子,待子叶展开第一片真叶还未出现时,剪取子叶进行预培养,根癌农杆菌侵染后共培养,转至潮霉素分化选择培养基,经3次继代培养后,将减去愈伤组织的芽转至生根培养基培养,待幼苗长至合适大小炼苗移栽。
-
1.2.3 转化株靶点扩增与测序
-
提取转化单株幼嫩叶片基因组DNA。根据目的基因序列设计引物(表1),对靶点区进行PCR检测。将扩增目的条带进行纯化和测序,结合测序峰图及序列比对分析突变类型。PCR扩增体系:1 μL DNA,2 μL 10×PCR buffer,0.4 μL dNTP Mixture,正反向引物各0.2 μL,0.2 μL Taq酶,加ddH2O补充至20 μL。扩增条件:94℃预变性5 min;94℃变性30 s,55℃退火30 s,72℃延伸30 s,30个循环;72℃延伸10 min。
-
1.2.4 目的基因RT-qPCR检测
-
取样4~6叶期番茄幼苗嫩叶,锡箔纸包裹置于液氮中,2次生物学重复。提取野生型和突变株RNA并反转录成cDNA。以Slactin和SlRPL2为内参基因,利用Primer Premier 5.0软件设计定量引物(表1)。RT-qPCR反应体系包括2 μL cDNA,0.4 μL PCR primer,10 μL SYBR,7.2 μL ddH2O。扩增程序为95℃ 3 min; 95℃ 5 s,60℃ 30 s,45个循环,整体反应在StepOne Plus型荧光定量PCR仪(ABI,USA)中进行,采用2-ΔΔCt法计算基因相对表达量。
-
1.2.5 苗期青枯病接种鉴定
-
番茄幼苗长至4~6片真叶时,剪伤部分根系,用浓度OD600=1.0的青枯菌液浸根20 min,30℃条件下培养,第3天观察植株抗性表型。
-
2 结果与分析
-
2.1 融合载体的构建与转化
-
SlMLO1靶点1序列为CCACAGCAATTGCCCA CGTAGGG,靶点2序列为ATGGCATCCTTGTATGG CAAAGG;SlMLO6靶点1序列为ACACCAACTTGG GCTGTGGCTGG,靶点2序列为CAAAGGAGGAGG AACACCGTAGG,靶点长20 bp(图1)。对应的脱靶位点数分别为5/31和26/33,因此双基因均选用第1靶点。融合载体命名为pBGK-SlMLO1/6,含U6启动子驱动表达的双基因靶点gRNA克隆盒、35S启动子驱动表达的Cas9酶基因和潮霉素(HYG)筛选标记基因(图2)。回收Sph I酶切后的产物,经0.8%琼脂糖凝胶电泳分别得到5 500 bp和10 000 bp左右的两个条带(图3),与重组质粒15 386 bp大小相符,测序与设计靶点相同,表明2个靶点gRNA元件插入载体。随后,融合载体经根癌农杆菌介导的番茄遗传转化(图4)和PCR测序(图5),最终获得9个编辑单株(M1、M2、M3、M4、M6、M7、M8、M9、M10)。
-
图1 目的基因中的2个gRNA靶点
-
Fig.1 Two gRNA loci in the target genes
-
图2 CRISPR融合载体pBGK-SlMLO1/6
-
Fig.2 CRISPR fusion vector pBGK-SlMLO1/6
-
图3 重组质粒pBGK-SlMLO1/6酶切电泳图
-
Fig.3 Enzyme digestion electrophoretogram of recombinant plasmid pBGK-SlMLO1/6
-
2.2 编辑株靶点序列突变型
-
测序结果表明,编辑植株M1为SlMLO6杂合突变体;M2和M8分别缺失1个大小为177 bp(包括起始密码子,翻译MEATPTWAIAVVCFILLA IS)和7 bp(GGGCAAT,翻译WAI)的SlMLO1基因片段,而SlMLO6为杂合型突变;M3和M10为SlMLO1杂合突变体;M4和M6均为双基因杂合突变体;M7缺失1个大小为12 bp(CAACTTGGGCT G,翻译PTWAV)的SlMLO6基因片段,而SlMLO1为杂合型突变;M9基因SlMLO6位置382~383间插入了1个单碱基T(翻译V),而SlMLO1为杂合型突变(图5)。
-
2.3 目的基因定量表达分析
-
基因定量表达结果表明,两个内参下,与野生型(WT)相比,纯合突变株M2和M8 SlMLO1表达水平均极显著(P<0.01)下降,前者表达水平更低但两者差异不显著(图6:A,C)。以Slactin为内参,纯合突变株M7和M9 SlMLO6表达水平均极显著(P<0.01)下降,前者表达水平更低且两者差异显著(图6:B);以SlRPL2为内参,M7和M9 SlMLO6表达水平均比野生型低,但显著性水平不同,前者为极显著(P<0.01)而后者为显著(P<0.05)(图6:D)。整体而言,Slactin更适合用作内参基因,M2、M7和M8突变效果更为明显。
-
图4 番茄的遗传转化
-
Fig.4 Genetic transformation of tomato
-
图5 纯合突变体靶点序列
-
Fig.5 Target locus sequencing of homozygous mutants
-
2.4 编辑株青枯病抗性表型
-
基于基因测序和定量表达结果,对敲除效果明显的3个纯合单株M2、M7和M8进行青枯病抗性表型鉴定。发现接种青枯菌后,植株长势明显优于野生型(WT)番茄,观察期内基本未出现病症(图7),说明SlMLO1/6可能参与番茄青枯病负调控。
-
3 讨论与结论
-
青枯菌具有广泛的环境和生态适应性。目前,利用正向遗传学仅在拟南芥中克隆到一个抗青枯病基因RRS1(Deslandes et al.,1998),相关基因鉴定、功能研究及生产应用还非常有限。因此,广谱抗性挖掘和感病基因失活成为研究热点。与其他基因功能研究技术相比,基因编辑具有克隆策略相对简单、可多靶点敲除、脱靶率较低、适用范围广等优点(Ma et al.,2015)。利用CRISPR/Cas9基因编辑技术定向敲除不利基因,能实现目标性状的遗传改良。并且,通过后代遗传分离可以获得不含载体元件的突变株系。mlo代表了一类由寄主基因突变控制的广谱抗性新机制,能够参与多种生物和非生物胁迫响应(Nguyen et al.,2016)。基于此,本研究利用CRISPR/Cas9系统成功构建了SlMLO1/6基因编辑载体,经转化番茄和测序鉴定,获得9株突变体,约50%为纯合突变株。
-
Slmlo1/6突变体不同位点编辑效果和类型不同,纯合突变包括片段缺失和单碱基插入,说明二倍体植物基因编辑多产生简单突变(Ma et al.,2015)。M2和M8 SlMLO1编码蛋白分别丢失了20个和3个氨基酸且发生移码突变;M7 SlMLO6丢失了5个氨基酸但新增了1个亮氨酸,下游序列不变;M9 SlMLO6密码子GTG突变为GTT,两者均翻译缬氨酸,但后续氨基酸移码突变,推测基因功能转变主要源自氨基酸丢失和移码突变。蒲艳等(2018)研究表明,多个活性U6启动子可驱动多个sgRNA,造成染色体大片段缺失。同时,稳定转化植株中以碱基缺失和插入为主,可能是sgRNA和Cas9可持续表达,靶点产生的碱基替换被继续编辑。非同源末端连接(non-homologous end joining,NHEJ)修复过程中容易发生错误,使DNA断裂位置产生小片段缺失或插入;而同源重组(homologous recombination,HR)可实现基因的定点修复或插入(Hsu et al.,2014)。本研究中,双基因靶点编辑支持上述稳定转化突变结论,并且可能以NHEJ修复为主。定量分析表明,纯合突变体靶基因表达水平下降且SlMLO1较SlMLO6效果更加明显,但杂合株需分离纯化。M1 SlMLO1、M3和M10 SlMLO6未发生突变,可能与脱靶效应有关。
-
图6 纯合突变株SlMLO1(A、C)和SlMLO6(B、D)基因的相对表达水平
-
Fig.6 Relative expression levels of SlMLO1 (A, C) and SlMLO6 (B, D) in homozygous mutants
-
图7 突变株M2、M7和M8的青枯病抗性表型
-
Fig.7 Bacterial wilt resistance phenotypes of M2, M7, and M8 mutants
-
MLO借助乳突作用负调控植物抗性及叶肉细胞死亡,通过协助病原菌侵染抑制防御反应(Kim et al.,2002a)。同时,MLO可通过结合钙调素(calmodulin,CaM)提高自身功能活性以降低植物抗病力(Kim et al.,2002b)。本课题组前期研究表明SlMLO1含有CaMBD,推测其通过结合CaM促进番茄感病。辣椒CaMLO6通过与CaWRKY40互作负调控青枯病抗性(Yang et al.,2020)。鉴于番茄和辣椒的亲缘关系,推测SlMLO6具有相似功能。抗性表型初步鉴定说明SlMLO1/6可能是青枯病易感基因。但是,青枯病抗性遗传复杂,受多基因控制。由于脱靶效应的存在,因此非目的基因(编码区和非编码区)打靶如何影响编辑效果和植株表型需进一步通过全基因组或脱靶位点测序进行评估。同时,MLO家族基因是否存在功能冗余和多等位基因效应,也需进一步验证。总之,需从表型、理化和分子水平对不同品种番茄Slmlo1/6突变体及其后代进行综合鉴定,以获得纯合稳定有生产应用价值的育种材料。
-
参考文献
-
ACEVEDO-GARCIA J, GRUNER K, REINSTÄDLER A, et al. , 2017. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens [J]. Sci Rep, 7: 9319.
-
APPIANO M, PAVAN S, CATALANO D, et al. , 2015. Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1 [J]. Transgen Res, 24(5): 847-858.
-
BAI Y, PAVAN S, ZHENG Z, et al. , 2008. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of mlo function [J]. Mol Plant Microbe In, 21(1): 30-39.
-
BRACUTO V, APPIANO M, RICCIARDI L, et al. , 2017. Functional characterization of the powdery mildew susceptibility gene SmMLO1 in eggplant (Solanum melongena L. ) [J]. Transgen Res, 26(3): 323-330.
-
BUSCHGES R, HOLLRICHER K, PANSTRUGA R, et al. , 1997. The barley MLO gene: A novel control element of plant pathogen resistance [J]. Cell, 88(5): 695-705.
-
DESLANDES L, PILEUR F, LIAUBET L, et al. , 1998. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum [J]. Mol Plant Microbe In, 11(7): 659-667.
-
HSU PD, LANDER ES, ZHANG F, 2014. Development and applications of CRISPR-Cas9 for genome engineering [J]. Cell, 157(6): 1262-1278.
-
JIAN X, MIAO YM, SUI YH, et al. , 2015. Cloning and expression vector construction of cucumber LDC and transformation to tabacco [J]. Guihaia, 35(2): 255-260. [简兴, 苗永美, 隋益虎, 等, 2015. 黄瓜LDC克隆、表达载体的构建及烟草转化研究[J]. 广西植物, 35(2): 255-260. ]
-
KIM DS, CHOI HW, HWANG BK, 2014. Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses [J]. Planta, 240: 827-839.
-
KIM DS, HWANG BK, 2012. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation [J]. Plant J, 72(5): 843-855.
-
KIM MC, LEE SH, KIM JK, et al. , 2002a. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein [J]. J Biol Chem, 277(22): 19304-19314.
-
KIM MC, PANSTRUGA R, ELLIOTT C, et al. , 2002b. Calmodulin interacts with MLO protein to regulate defence against mildew in barley [J]. Nature, 416(6879): 447-451.
-
KUSCH S, PANSTRUGA R, 2017. mlo-based resistance: An apparently universal “weapon” to defeat powdery mildew disease [J]. Mol Plant Microbe Interact, 30(3): 179-189.
-
MA XL, ZHANG QY, ZHU QL, et al. , 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Mol Plant, 8(8): 1274-1284.
-
MALI P, ESVELT KM, CHURCH GM, 2013. Cas9 as a versatile tool for engineering biology [J]. Nat Methods, 10(10): 957-963.
-
NGUYEN VNT, VO KTX, PARK H, et al. , 2016. A systematic view of the MLO family in rice suggests their novel roles in morphological development, diurnal responses, the light-signaling pathway, and various stress responses [J]. Front Plant Sci, 7: 1413.
-
NIE JT, WANG YL, HE HL, et al. , 2015. Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L. ) [J]. Front Plant Sci, 6: 1155.
-
PU Y, LIU C, LI JY, et al. , 2018. Different SlU6 promoters cloning and establishment of CRISPR/Cas9 mediated gene editing system in tomato [J]. Sci Agric Sin, 51(2): 315-326. [蒲艳, 刘超, 李继洋, 等, 2018. 番茄U6启动子的克隆及CRISPR/Cas9基因编辑体系的建立[J]. 中国农业科学, 51(2): 315-326. ]
-
REINSTÄDLER A, MÜLLER J, CZEMBOR JH, et al. , 2010. Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein [J]. BMC Plant Biol, 10(1): 31.
-
SHI JL, WAN HJ, ZAI WS, et al. , 2020. Phylogenetic relationship of plant MLO genes and transcriptional response of MLO genes to Ralstonia solanacearum in tomato [J]. Genes, 11(5): 487.
-
YANG S, SHI YY, ZOU LY, et al. , 2020. Pepper CaMLO6 negatively regulates Ralstonia solanacearum resistance and positively regulates high temperature and high humidity responses [J]. Plant Cell Physiol, 61(7): 1223-1238.
-
ZHENG Z, NONOMURA T, APPIANO M, et al. , 2013. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica [J]. PLoS ONE, 8(7): e70723.
-
摘要
青枯病是番茄(Solanum lycopersicum)生产中的一种毁灭性土传病害,致病菌生理小种复杂、易变异,而MLO基因隐性突变mlo具有广谱抗性,前期研究表明Slmlo1/6可能参与番茄青枯病抗性反应。为进一步研究番茄Slmlo1/6青枯病抗性基因功能,该文利用CRISPR/Cas9技术创制Slmlo1/6基因突变材料,并进行表型鉴定。结果表明:(1)设计SlMLO1/6靶点序列gRNA,并与U6启动子组装,再将含高效靶点的U6-gRNA1/6片段通过Bsa I酶切连入CRISPR载体pBGK,构建形成双基因融合敲除载体pBGK-SlMLO1/6。重组质粒经转化大肠杆菌(Escherichia coli)感受态DH5α和平板培养,挑选阳性单克隆。验证正确后,再经根癌农杆菌(Agobacterium tumefaciens) GV3101介导的遗传转化和潮霉素抗性筛选,最终获得9株番茄编辑苗。(2) 靶点区测序显示,植株M2和M8分别缺失177 bp和7 bp的SlMLO1片段,M7缺失12 bp的SlMLO6片段,M9发生SlMLO6单碱基T插入,总计4株单基因纯合突变体,其他均为杂合型突变。(3)RT-qPCR分析表明,与野生型相比,突变株SlMLO1/6基因表达水平显著下降,尤其是M2、M7和M8。(4)表型鉴定表明,SlMLO1/6可能是番茄青枯病易感基因。综上,该文成功构建了MLO基因编辑载体并实现了番茄转化,纯合突变体获得了青枯病抗性。氨基酸丢失和移码突变可能是Slmlo1/6抗性功能转变的主要原因。该研究结果为番茄抗青枯病基因功能研究和抗病育种应用提供了理论参考和遗传工程材料。
Abstract
Bacterial wilt is a devastating soil-borne disease in tomato (Solanum lycopersicum) production. The pathogenic species are complex and tend to have a variation, while mlo caused by the recessive mutation of MLO genes has a broad-spectrum resistance. The previous study suggested that Slmlo1/6 may be involved in the resistance response to bacterial wilt in tomato. In order to further study the gene function of Slmlo1/6 in tomato bacterial wilt resistance, the genetic mutant plants were created by CRISPR/Cas9 technology and their phenotypes were identified followed. The results were as follows: (1) gRNA sequences of SlMLO1/6 were designed and assembled with the U6 promoters, then U6-gRNA1/6 fragments containing highly effective targets were ligated to CRISPR vector of pBGK via restriction enzyme Bsa I digestion, to construct the two-gene fusion knockout vector of pBGK-SlMLO1/6. The recombinant plasmid of pBGK-SlMLO1/6 was transformed into Escherichia coli DH5α competent cells and positive monoclonal clones were selected via plate cultivation. Using Agrobacterium tumefaciens GV3101 strains-mediated genetic transformation and resistance screening to hygromycin, a total of nine edited tomato plants were obtained with sequencing validation. (2) Target region sequencing showed that M2 and M8 plants had the 177 bp and 7 bp deletion of SlMLO1, respectively, M7 had the 12 bp deletion of SlMLO6, and M9 had a single base T insertion of SlMLO6. Except for four single gene homozygous mutants above, the other mutations were heterozygous. (3) RT-qPCR showed that compared with the wild type plant, SlMLO1/6 gene expression of the mutants was significantly decreased, especially M2, M7, and M8 plants. (4) Phenotypic identification indicated that SlMLO1/6 might be tomato bacterial wilt susceptibility genes. In conclusion, the knockout vector is successfully constructed for resistance MLO genes and tomato transformation is also achieved, homozygous mutants acquire resistance to bacterial wilt. Amino acid deletion and frameshift mutation may be the crucial reasons for the gene function change of Slmlo1/6 in resistance. The results provide a theoretical reference and genetic engineering materials for the gene function study in resistance to bacterial wilt and disease resistance breeding application of tomato.
Keywords
tomato ; Slmlo1/6 ; gene editing ; genetic transformation ; mutant