en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵娜红(1997—),硕士,研究方向为油茶抗旱分子机制,(E-mail)zhaonahong2021@163.com。

通讯作者:

刘娟,博士,副教授,研究方向为林木遗传改良、林木抗逆分子机制,(E-mail)liu_juan1122@163.com。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2024)12-2242-13

DOI:10.11931/guihaia.gxzw202309004

参考文献
ASLAM, WASEEM M, ZHANG Q, et al. , 2021. Identification of ABC transporter G subfamily in white lupin and functional characterization of L. albABGC29 in phosphorus use [J]. BMC Genomics, 22(1): 1-14.
参考文献
BU QY, JIANG HL, LI CB, et al. , 2008. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses [J]. Cell Res, 18(7): 756-767.
参考文献
CHEN X, WANG YF, BO L, et al. , 2014. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway [J]. Plant Cell Physiol, 55(3): 604-619.
参考文献
CHEN ZY, YAN XQ, TANG MH, et al. , 2022. Molecularcharacterization and drought resistance of GmNAC3 transcription factor in Glycine max (L. ) Merr [J]. Int J Mol Sci, 23(20): 12378.
参考文献
CAO RL, LI ZQ, OUYANG WT, et al. , 2021. Identification of NAC gene in Camellia oleifera and analysis of its response to drought stress [J]. J Jiangxi Agric Univ, 43(6): 1357-1370. [曹瑞兰, 李知青, 欧阳雯婷, 等, 2021. 油茶NAC基因鉴定及对干旱胁迫响应分析 [J]. 江西农业大学学报, 43(6): 1357-1370. ]
参考文献
DING SJ, ZHONG QP, YUAN TT, et al. , 2017. Effects of drought stress on Camellia oleifera flower-bud growth and production [J]. J Nanjing For Univ (Nat Sci Ed), 41(5): 197-202. [丁少净, 钟秋平, 袁婷婷, 等, 2017. 干旱胁迫对油茶花苞生长及产量的影响 [J]. 南京林业大学学报(自然科学版), 41(5): 197-202. ]
参考文献
FUJITA M, FUJITA Y, MARUYAMA K, et al. , 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. Plant J, 39(6): 863-876.
参考文献
HAN XM, FENG ZQ, XING DN, et al. , 2015. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis [J]. BMC Plant Biol, 15(1): 1-12.
参考文献
HAO YJ, WEI W, SONG QX, et al. , 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants [J]. Plant J, 68(2): 302-313.
参考文献
HAO YJ, SONG QX, CHEN HW, et al. , 2010. Plant NAC-type transcription factor proteins contain a nard domain for repression of transcriptional activation [J]. Planta, 232: 1033-1043.
参考文献
HE F, 2011. Study of overall arrangement for construction China’s industrial system of non-wood forest Ⅰ: Woody edible oils [J]. J Cent S Univ For Technol, 31(3): 1-7. [何方, 2011. 中国现代经济林产业体系建设布局研究Ⅰ——木本食用油料篇 [J]. 中南林业科技大学学报, 31(3): 1-7. ]
参考文献
HU HH, DAI MQ, YAO JL, et al. , 2018. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice [J]. Proc Natl Acad Sci USA, 103(35): 12987-12992.
参考文献
HUANG C, ORBAN T, JASTRZEBSKA B, et al. , 2011. Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain [J]. Biochemistry, 50(11): 1940-1949.
参考文献
HUANG L, ZHANG HJ, LI DY, et al. , 2016. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance [J]. BMC Plant Biol, 16: 1-18.
参考文献
JENSEN M, KJAERSGAARD T, NIEISEN M, et al. , 2010. The Arabidopsis thaliana NAC transcription factor family: Structure-function relationships and determinants of ANAC019 stress signalling [J]. Biochem J, 426(2): 183-196.
参考文献
JIANG HL, LI HM, BU QY, et al. , 2009. The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response [J]. Plant Signal Behav, 4(5): 464-466.
参考文献
JIN H, COMINELLI E, BAILEY P, et al. , 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis [J]. EMBO J, 19(22): 6150-6161.
参考文献
LIU YC, SUN J, WU YR, et al. , 2016. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice [J]. J Plant Res, 129: 955-962.
参考文献
LIU ZB, HABEN G, GUILFOYLE TJ, et al. , 1997. A G-box-binding protein from soybean binds to the E1 auxin-response element in the soybean GH3 promoter and contains a proline-rich repression domain [J]. Plant Physiol 115(2): 397-407.
参考文献
MAO HD, LI JY, HAN R, et al. , 2016. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis [J]. Plant Physiol Biochem, 105: 55-66.
参考文献
NARBERHAUS F, LEE HS, SCHMITZ RA, et al. , 1995. The C-terminal domain of NiFL is sufficient to inhibit NiFA activity [J]. J Bacteriol, 177(17): 5078-5087.
参考文献
OHTA M, MATSUIA K, HIRATSUA K, et al. , 2001. Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression [J]. Plant Cell, 13(8): 1959-1968.
参考文献
RAVENTOS D, SKRIVER K, SCHLEIN M, et al. , 1998. HRT, a novel zinc finger, transcriptional repressor from barley [J]. J Biol Chem, 273(36): 23313-23320.
参考文献
SHANG XG, YU YJ, LIU HQ, et al. , 2020. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis [J]. Plant Sci, 296: 110498.
参考文献
SUN L, LIU LP, WANG YZ, et al. , 2020. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis [J]. Planta, 252: 1-11.
参考文献
TAKASAKI H, MARUYAMA K, SATOSHI K, et al. , 2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice [J]. Mol Genet Genom, 284: 173-183.
参考文献
TRAN LAM-SON P, NAKAHIMA K, SAKUMA Y, et al, 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell, 16(9): 2481-2498.
参考文献
WANG JF, WANG YP, ZHANG J, et al. , 2021. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3. 6 [J]. Hortic Res, 8(1): 214-214.
参考文献
WANG YX, LIU ZW, WU ZJ, et al. , 2016. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L. ) O. Kuntze] [J]. PLoS ONE, 11(11): e0166727.
参考文献
WU SQ, TANG CJ, ZHENG TH, et al. , 2022. Spatio-temporal characteristics of drought in Jiangxi based on index of continuous days without available precipitation [J]. Resour Environ Yangtze Basin, 31(4): 903-914. [吴少强, 汤崇军, 郑太辉, 等, 2022. 基于连续无有效降雨日数指标的江西省干旱时空分布特征 [J]. 长江流域资源与环境, 31(4): 903-914. ]
参考文献
YU MX, LIU JI, DU BS, et al. , 2021. NAC transcription factor PwNAC11 activates ERD1 by interaction with ABF3 and DREB2A to enhance drought tolerance in transgenic Arabidopsis [J]. Int J Mol Sci, 22(13): 6952.
参考文献
ZHANG XY, TIAN YH, QIN YZ, et al. , 2021. The role of miR169 family members in the processes of growth, development and abiotic stress response in planta [J]. J Plant Genet Resour, 22(4): 900-909. [张幸媛, 田宇豪, 秦玉芝, 等, 2021. miR169在植物生长发育与非生物胁迫响应中的作用 [J]. 植物遗传资源学报, 22(4): 900-909. ]
目录contents

    摘要

    干旱胁迫是影响油茶生长发育、产量和品质的一类主要的非生物胁迫。NAC转录因子在植物响应干旱、盐碱等非生物胁迫反应中具有重要的调控作用。为探究NAC转录因子在油茶响应干旱胁迫中的调控机制,该文以两年生油茶苗为材料,通过TA克隆得到CoNAC5与CoNAC79的CDS序列,对其进行生物信息学分析、亚细胞定位及自激活分析,并采用qRT-PCR检测CoNAC5与CoNAC79基因表达的组织特异性及PEG模拟干旱和ABA处理下的表达模式。结果表明:(1)基因结构分析显示,CoNAC5与CoNAC79的CDS长分别为1044 bp和990 bp,分别编码348个和330个氨基酸,理论等电点分别为8.86和8.57,蛋白的不稳定系数分别为41.35和37.47,均无跨膜结构域,分别与柿子和荔枝的同源性最高。亚细胞定位显示CoNAC5与CoNAC79的均定位在细胞核上。(2)酵母自激活检测显示,CoNAC5与CoNAC79的全长蛋白和N端结构域无自激活活性,但C端结构域均具有自激活活性。(3)CoNAC5与CoNAC79表达具有明显的组织特异性,主要在根和种仁中高表达;PEG模拟干旱和外源施加ABA处理油茶苗发现,CoNAC5和CoNAC79表达量均显著高于对照;CoNAC79的表达量在ABA处理48 h后下降,在PEG处理下显著高于对照。综上认为,CoNAC5与CoNAC79其N端可能存在抑制区域,从而阻碍了全长序列的转录;油茶两个NAC基因可能通过ABA合成途径间接参与干旱胁迫响应过程;在胁迫持续发生时,CoNAC79还可能通过其他途径直接参与干旱胁迫响应过程。该研究结果为进一步探究NAC转录因子在油茶响应干旱胁迫过程中的作用提供了科学依据。

    Abstract

    Drought stress is a major abiotic stress for the development, yield and quality of Camellia oleifera. NAC transcription factors play an important role in plant response to abiotic stresses such as drought and salinity. To explore the role of NAC transcription factors in the drought stress response of C. oleifera, two-year oil tea seedlings were used as materials. The CDS sequences of CoNAC5 and CoNAC79 were obtained from through TA cloning. Bioinformatics, subcellular localization and self-activation were performed. qRT-PCR was used to determine the tissue specificity of CoNAC5 and CoNAC79 gene expression and the expression PEG and ABA at different treatment time. The results were as follows: (1) Gene structure analysis showed that length of CoNAC5 and CoNAC79 were 1044 bp and 990 bp, respectively, encoding 348 and 330 amino acids. Their theoretical isoelectric points were 8.86 and 8.57, respectively. The instability coefficients of the proteins were 41.35 and 37.47, respectively. No transmembrane domain was found between the two genes, the highest homology with persimmon and lychee, respectively. Subcellular localization showed that both CoNAC5 and CoNAC79 were located in the nucleus. (2) Yeast self-activation detection analysis revealed that CoNAC5 and CoNAC79 did not have self-activation activity in the full-length proteins and N-terminal domain. However, the C-terminal domain exhibited self-activation activity. (3) The expression of CoNAC5 and CoNAC79 had significant tissue specificity and mainly expressed in roots and kernels; when PEG simulated drought and exogenous ABA treated C. oleifera seedlings, the expression levels of CoNAC5 and CoNAC79 were significantly higher than the control; the expression level of CoNAC79 decreased after 48 h under ABA treatment, and significantly higher than the control under PEG treatment. In summary, it is believed that there may be an inhibitory region at the N-terminal of CoNAC5 and CoNAC79, which hinders the transcription of the full-length sequence; indicating that the two NAC genes in C. oleifera may be probably indirectly involved in drought stress response through pathway of ABA synthesis; CoNAC79 can also directly participate in the drought stress response through other pathways. This study provided a scientific reference for further exploring the role of NAC transcription factors in the response of C. oleifera to drought stress.

  • 油茶(Camellia oleifera),隶属于山茶科(Theaceae)山茶属(Camellia L.),是我国特有的木本食用油料树种。茶油单不饱和脂肪酸高达80%,具有很高的保健价值。油茶在我国已有2 000多年的栽培历史,主要种植在我国长江流域及其以南的山地、丘陵地区(丁少净等,2017)。干旱胁迫是影响植物生长发育的一类主要非生物胁迫。我国南方地区虽然降水量充沛,但是降水量在不同季节分配极度不均匀,5—6月多雨,8—10月常出现季节性高温干旱天气(何方,2011)。民间俗语“7月干球,8月干油”,指在每年阴历7到9月是油茶果实膨大和种子油脂积累的关键时期,而此时油茶主产区常出现持续干旱高温,导致油茶产量及出油率大幅降低(吴少强等,2022)。当受到干旱胁迫时,植物会产生应答机制来减弱或消除水分缺失造成的伤害,这一过程涉及多个基因、多种信号途径及代谢产物,其转录调控起承上启下的作用(张幸媛等,2021)。

  • NAC转录因子是植物特异性转录因子,其启动子区富含低温、缺水、损伤等逆境响应元件(Han et al.,2015)。大量研究已证实,NAC转录因子参与植物对干旱、冷害、低氧等非生物胁迫响应(Bu et al.,2008)。例如,OsNAC2/OsNAC6基因的过表达植株显著增强了水稻对干旱、盐分以及稻瘟病的耐受力,其中干旱胁迫下过表达OsNAC9植株的籽粒产量可提高30%(Liu et al.,2016);Hu等(2018)发现水稻OsNAC1能显著提高花期的抗旱性,过表达植株结实率提高22%~34%且育性提高17%~24%;Takasaki等(2010)通过对水稻干旱胁迫诱导,发现OsNAC5在过表达水稻中上调表达,并通过上调胁迫诱导基因OsLEA3增强过表达植株的抗旱性。众多研究表明,脱落酸ABA作为一种植物胁迫激素,是植物应对干旱胁迫响应并及时优化水分利用效率的重要调控因子(Huang et al.,2016),而NAC转录因子被认为是ABA信号途径中的重要转录激活调控因子(Wang et al.,2016)。例如,Chen等(2014)发现过表达水稻OsNAC可通过ABA介导的气孔关闭以降低叶片失水率,显著提高水稻抗旱性;Shang等(2020)发现GhirNAC2通过调控GhNCED3a/3c的表达,控制ABA的生物合成和气孔关闭,从而在棉花抗旱性中发挥积极作用。

  • 课题组前期基于二倍体油茶基因组数据,利用生物信息学手段分析鉴定了油茶NAC基因家族成员并对部分成员开展干旱胁迫下表达模式分析(曹瑞兰等,2021)。进一步对转录组数据分析发现ATNAC3亚组的CoNAC5、CoNAC79在干旱胁迫下表达量均上调,而系统发育分析发现同组的拟南芥AtNAC019、AtNAC055、AtNAC072基因,被证实参与逆境胁迫过程(Tran et al.,2004; Jiang et al.,2009),因此推测CoNAC5、CoNAC79可能参与油茶干旱胁迫调控过程,但是其转录活性和调控机制尚不清楚。本研究采用TA克隆获得CoNAC5和CoNAC79的CDS序列,通过生物信息学、亚细胞定位、酵母自激活和荧光定量PCR分析,拟探讨以下问题:(1)两个油茶NAC基因的结构、进化关系及其亚细胞定位;(2)自激活活性及其具体的激活区域;(3)两个油茶NAC基因在不同组织和干旱胁迫下表达模式差异及其可能参与干旱响应的信号途径。本研究旨在为深入探究油茶响应干旱胁迫分子调控网络提供参考,为油茶抗逆分子育种计划提供候选基因。

  • 1 材料与方法

  • 1.1 试验材料、生长条件以及胁迫处理

  • 选取长势一致的两年生“长林18”油茶嫁接苗为试验材料,在江西农业大学林学院校内实践基地(28°46′ N、115°55′ E)温室大棚开展盆栽试验。采用水培法,将油茶根部浸润在30%聚乙二醇(PEG6000)溶液中模拟干旱;ABA处理则采用叶面喷施法,在油茶叶面喷洒浓度为200 ng·mL-1的ABA溶液。于12、24、36、48 h采集各处理和对照的嫩叶,每个处理设置3次重复。采集根、茎、叶、花、幼果、种仁各部位材料,置于液氮中速冻,-80℃保存备用。

  • 1.2 CoNAC5和CoNAC79基因的克隆

  • 基于油茶全基因组数据(https://github.com/Hengfu-Yin/CON_genome_data),获得CoNAC5、CoNAC79基因序列,利用SnapGene软件进行基因特异性引物设计(表1)。总RNA采用TastPure®Universal Plant Total RNA Isolation Kit Vazyme Cat(RC411-01,诺唯赞)试剂盒提取,方法按照说明书。1%琼脂糖凝胶电泳检测RNA质量,Eppendorf μCuvette® G1.0核酸蛋白测定仪检测RNA浓度。使用HiScriPT lll All-in-one RT-SuperMix Perfect for qPCR(R333,诺唯赞)试剂盒反转录合成cDNA,按说明书描述的方法操作。以获得的cDNA为模板,KL-CoNAC5-F/R与KL-CoNAC79-F/R为引物(表1),利用Ex PremierTM DNA Polymerase Dye plus(TaKaRa,大连)高保真酶,进行PCR扩增。反应程序:95℃ 10 min,95℃ 30 s,59~62℃ 30 s,72℃ 2 min,30个循环;72℃ 5 min,4℃保温。将PCR扩增产物经1%琼脂糖凝胶电泳检测,目的条带回收纯化后将其连接至pMD19-T克隆载体,并转大肠杆菌DH5α中,PCR检测出阳性克隆,委托生工生物工程(上海)股份有限公司测序并比对测序结果,保菌并使用EasyPure Plasmid MiniPrep Kit(EM101-01,全式金)质粒小提试剂盒提取质粒。

  • 1.3 CoNAC5和CoNAC79基因的生物信息学分析

  • 利用Expasy-ProtParam对测序正确的CoNAC5与CoNAC79基因编码氨基酸序列的理化性质进行在线分析,利用DNAMAN软件将油茶CoNAC5与陆地棉(Gossypium hirsutum,XP_016732489.2)、君迁子(Diospyros lotus,XP_052206324.1)、柿子(Diospyros kaki,AZL_19402.1)、胡桃(Juglans regia,XP_018851445.1)等序列,CoNAC79与荔枝(Litchi chinensis,UKF_18671.1)、猕猴桃(Actinidia chinensis,QQG_64095.1)、柑橘(Citrus reticulata,AYC_35383.1)、马铃薯(Solanum tuberosum,ATD_50216.1)等序列进行比对,并利用TBtools软件构建进化树和保守基序。

  • 1.4 EGFP-CoNAC5和EGFP-CoNAC79的载体构建及亚细胞定位

  • 使用SnapGene软件设计同源重组引物CZ-ECoNAC5-F/R和CZ-ECoNAC79-F/R(表1),以油茶cDNA为模板进行扩增,利用ClonExpress® Ultra One Step Cloning Kit(C115,诺唯赞)同源重组酶,构建EGFP-CoNAC5与EGFP-CoNAC79植物表达载体。提取含有增强绿色荧光蛋白EGFP的植物表达载体质粒,在37℃下kpn I酶切1 h,纯化后使用同源重组酶,50℃下连接15 min,转化至大肠杆菌DH5α,并涂布在含有卡纳抗性和氨苄抗性的LB培养基上。挑选单菌落进行PCR验证,将阳性克隆委托生工生物工程(上海)股份有限公司测序,比对测序结果并保菌。对含有EGFP-CoNAC5与EGFP-CoNAC79载体的大肠杆菌提取质粒,并转化到GV3101农杆菌中,将农杆菌注射到健康生长的烟草叶片中,培养2 d,用激光共聚焦显微镜(FV3000,Olympus)观察EGFP在烟草细胞中的分布情况。

  • 表1 试验所用引物

  • Table1 Primers used in the experiment

  • 注: F. 正向引物; R. 反向引物。

  • Note: F. Forward primer; R. Reverse primer.

  • 1.5 pGBKT7-CoNAC5和pGBKT7-CoNAC79的载体构建

  • 使用CZ-BDCoNAC5-F/R和CZ-BDCoNAC79-F/R引物(表1),以油茶cDNA为模板,构建pGBKT7-CoNAC5与pGBKT7-CoNAC79载体。提取pGBKT7载体质粒,在37℃下使用EcoR I和BamH I双酶切1 h,纯化后使用同源重组酶在50℃下连接15 min,转化大肠杆菌DH5α中,并涂布在含有卡纳霉素的新鲜LB固体培养基上,对单菌落进行PCR检验并送至生工生物工程(上海)股份有限公司测序,比对测序结果并保菌。

  • 1.6 酵母的转化及酵母自激活活性分析

  • 使用质粒提取试剂盒,从测序正确的大肠杆菌中提取pGBKT7-CoNAC5和pGBKT7-CoNAC79质粒,并转化到Y2HGoId酵母菌株中,涂布在SD/-Leu-Trp固体培养基上,并放置于28℃培养箱2~3 d,以pGADT7为阴性对照,以pGADT7-T和pGBKT-P53为阳性对照,PCR检测阳性单菌落后保存pGBKT7-CoNAC5和pGBKT7-CoNAC79酵母菌株。

  • 挑取成功转化的pGBKT7-CoNAC5和pGBKT7-CoNAC79酵母单克隆菌株,稀释重悬,将菌液浓度OD600调整到0.02、0.002和0.000 2,吸取5 μL浓度梯度点涂于SD/-Leu-Trp和SD/-Leu-Trp-His-Ade酵母培养基上,在28℃培养箱中培养2~3 d,观察诱饵菌株的生长状况。

  • 1.7 CoNAC5和CoNAC79结构域的酵母自激活分析

  • CoNAC5和CoNAC79是典型的ATNAC3-NAC转录因子,在N端均含有一段保守结构域且在C端具有转录激活活性。本研究以位于CoNAC5和CoNAC79 N端1~417 bp构建pGBKT7-N载体,以417~1 044 bp、417~990 bp构建C端pGBKT7-C载体,并分别转到Y2H酵母菌中进行筛选和检测。挑取转化成功的pGBKT7-CoNAC5-N和pGBKT7-CoNAC5-C以及pGBKT7-CoNAC79-N和pGBKT7-CoNAC79-C酵母单菌落,稀释重悬,调整菌液浓度并点涂观察。

  • 1.8 qRT-PCR引物设计及其验证

  • 通过SnapGene软件设计qPCR引物DL-CoNAC5-F/R与DL-CoNAC79-F/R,内参为EF-1α-F/R(表1)。采用25 μL反应体系:ChamQ Universal SYBR qPCR Master Mix(Q711-02,诺唯赞)12.5 μL,cDNA模板2.5 μL,10 μmol·L-1上下游引物各1.5 μL,ddH2O 7 μL。荧光定量仪反应程序:95℃ 2 min,95℃ 5 s,60℃ 30 s,95℃ 5 s,40个循环;95℃ 5 s;65℃ 5 s,95℃ 5 s。每个样品进行3次生物学重复。反应完成后,用2-ΔΔCtCoNAC5和CoNAC79基因的表达量进行计算。

  • 1.9 数据处理

  • 使用SPSS 22.0软件的Duncan法进行显著性分析,用Origin 2021软件作图。

  • 2 结果与分析

  • 2.1 CoNAC5和CoNAC79基因的克隆

  • 提取油茶叶片总RNA,纯化后获得mRNA,反转录成cDNA。以cDNA为模板扩增CoNAC5和CoNAC79序列,得到约1 000 bp的扩增产物(图1),切胶回收。将纯化后的片段连接至pMD19-T载体上,挑取阳性克隆摇菌,将菌液送至生工生物工程(上海)股份有限公司测序。测序结果比对得出CoNAC5和CoNAC79序列长度为1 044 bp和990 bp,片段长度与PCR扩增反应结果(图1)相符。

  • 2.2 CoNAC5和CoNAC79基因的生物信息学分析

  • 通过在线分析网站Expasy-ProtParam分析CoNAC5和CoNAC79蛋白的理化性质。CoNAC5编码氨基酸数量348,相对分子量为39 114.92 Da,理论等电点为8.86,呈碱性;带正负电残基的数量分别为35和40,分子式为C1743H2673N483O525S10,蛋白的不稳定系数为41.35,为不稳定蛋白;脂溶性指数为65.29,平均亲水系数为-0.617,为亲水性蛋白。CoNAC79编码氨基酸数量330,相对分子量37 198.71 Da,理论等电点为8.57,呈碱性;带正负电残基的数量分别为34和37,分子式为C1670H2535N453O499S8,蛋白的不稳定系数为37.47,为稳定性蛋白;脂溶性指数为62.72,平均亲水系数为-0.605,为亲水性蛋白。

  • 图1 油茶CoNAC5和CoNAC79基因的克隆

  • Fig.1 Cloning of CoNAC5 and CoNAC79 genes in Camellia oleifera

  • 2.2.1 CoNAC5和CoNAC79的系统发育进化树、保守基序分析

  • 将CoNAC5和CoNAC79氨基酸序列与多个同源氨基酸构建进化树,发现其分别与柿子和荔枝聚在同一分支,同源性比较高。CoNAC5和CoNAC79都具有保守基序,通过SnapGene软件构建进化树和保守基序(图2)。

  • 2.2.2 CoNAC5和CoNAC79同源序列比对

  • 通过MEGA 7.0软件,选用邻接法,对CoNAC5和CoNAC79的同源氨基酸序列进行多序列比对,运用BLASTp程序搜索油茶CoNAC5和CoNAC79氨基酸序列的同源序列,发现与CoNAC5相似度最高的分别为柿子(Diospyros kaki,AZL_19402.1),其次为君迁子(D. lotus,XP_052206324.1)和陆地棉(Gossypium hirsutum,XP_016732489.2),相似度分别达82.48%、79.53%和78.75%;与CoNAC79相似度最高的为荔枝(Litchi chinensis,UKF_18671.1),其次为猕猴桃(Actinidia chinensis,QQG_64095.1)和柑橘(Citrus reticulata,AYC_35383.1),相似度分别达84.22%、80.46%和80.29%(图3)。

  • 2.3 CoNAC5和CoNAC79基因的亚细胞定位

  • 构建EGFP-CoNAC5和EGFP-CoNAC79表达载体,以35S-EGFP-CoNAC5和35S-EGFP-CoNAC79为核定位标记,并将其注射到烟草原生质体中。结果在烟草原生质质体的细胞核中检测到绿色荧光,其在相同位置与核定位标记共表达,证明CoNAC5与CoNAC79蛋白均定位在细胞核中(图4)。

  • 2.4 CoNAC5和CoNAC79基因的自激活活性测定

  • NAC转录因子含有保守的N端DNA结合结构域和C端激活结构域。将CoNAC5和CoNAC79的CDS序列分别克隆到PGBKT-7载体中,并转化到Y2H酵母菌中,阳性对照分别为pGADT7-T、pGBKT7-P53,AD与BD空载转入酵母菌作为阴性对照,所有这些酵母菌在SD/-Leu-TrP培养基上生长良好,但只有阳性对照在SD/-Leu-Trp-His-Ade生长良好(图5)。

  • 2.5 CoNAC5和CoNAC79结构域自激活分析

  • 含有pGBKT7-CoNAC5-N和pGBKT7-CoNAC5-C以及pGBKT7-CoNAC79-N和pGBKT7-CoNAC79-C载体质粒的酵母菌在SD/-Lue-Trp均能正常生长,但含有pGBKT7-CoNAC5-N和pGBKT7-CoNAC79-N载体质粒的酵母菌在SD/-Leu-Trp-His-Ade无法正常生长,说明CoNAC5与CoNAC79的N端不存在转录激活活性;含有pGBKT7-CoNAC5-C与pGBKT7-CoNAC79-C载体质粒的酵母菌在SD/-Leu-Trp-His-Ade可以正常生长,说明CoNAC5和CoNAC79的C端存在转录激活活性(图6)。

  • 2.6 CoNAC5和CoNAC79基因的表达模式分析

  • 对不同组织表达特异性分析发现,CoNAC5和CoNAC79在油茶根、茎、叶、花、幼果和种仁6个组织中都有表达,其中均在根和种仁中表达较高,在花中表达最低(图7)。CoNAC5在根中的表达量是花的111倍,是茎的90倍,是叶的28倍,是幼果的14倍,是种仁的1.2倍。CoNAC79在种仁中的表达量是花的580倍,是茎的480倍,是叶的81倍,是幼果的70倍,是根的5倍。

  • 在PEG模拟干旱胁迫中,不同时间段下CoNAC5和CoNAC79的表达与对照相比,均存在显著差异(图8)。PEG处理36 h,CoNAC5的表达量是对照的76倍,48 h时依然呈现高表达,为对照的12倍。PEG处理36 h,CoNAC79的表达量是对照的180倍,48 h时为对照的6.8倍(图8)。在ABA处理下,CoNAC5和CoNAC79的表达在24 h出现显著上调,分别为对照的1.4倍和1.7倍。ABA处理36 h时,两者的表达量均呈现高表达,分别为对照的11倍和12倍。48 h时,与对照相比,CoNAC5的表达量增长幅度下降,为对照的3.3倍,而CoNAC79的表达量出现下调趋势,只有对照的85%,但两者没有显著差异。

  • 图2 CoNAC5和CoNAC79系统发育进化树和保守基序分析

  • Fig.2 Phylogenetic evolution tree and conservative motifs analysis of CoNAC5 and CoNAC79

  • 3 讨论

  • NAC转录因子是植物中特有的转录因子,也是植物中数量最大的转录因子家族之一(Chen et al.,2022)。NAC转录因子不仅参与调控植物生长发育过程,而且在响应逆境胁迫中扮演着重要角色(Sun et al.,2020)。本研究克隆油茶NAC转录因子CoNAC5与CoNAC79,属于ATNAC3亚组,分别与柿子和荔枝的同源性最高且N端均具有NAC转录因子特有的NAM结构域。亚细胞定位结果表明CoNAC5与CoNAC79蛋白均定位在细胞核上,属于核蛋白,表明CoNAC5与CoNAC79作为转录因子可能调控细胞核中靶基因的转录过程,符合转录因子的特征。

  • 研究发现NAC蛋白常通过与其他蛋白互作的形式来参与非生物胁迫(Hao et al.,2011)。确定不同蛋白间相互作用常采用酵母双杂技术,其中为降低酵母双杂筛选时的假阳性概率,首先要确定诱饵蛋白本身是否具有转录激活功能。若诱饵蛋白具有转录活性,就能单独激活下游启动子调节的报告基因,从而造成假阳性。本研究发现CoNAC5与CoNAC79两个蛋白没有转录激活能力,进一步比较C端和N端结构域,发现这两个蛋白的C端都含有转录激活区域,而N端没有激活活性。这可能是由于CoNAC5与CoNAC79蛋白的N端存在转录激活的抑制区域,从而干扰了C端激活域及其全长蛋白的转录效应。Hao等(2010)研究大豆的3个NAC基因的转录激活能力,发现在N端存在NARD抑制结构域,封闭了其C端激活域的作用。众多研究也进一步证实,转录因子NAC蛋白转录激活能力可能取决于N端的抑制区域与C端激活结构域的相互作用(Narberhaus et al.,1995; Huang et al.,2011)。此外,在G-box、MYB、HRT和ERF等转录因子中也发现了对全长序列自激活活性具有抑制作用的抑制结构域(Liu et al.,1997; Raventos et al.,1998; Jin et al.,2000; Ohta et al.,2001)。这些转录抑制区可能通过与启动子结合而阻止其他转录因子与该启动子结合,或与其他转录因子相互作用,从而抑制其他因子的作用。如Hao等(2010)的研究进一步证实大豆的NAC基因N端抑制结构域可以阻碍WRKY、Dof等其他转录因子的转录。因此,油茶CoNAC5与CoNAC79蛋白可能通过其N端抑制区域与其他转录因子相互作用或与顺式作用元件结合,从而影响下游功能基因的转录和表达。此外,油茶CoNAC5与CoNAC79全长序列不存在转录自激活活性,未来可以利用酵母双杂文库构建和筛选可能的互作蛋白,深入探究油茶两个NAC基因的功能。

  • 图3 CoNAC5和CoNAC79同源序列比对

  • Fig.3 Homologous sequence alignment between CoNAC5 and CoNAC79

  • 植物受到逆境胁迫时,常通过调控细胞内激素含量,诱导一系列抗逆相关的基因表达来提高抗性(Mao et al.,2016)。ABA作为触发植物对逆境胁迫应答反应的传递体,在调节植物抗逆性方面发挥着重要作用(Aslam et al.,2021)。研究发现NAC转录因子可能通过与ABA响应元件结合来参与干旱胁迫响应(Fujita et al.,2004; Wang et al.,2021)。Jensen等(2010)研究发现AtNAC019(AtNAC3亚组)是ABA应答的正调控因子,过表达AtNAC019显著提高了转基因植株对外源ABA敏感性。Yu等(2021)发现在过表达云杉PwNAC11(与AtNAC019近缘)的转基因拟南芥对外源ABA具有高敏感性,进一步发现该基因能通过与ABA响应元件(ABREs)结合来激活下游ERD1基因表达,从而提高植株对干旱胁迫的耐受性。在本研究中,CoNAC5与CoNAC79基因在系统发育进化树中属于AtNAC3亚组,与AtNAC019为同源基因。PEG模拟干旱胁迫处理在36 h和外源施加ABA处理油茶24 h时,均显著诱导了CoNAC5与CoNAC79基因的高表达且两个NAC基因在外源施加ABA处理下更早启动高表达,说明这两个NAC基因可能通过参与ABA信号途径参与干旱胁迫过程。此外,随着处理时间的增加,不同处理下两个NAC基因表达模式存在差异。CoNAC5的表达量在PEG和ABA处理下在36 h和48 h时均显著高于对照;CoNAC79的表达量在PEG处理36 h和48 h以及ABA处理36 h,均显著高于对照,但是在ABA处理48 h时与对照无显著差异。这可能是由于在胁迫的不同阶段,NAC基因也可能通过非ABA合成依赖的方式直接参与干旱胁迫响应过程。在云杉的NAC研究中,PwNAC11也可以通过直接与ABA非依赖的DREB2A基因相互作用,从而激活下游ERD1基因表达,直接参与干旱胁迫响应(Yu et al.2021)。由此推测,两个油茶NAC基因参与干旱胁迫的调控途径可能存在差异。CoNAC5可能主要通过参与ABA合成的方式间接响应干旱胁迫,而CoNAC79可能存在参与ABA合成间接或非依赖ABA合成直接参与干旱胁迫响应过程,但是具体调控机制尚不清楚。

  • 图4 CoNAC5和CoNAC79亚细胞定位

  • Fig.4 Subcellular localization of CoNAC5 and CoNAC79

  • 图5 CoNAC5和CoNAC79自激活活性测定

  • Fig.5 Determination of CoNAC5 and CoNAC79 self-activation activities

  • 图6 CoNAC5和CoNAC79结构域自激活分析

  • Fig.6 Analysis of CoNAC5 and CoNAC79 domains self-activation

  • 图7 CoNAC5和CoNAC79在油茶各组织的特异性表达

  • Fig.7 Tissue-specific expression of CoNAC5 and CoNAC79 in different tissues of Camellia oleifera

  • 图8 PEG与ABA处理下CoNAC5和CoNAC79在油茶中的表达

  • Fig.8 Expression of CoNAC5 and CoNAC79 under PEG and ABA treatments for Camellia oleifera

  • 4 结论

  • 本研究从油茶cDNA中成功克隆了CoNAC5与CoNAC79基因,亚细胞定位证实两个蛋白均定位于细胞核上,为典型的核蛋白。酵母杂交实验发现两个蛋白的N端不具有转录自激活活性,而C端均具有转录自激活活性,这可能是由于N端存在阻碍全长序列下两个NAC基因转录激活的抑制区段。荧光定量PCR结果证实CoNAC5与CoNAC79在干旱胁迫下和ABA处理下高表达,但是随着处理时间的持续,不同处理下的基因表达趋势存在差异,推测CoNAC5可能通过参与ABA合成途径间接参与干旱胁迫响应,而CoNAC79可以通过ABA合成的方式间接或非ABA依赖途径的方式直接调控干旱响应过程,但是具体调控机制尚不清楚,后续可从酵母双杂文库筛选互作蛋白、过表达或基因敲除等方式进一步研究其功能。

  • 参考文献

    • ASLAM, WASEEM M, ZHANG Q, et al. , 2021. Identification of ABC transporter G subfamily in white lupin and functional characterization of L. albABGC29 in phosphorus use [J]. BMC Genomics, 22(1): 1-14.

    • BU QY, JIANG HL, LI CB, et al. , 2008. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses [J]. Cell Res, 18(7): 756-767.

    • CHEN X, WANG YF, BO L, et al. , 2014. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway [J]. Plant Cell Physiol, 55(3): 604-619.

    • CHEN ZY, YAN XQ, TANG MH, et al. , 2022. Molecularcharacterization and drought resistance of GmNAC3 transcription factor in Glycine max (L. ) Merr [J]. Int J Mol Sci, 23(20): 12378.

    • CAO RL, LI ZQ, OUYANG WT, et al. , 2021. Identification of NAC gene in Camellia oleifera and analysis of its response to drought stress [J]. J Jiangxi Agric Univ, 43(6): 1357-1370. [曹瑞兰, 李知青, 欧阳雯婷, 等, 2021. 油茶NAC基因鉴定及对干旱胁迫响应分析 [J]. 江西农业大学学报, 43(6): 1357-1370. ]

    • DING SJ, ZHONG QP, YUAN TT, et al. , 2017. Effects of drought stress on Camellia oleifera flower-bud growth and production [J]. J Nanjing For Univ (Nat Sci Ed), 41(5): 197-202. [丁少净, 钟秋平, 袁婷婷, 等, 2017. 干旱胁迫对油茶花苞生长及产量的影响 [J]. 南京林业大学学报(自然科学版), 41(5): 197-202. ]

    • FUJITA M, FUJITA Y, MARUYAMA K, et al. , 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. Plant J, 39(6): 863-876.

    • HAN XM, FENG ZQ, XING DN, et al. , 2015. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis [J]. BMC Plant Biol, 15(1): 1-12.

    • HAO YJ, WEI W, SONG QX, et al. , 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants [J]. Plant J, 68(2): 302-313.

    • HAO YJ, SONG QX, CHEN HW, et al. , 2010. Plant NAC-type transcription factor proteins contain a nard domain for repression of transcriptional activation [J]. Planta, 232: 1033-1043.

    • HE F, 2011. Study of overall arrangement for construction China’s industrial system of non-wood forest Ⅰ: Woody edible oils [J]. J Cent S Univ For Technol, 31(3): 1-7. [何方, 2011. 中国现代经济林产业体系建设布局研究Ⅰ——木本食用油料篇 [J]. 中南林业科技大学学报, 31(3): 1-7. ]

    • HU HH, DAI MQ, YAO JL, et al. , 2018. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice [J]. Proc Natl Acad Sci USA, 103(35): 12987-12992.

    • HUANG C, ORBAN T, JASTRZEBSKA B, et al. , 2011. Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain [J]. Biochemistry, 50(11): 1940-1949.

    • HUANG L, ZHANG HJ, LI DY, et al. , 2016. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance [J]. BMC Plant Biol, 16: 1-18.

    • JENSEN M, KJAERSGAARD T, NIEISEN M, et al. , 2010. The Arabidopsis thaliana NAC transcription factor family: Structure-function relationships and determinants of ANAC019 stress signalling [J]. Biochem J, 426(2): 183-196.

    • JIANG HL, LI HM, BU QY, et al. , 2009. The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response [J]. Plant Signal Behav, 4(5): 464-466.

    • JIN H, COMINELLI E, BAILEY P, et al. , 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis [J]. EMBO J, 19(22): 6150-6161.

    • LIU YC, SUN J, WU YR, et al. , 2016. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice [J]. J Plant Res, 129: 955-962.

    • LIU ZB, HABEN G, GUILFOYLE TJ, et al. , 1997. A G-box-binding protein from soybean binds to the E1 auxin-response element in the soybean GH3 promoter and contains a proline-rich repression domain [J]. Plant Physiol 115(2): 397-407.

    • MAO HD, LI JY, HAN R, et al. , 2016. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis [J]. Plant Physiol Biochem, 105: 55-66.

    • NARBERHAUS F, LEE HS, SCHMITZ RA, et al. , 1995. The C-terminal domain of NiFL is sufficient to inhibit NiFA activity [J]. J Bacteriol, 177(17): 5078-5087.

    • OHTA M, MATSUIA K, HIRATSUA K, et al. , 2001. Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression [J]. Plant Cell, 13(8): 1959-1968.

    • RAVENTOS D, SKRIVER K, SCHLEIN M, et al. , 1998. HRT, a novel zinc finger, transcriptional repressor from barley [J]. J Biol Chem, 273(36): 23313-23320.

    • SHANG XG, YU YJ, LIU HQ, et al. , 2020. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis [J]. Plant Sci, 296: 110498.

    • SUN L, LIU LP, WANG YZ, et al. , 2020. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis [J]. Planta, 252: 1-11.

    • TAKASAKI H, MARUYAMA K, SATOSHI K, et al. , 2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice [J]. Mol Genet Genom, 284: 173-183.

    • TRAN LAM-SON P, NAKAHIMA K, SAKUMA Y, et al, 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell, 16(9): 2481-2498.

    • WANG JF, WANG YP, ZHANG J, et al. , 2021. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3. 6 [J]. Hortic Res, 8(1): 214-214.

    • WANG YX, LIU ZW, WU ZJ, et al. , 2016. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L. ) O. Kuntze] [J]. PLoS ONE, 11(11): e0166727.

    • WU SQ, TANG CJ, ZHENG TH, et al. , 2022. Spatio-temporal characteristics of drought in Jiangxi based on index of continuous days without available precipitation [J]. Resour Environ Yangtze Basin, 31(4): 903-914. [吴少强, 汤崇军, 郑太辉, 等, 2022. 基于连续无有效降雨日数指标的江西省干旱时空分布特征 [J]. 长江流域资源与环境, 31(4): 903-914. ]

    • YU MX, LIU JI, DU BS, et al. , 2021. NAC transcription factor PwNAC11 activates ERD1 by interaction with ABF3 and DREB2A to enhance drought tolerance in transgenic Arabidopsis [J]. Int J Mol Sci, 22(13): 6952.

    • ZHANG XY, TIAN YH, QIN YZ, et al. , 2021. The role of miR169 family members in the processes of growth, development and abiotic stress response in planta [J]. J Plant Genet Resour, 22(4): 900-909. [张幸媛, 田宇豪, 秦玉芝, 等, 2021. miR169在植物生长发育与非生物胁迫响应中的作用 [J]. 植物遗传资源学报, 22(4): 900-909. ]

  • 参考文献

    • ASLAM, WASEEM M, ZHANG Q, et al. , 2021. Identification of ABC transporter G subfamily in white lupin and functional characterization of L. albABGC29 in phosphorus use [J]. BMC Genomics, 22(1): 1-14.

    • BU QY, JIANG HL, LI CB, et al. , 2008. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses [J]. Cell Res, 18(7): 756-767.

    • CHEN X, WANG YF, BO L, et al. , 2014. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway [J]. Plant Cell Physiol, 55(3): 604-619.

    • CHEN ZY, YAN XQ, TANG MH, et al. , 2022. Molecularcharacterization and drought resistance of GmNAC3 transcription factor in Glycine max (L. ) Merr [J]. Int J Mol Sci, 23(20): 12378.

    • CAO RL, LI ZQ, OUYANG WT, et al. , 2021. Identification of NAC gene in Camellia oleifera and analysis of its response to drought stress [J]. J Jiangxi Agric Univ, 43(6): 1357-1370. [曹瑞兰, 李知青, 欧阳雯婷, 等, 2021. 油茶NAC基因鉴定及对干旱胁迫响应分析 [J]. 江西农业大学学报, 43(6): 1357-1370. ]

    • DING SJ, ZHONG QP, YUAN TT, et al. , 2017. Effects of drought stress on Camellia oleifera flower-bud growth and production [J]. J Nanjing For Univ (Nat Sci Ed), 41(5): 197-202. [丁少净, 钟秋平, 袁婷婷, 等, 2017. 干旱胁迫对油茶花苞生长及产量的影响 [J]. 南京林业大学学报(自然科学版), 41(5): 197-202. ]

    • FUJITA M, FUJITA Y, MARUYAMA K, et al. , 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. Plant J, 39(6): 863-876.

    • HAN XM, FENG ZQ, XING DN, et al. , 2015. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis [J]. BMC Plant Biol, 15(1): 1-12.

    • HAO YJ, WEI W, SONG QX, et al. , 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants [J]. Plant J, 68(2): 302-313.

    • HAO YJ, SONG QX, CHEN HW, et al. , 2010. Plant NAC-type transcription factor proteins contain a nard domain for repression of transcriptional activation [J]. Planta, 232: 1033-1043.

    • HE F, 2011. Study of overall arrangement for construction China’s industrial system of non-wood forest Ⅰ: Woody edible oils [J]. J Cent S Univ For Technol, 31(3): 1-7. [何方, 2011. 中国现代经济林产业体系建设布局研究Ⅰ——木本食用油料篇 [J]. 中南林业科技大学学报, 31(3): 1-7. ]

    • HU HH, DAI MQ, YAO JL, et al. , 2018. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice [J]. Proc Natl Acad Sci USA, 103(35): 12987-12992.

    • HUANG C, ORBAN T, JASTRZEBSKA B, et al. , 2011. Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain [J]. Biochemistry, 50(11): 1940-1949.

    • HUANG L, ZHANG HJ, LI DY, et al. , 2016. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance [J]. BMC Plant Biol, 16: 1-18.

    • JENSEN M, KJAERSGAARD T, NIEISEN M, et al. , 2010. The Arabidopsis thaliana NAC transcription factor family: Structure-function relationships and determinants of ANAC019 stress signalling [J]. Biochem J, 426(2): 183-196.

    • JIANG HL, LI HM, BU QY, et al. , 2009. The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response [J]. Plant Signal Behav, 4(5): 464-466.

    • JIN H, COMINELLI E, BAILEY P, et al. , 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis [J]. EMBO J, 19(22): 6150-6161.

    • LIU YC, SUN J, WU YR, et al. , 2016. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice [J]. J Plant Res, 129: 955-962.

    • LIU ZB, HABEN G, GUILFOYLE TJ, et al. , 1997. A G-box-binding protein from soybean binds to the E1 auxin-response element in the soybean GH3 promoter and contains a proline-rich repression domain [J]. Plant Physiol 115(2): 397-407.

    • MAO HD, LI JY, HAN R, et al. , 2016. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis [J]. Plant Physiol Biochem, 105: 55-66.

    • NARBERHAUS F, LEE HS, SCHMITZ RA, et al. , 1995. The C-terminal domain of NiFL is sufficient to inhibit NiFA activity [J]. J Bacteriol, 177(17): 5078-5087.

    • OHTA M, MATSUIA K, HIRATSUA K, et al. , 2001. Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression [J]. Plant Cell, 13(8): 1959-1968.

    • RAVENTOS D, SKRIVER K, SCHLEIN M, et al. , 1998. HRT, a novel zinc finger, transcriptional repressor from barley [J]. J Biol Chem, 273(36): 23313-23320.

    • SHANG XG, YU YJ, LIU HQ, et al. , 2020. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis [J]. Plant Sci, 296: 110498.

    • SUN L, LIU LP, WANG YZ, et al. , 2020. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis [J]. Planta, 252: 1-11.

    • TAKASAKI H, MARUYAMA K, SATOSHI K, et al. , 2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice [J]. Mol Genet Genom, 284: 173-183.

    • TRAN LAM-SON P, NAKAHIMA K, SAKUMA Y, et al, 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell, 16(9): 2481-2498.

    • WANG JF, WANG YP, ZHANG J, et al. , 2021. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3. 6 [J]. Hortic Res, 8(1): 214-214.

    • WANG YX, LIU ZW, WU ZJ, et al. , 2016. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L. ) O. Kuntze] [J]. PLoS ONE, 11(11): e0166727.

    • WU SQ, TANG CJ, ZHENG TH, et al. , 2022. Spatio-temporal characteristics of drought in Jiangxi based on index of continuous days without available precipitation [J]. Resour Environ Yangtze Basin, 31(4): 903-914. [吴少强, 汤崇军, 郑太辉, 等, 2022. 基于连续无有效降雨日数指标的江西省干旱时空分布特征 [J]. 长江流域资源与环境, 31(4): 903-914. ]

    • YU MX, LIU JI, DU BS, et al. , 2021. NAC transcription factor PwNAC11 activates ERD1 by interaction with ABF3 and DREB2A to enhance drought tolerance in transgenic Arabidopsis [J]. Int J Mol Sci, 22(13): 6952.

    • ZHANG XY, TIAN YH, QIN YZ, et al. , 2021. The role of miR169 family members in the processes of growth, development and abiotic stress response in planta [J]. J Plant Genet Resour, 22(4): 900-909. [张幸媛, 田宇豪, 秦玉芝, 等, 2021. miR169在植物生长发育与非生物胁迫响应中的作用 [J]. 植物遗传资源学报, 22(4): 900-909. ]