en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴朝昕(1995-),硕士,主要从事水稻分子育种研究,(E-mail)wuchaoxin1995@163.com。

通讯作者:

刘雪薇,硕士,主要从事水稻分子育种,(E-mail)627605375@qq.com。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2022)11-1830-10

DOI:10.11931/guihaia.gxzw202105024

参考文献
DELSUC F, BRINKMANN H, PHILIPPE H, 2005. Phylogenomics and the reconstruction of the tree of life [J]. Nat Rev Genet, 6(5): 61-375.
参考文献
EISEN JA, 1998. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis [J]. Genom Res, 8(3): 163-167.
参考文献
EISEN JA, HANAWALT PC, 1999. A phylogenomic study of DNA repair genes, proteins, and processes [J]. Mutat Res-DNA Repair, 435(3): 171-213.
参考文献
FAN J, ZHU WY, LI ZF, et al. , 2020. Chloroplast genome sequence of a yellow colored rice (Oryza sativa L. ): insight into the genome structure and phylogeny [J]. Mitochondrial DNA Part B, 5(3): 3650-3652.
参考文献
FU T, WANG ZL, QIAN PX, et al. , 2016. The latest research progress and application of the DNA barcode in higher plants [J]. J Nucl Agric Sci, 30(5): 887-896. [付涛, 王志龙, 钱萍仙, 等, 2016. 高等植物 DNA 条形码最新研究进展及其应用 [J]. 核农学报, 30(5): 887-896. ]
参考文献
HUANG XH, KURATA N, WEI XH, et al. , 2012. A map of rice genome variation reveals the origin of cultivated rice [J]. Nature, 490(7421): 497-501.
参考文献
JEON JH, KIM SC, 2019. Comparative analysis of the complete chloroplast genome sequences of three closely related east-Asian wild roses(Rosa sect. synstylae Rosaceae) [J]. Genes, 10 (1): 1-14.
参考文献
JIANG ZQ, 2008. Breeding and application of Dalixiang, a new quality rice line [J]. Guizhou Agric Sci, 36(5): 12-13. [蒋志谦, 2008. 优质水稻新品系大粒香的选育及应用 [J]. 贵州农业科学, 36(5): 12-13. ]
参考文献
LI XY, XIAO BG, GAO YL, et al. , 2011. Analysis of SSR loci in chloroplast and mitochondrial genomes of tobacco [J]. Acta Bot Boreal-Occident Sin, 31(12): 2399-2405. [李绪英, 肖炳光, 高玉龙, 等, 2011. 烟草叶绿体基因组和线粒体基因组 SSR 位点分析 [J]. 西北植物学报, 31(12): 2399-2405. ]
参考文献
LI YH, REN YK, ZHAO XH, et al. , 2020. Research progress on chloroplast genome of major gramineous crops [J]. Biotechnol Bull, 36(11): 112-121. [李裕华, 任永康, 赵兴华, 等, 2020. 禾本科主要农作物叶绿体基因组研究进展 [J]. 生物技术通报, 36(11): 112-121. ]
参考文献
LI YT, ZHANG J, HUANG YL, et al. , 2020. Analysis of chloroplast genome of Pyrus betulaefolia [J]. Acta Hortic Sin, 47(6): 1021-1032. [李泳潭, 张军, 黄亚丽, 等, 2020. 杜梨叶绿体基因组分析 [J]. 园艺学报, 47(6): 1021-1032. ]
参考文献
LI YT, ZHANG J, LI LF, et al. , 2018. Structural and comparative analysis of the complete chloroplast genome of Pyrus hopeiensis — “wild plants with a tiny population” — and three other Pyrus species [J]. Int J Mol Sci, 19(3262): 1-19.
参考文献
LIN ZX, WANG YY, FU F, et al. , 2014. Complete chloroplast genome of Dongxiang wild rice and its application in phylogenetic analysis [J]. J Zhejiang Univ (Agric & Life Sci), 40(4): 397-403. [林张翔, 王营营, 付菲, 等, 2014. 东乡野生稻叶绿体基因组拼接及系统进化分析 [J]. 浙江大学学报(农业与生命科学版), 40(4): 397-403. ]
参考文献
LIU F, ZHAO Y, LUO DJ, et al. , 2017. The complete chloroplast genome sequence of Oryza rhizomatis(Poaceae) [J]. Mitochondrial DNA Part B, 2(2): 467-468.
参考文献
LUO RF, LUO J, MEI YX, et al. , 2012. The purification, rejuvenation and application of good quality rice Dalixiang of maogong brand [J]. Seed, 31(9): 131-132. [罗仁发, 罗节, 梅映雪, 等, 2012. 茅贡牌优质稻大粒香提纯复壮及应用 [J]. 种子, 31(9): 131-132. ]
参考文献
NIU ZT, XUE QY, WANG H, et al. , 2017. Mutational biases and GC-biased gene conversion affect GC content in the plastomes of Dendrobium genus [J]. Int J Mol Sci, 18(11): 2307-2321.
参考文献
OHYAMA K, FUKUZAWA H, KOHCHI T, et al. , 1988. Structure and organization of Marchantia polymorpha chloroplast genome: I. Cloning and gene identification [J]. J Mol Biol, 203(2): 281-298.
参考文献
POWELL W, MORGANTE M, MCDEVITT R, et al. , 1995. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines [J]. Proc Natl Acad Sci, 92(17): 7759-7763.
参考文献
PUGH T, FOUET O, RISTERUCCI AM, et al. , 2004. A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers [J]. Theor Appl Genet, 108(6): 1151-1161.
参考文献
SHINOZAKI K, OHME M, TANAKA M, et al. , 1986 . The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. Embo J, 5(9): 2043-2049.
参考文献
SONG Y, CHEN Y, LV JZ, et al. , 2019. Comparative chloroplast genomes of sorghum species: Sequence divergence and phylogenetic relationships [J]. Biomed Res Int, 11(5046958): 1-11.
参考文献
TANG P, RUAN QY, PENG C, 2011. Phylogeny in structure alterations of poaceae cpDNA [J]. Chin Agric Sci Bull, 27(30): 171-176. [唐萍, 阮秋燕, 彭程, 2011. 禾本科植物叶绿体基因组结构的系统进化研究 [J]. 中国农学通报, 27(30): 171-176. ]
参考文献
WANG S, GAO LZ, 2016. Complete chloroplast genome sequence and annotation of the tropical japonica group of asian cultivated rice (Oryza sativa L. ) [J]. Genome Ann, 4(1): 1-2.
参考文献
WANG YH, XIE YF, ZHANG ZX, et al. , 2022. The complete chloroplast genome of Sloanea sinensis and the systematic status of Elaeocarpaceae [J]. Guihaia, 42(1): 39-48. [王一麾, 谢宜飞, 张志翔, 等, 2022. 猴欢喜叶绿体全基因组及杜英科系统地位分析 [J]. 广西植物42(1): 39-48. ]
参考文献
WU CX, XU HF, LIU XW, et al. , 2021. Analysis of chloroplast genome of ‘Goudang 3’ [J/OL]. Mol Plant Breed: 1-29 [2022-03-30]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220118. 1548. 006. html. [吴朝昕, 徐海峰, 刘雪薇, 等, 2021. ‘苟当3号’水稻叶绿体基因组特征分析 [J/OL]. 分子植物育种: 1-29 [2022-03-30]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220118. 1548. 006. html. ]
参考文献
YAO X, TAN YH, LIU YY, et al. , 2016. Chloroplast genome structure in Ilex (Aquifoliaceae) [J]. Sci Rep, 6(1): 1-10.
参考文献
ZHANG H, HE SB, KONG FD, et al. , 2018. Sequence of chloroplast genome and the phyletic evolution within Leonurus [J]. Inf Trad Chin Med, 35(4): 21-27. [张慧, 何帅兵, 孔繁德, 等, 2018. 益母草叶绿体基因组序列与系统进化位置分析 [J]. 中医药信息, 35(4): 21-27. ]
参考文献
ZHANG X, RONG C, QIN L, et al. , 2018. Complete chloroplast genome sequence of Malus hupehensis: genome structure, comparative analysis, and phylogenetic relationships [J]. Molecules, 23(2917): 1-17.
参考文献
ZHENG Y, ZHANG H, WANG QM, et al. , 2020. Complete chloroplast genome sequence of Cliviaminiata and its characteristics [J]. Acta Hortic Sin, 47(12): 2439-2450. [郑祎, 张卉, 王钦美, 等, 2020. 大花君子兰叶绿体基因组及其特征 [J]. 园艺学报, 47(12): 2439-2450. ]
参考文献
ZHU B, GAN CC, WANG HC, 2021. Characteristics of the complete chloroplast genome of Dendrobium thyrsiflorum and its phylogenetic relationship analysis [J]. Biotechnol Bull, 37(5): 38-47. [朱斌, 甘晨晨, 王洪程, 2021. 球花石斛(Dendrobium thyrsiflorum)叶绿体基因组特征及亲缘关系解析 [J]. 生物技术通报, 37(5): 38-47. ]
目录contents

    摘要

    大粒香作为贵州重要的优质稻资源,推广种植面积大,并且在乡村振兴过程中为社会带来了较高的经济效益。然而,目前对大粒香基因组学的理论研究报道较少。为揭示大粒香水稻叶绿体基因组(cpDNA)特征及系统发育关系,该研究对大粒香叶绿体进行测序,并分析其基因组特征。结果表明:(1)大粒香水稻cpDNA全长134563 bp,包括1个大单拷贝区(LSC,80864 bp)、1个小单拷贝区(SSC,12347 bp)和2个反向重复序列区(IRs,20676 bp)。(2)注释到129个基因,可分为蛋白编码、tRNA和rRNA三类基因,数量分别为85个、36个和8个。(3)密码子偏好分析显示,大粒香cpDNA密码子偏好A碱基或U(T)碱基,亮氨酸密码子使用了1944次,使用次数最多;半胱氨酸的密码子仅使用198次,使用次数最少。(4)检测到129个SSR,其中有95个单核苷酸重复且大部分SSR序列由A/T碱基组成。(5)系统发育分析结果显示,大粒香与热带粳稻亲缘关系最近,聚为一类。该研究结果揭示了大粒香叶绿体基因组信息,并确定了大粒香系统发育所属分支。

    Abstract

    As an important high-quality rice resource in Guizhou Province, Dalixiang has a large planting area, and has brought higher economic benefits to society in the process of rural revitalization. However, there are few theoretical researches on the genomics of Dalixiang. In order to reveal the characteristics and phylogenetic relationships of chloroplast genome of rice Dalixiang, the chloroplasts of Dalixiang were sequenced and their genomic characteristics were analyzed. The results were as follows: (1) The chloroplast genome of Dalixiang was 134563 bp, including LSC(80864 bp),SSC(12347 bp)and two IRs(20676 bp). (2) There were 129 genes annotated in the chloroplast genome of Dalixiang, which could be divided into protein coding, tRNA and rRNA, with 85, 36 and 8 genes respectively. (3) Codon bias analysis of Dalixiang showed that leucine was most frequently used (1944 times) and that of cysteine was used least frequently (198 times), and most codons ended in A/U(T). (4) The total number of SSR loci in the cpDNA of Dalixiang was 129, ninety-five of which were mononucleotide and most of SSR were composed of nucleobase A/T. (5) Phylogenetic analysis showed the closest affiliation relationship between Dalixiang and Tropical Japonica, and these two were clustered into one group. This study reveals the characteristic information of Dalixiang chloroplast genome, and identifies the phylogenetic status of Dalixiang.

  • 叶绿体是植物获取能量的重要细胞器,具有独立于核基因组的遗传体系。因为其基因序列保守,基因结构重排事件远低于核基因组,结构简单,一般为母系遗传,所以被用来揭示物种的进化与亲缘关系(李绪英等,2011; Li et al.,2018; Zhang et al.,2018; Jeon &Kim,2019; 朱斌等,2021)。由于发达的测序科技使不少生物实现了叶绿体基因组(cpDNA)测序,因此NCBI中收录的叶绿体基因逐渐增多,利用叶绿体基因研究亲缘关系的报道也不断增多。在水稻中,Fan等(2020)利用cpDNA分析了33个稻属物种的亲缘关系,结果显示Oryza sativa voucherHSAGSDYD1802与O. sativa cultivar TN1、O. sativa cultivar RP Bio-226和O. sativa cultivar IR8的亲缘关系最近。Fang等(2017)通过分析cpDNA探讨了根茎野生稻与其他13个稻属物种的亲缘关系,结果显示与根茎野生稻关系较近的是药用野生稻且属于CC基因类型。在其他物种中,张慧等(2018)利用cpDNA分析了益母草及其他16个物种的亲缘关系,研究结果很好地解决了野芝麻亚科的进化关系。郑祎等(2020)用大花君子兰叶绿体基因序列与10个百合科、5个兰科、4个鸢尾科及5个石蒜科共24个物种的叶绿体基因组序列进行系统发育分析,研究结果支持大花君子兰属于石蒜科,并使用其中23个物种叶绿体基因组中ycf2进行亲缘关系分析发现,叶绿体基因组中ycf2可以代替叶绿体基因组全长进行亲缘关系分析。

  • 大粒香是贵州省水稻研究所选育,具有稻米粒大且香的特点,并且大粒香在乡村振兴过程中为社会带来了较高的经济效益(蒋志谦,2008; 罗仁发等,2012)。目前,对大粒香基因组学、品质形成等理论研究的文献报道不多。基于大粒香在贵州优质稻发展过程中的重要性,为进一步从基因组水平认识和改良大粒香,本研究以大粒香DNA为材料进行测序,构建大粒香cpDNA图谱,分析密码子的使用和重复序列,并分析其亲缘关系,拟解决大粒香叶绿体基因组以下问题:(1)大粒香cpDNA的基本特征大小;(2)大粒香cpDNA密码子偏好情况;(3)大粒香cpDNA系统发育所属分支。

  • 1 材料与方法

  • 1.1 材料

  • 以大粒香为材料,2019年冬季种植于海南三亚师部农场基地,2020年2月选取无病虫害、长势良好的水稻叶片,冲洗、擦干液氮速冻暂存,用干冰保存寄回贵州,置于-80℃保存,用于提取大粒香DNA。

  • 1.2 方法

  • 1.2.1 大粒香DNA 提取及测序

  • 使用TIANGEN植物DNA试剂盒提取大粒香总DNA,测序公司检测合格后,构建文库,进行测序。

  • 1.2.2 cpDNA序列组装与注释

  • 将原始数据,除去有污染、低质量的片段,使用SPAdes软件拼接后组装。使用CPGAVAS2进行基因注释,利用OGDRAW绘制大粒香的cpDNA图谱。

  • 1.2.3 密码子使用分析

  • 使用CodonW进行密码子使用分析。

  • 1.2.4 重复序列分析

  • 使用Vmatch完成大粒香cpDNA的长重复序列的查找。大粒香cpDNA的SSR筛选则使用MISA软件,该软件的检测参数:单核苷酸大于8时被检测; 二核苷酸和三核苷酸大于4时被检测。

  • 1.2.5 系统进化分析

  • 为探究大粒香与其他稻属物种的亲缘关系,从NCBI中下载了12个稻属物种和2种禾本科近源物种的cpDNA(绿竹和高粱),使用RaxML软件构建系统发育树。

  • 图1 大粒香叶绿体基因组图谱

  • Fig.1 Gene map of Dalixiang chloroplast genome

  • 2 结果与分析

  • 2.1 大粒香cpDNA序列特征

  • 大粒香cpDNA全长为134 563 bp,分为3个区:大单拷贝区(large single copy,LSC)(80 864 bp),GC含量为37.09%; 小单拷贝区(small single copy,SSC)(12 347 bp),GC含量为33.37%; 反向重复序列区(inverted repeats,IRs)(20 676 bp),GC含量为44.41%。在大粒香cpDNA中注释129个基因(表1),可分为三类,即蛋白编码基因、tRNA基因和rRNA基因,其数量分别为85、36和8。其基因功能主要为与自身复制能力有关、与光合作用有关、与其他基因和与未知功能有关4种。在蛋白编码基因中,rps基因的数量最多有16个,而cemAinfAccsArbcLmatKaccDclpP等基因数量仅有1个。其中,有20个基因出现在IR重复区内,分别为ndhBycf1rps12、rps7、rps15、rps9、rpl2、rpl23 8个蛋白编码基因,rrn23Srrn4.5Srrn16Srrn5S 4个核糖体RNAtrnN-GUUtrnH-GUGtrnA-UGCtrnL-CAAtrnT-CGUtrnV-GACtrnR-ACGtrnM-CAU 8个转运RNA(表1)。统计结果显示,大粒香cpDNA中有内含子的基因共17个,其中ycf3有2个,剩余16个基因只有1个。trnK-UUU的内含子碱基数最多,而trnL-UAA的最少(表2)。

  • 表1 大粒香cpDNA注释基因列表

  • Table1 List of genes found in Dalixiang cpDNA

  • 注: *表示该基因位于反向重复区内。

  • Note: * indicates the genes are located in the inverted repeats.

  • 表2 大粒香cpDNA含有内含子的基因

  • Table2 Genes with introns in cpDNA of Dalixiang

  • 2.2 大粒香cpDNA密码子使用分析

  • 在大粒香cpDNA密码子中,亮氨酸密码子使用了1 944次,为最多; 半胱氨酸的密码子仅使用198次,为最少。在编码大粒香cpDNA的密码子中有30个密码子偏好性>1,其中以A结尾的有12个,以U(T)结尾的有16个,这表明大粒香cpDNA密码子偏好A/U(T)碱基,这种情况常出现在杜梨、益母草等多种高等植物中(张慧等,2018; 李泳潭等,2020; 郑祎等,2020)(表3)。

  • 表3 大粒香cpDNA密码子使用

  • Table3 Codon usage in cpDNA of Dalixiang

  • 2.3 大粒香cpDNA长重复序列和SSR分析

  • 在大粒香cpDNA中检测到19个长重复序列,包含了8个正向重复,长度范围为30~52 bp,以及11个回文重复,其长度范围为30~127 bp。最长的127 bp的重复序列位于rps19-psbK的基因间隔区内,而含有最多长重复序列的区间为racL-accD。区域位置分布显示,绝大多数分布在基因间隔区内(表4)。

  • 在大粒香cpDNA的129个SSR位点中有95个单核苷酸重复,并且70.07%的SSR由A或T组成,表明SSR位点有使用A/T碱基的偏好。同时,研究表明SSR位点在大粒香cpDNA上分布不均,在LSC区、SSC区以及IRs区分别分布了95个、18个和16个SSR位点(表5)。

  • 表4 大粒香cpDNA的重复序列

  • Table4 cpDNA repeat sequence of Dalixiang

  • 注: Intron. 内含子; IGS. 基因间隔区; GCR. 基因编码区。

  • Note: Intron. Intron; GIS. Gene intergenic spacer; GCR. Gene coding region.

  • 2.4 大粒香cpDNA系统发育分析

  • 将大粒香与粳稻、籼稻、野生稻及2个外类物种等共15个cpDNA序列构建发育树。发育树分析表明,15个物种可分为三类,即第一类为Bambusaoldhamii,第二类为Sorghum bicolor,第三类为13个稻属物种组成。在第三类群中又可分为4个小类群,其中3种野生稻(O. australiensis 300316、O. meridionalisO. ruifipogon)各为一类,其余10种栽培稻为一类。在栽培稻类群中,粳稻与籼稻分别处于不同进化分支。并且,大粒香水稻与粳稻Tropical Japonica在同一分支,表明两者的进化关系比其他水稻品种近(图2)。

  • 3 讨论与结论

  • 本研究测得大粒香cpDNA全长为134 563 bp,GC含量为39%,LSC为80 864 bp,SSC为12 347 bp,IR为20 676 bp,并注释到129个基因,与已报道的禾本科数据相符(李裕华等,2020)。前人通过比对不同禾本科植物cpDNA序列表明,虽然叶绿体基因保守程度较高,但一些基因在进化过程中仍然出现退化缺失现象(唐萍等,2011; 付涛等,2016)。本研究将大粒香cpDNA与Wang等(2016)报道的热带粳稻叶绿体基因组进行比对结果显示,虽然二者在细胞色素b/f复合体相关基因、光系统Ⅰ、Ⅱ相关基因、核糖体蛋白大和小亚基相关基因、tRNA和未知功能基因等基因差异较少,但在大粒香叶绿体基因中不存在lhbA基因。lhbA基因是和光合作用过程中光系统Ⅱ有关的基因,在热带粳稻中存在lhbA基因,并且在喜好温暖的禾本科植物毛竹中同样也存在lhbA基因(Yao et al.,2016),这可能是热带粳稻为适应热带光温生长环境中逐渐进化而得。

  • SSR位点可被用于辅助育种和遗传连锁作图等方面的研究,而cpDNA具有序列保守、结构稳定、易测序等优点,有助于解决类群间的遗传多样性(Powell et al.,1995; Pugh et al.,2004; Song et al.,2019)。本研究结果表明,大粒香cpDNA的SSR位点对A/U(T)碱基有着明显偏好,这与前人研究结论相一致(张慧等,2018; 李泳潭等,2020; 郑祎等,2020; 王一麾等,2021; 吴朝昕等,2021)。此外,大粒香cpDNA的密码子也偏好A/U(T)碱基,这种密码子使用情况也存在于其他物种中(Shinozaki et al.,1986; Ohyama et al.,1988; 郑祎等,2020; 朱斌等,2021; 吴朝昕等,2021)。大粒香cpDNA编码蛋白质的密码子和SSR位点都偏好A碱基或者U(T)碱基,可能是造成大粒香cpDNA总A/U(T)含量大于总GC含量的原因。根据Niu等(2007)的研究报道,因为A/T核苷酸含有7个氮原子,比G/C核苷酸少一个,所以富含A/T核苷酸耗能更少,有利于cpDNA的复制。这可能是大粒香cpDNA富含A/U(T)的原因。

  • 表5 大粒香cpDNA中的简单重复序列

  • Table5 SSR in the cpDNA of Dalixiang

  • 续表5

  • 注: c. 单碱基; p2.2碱基单元; p3.3碱基单元; P4.4碱基单元; P6.6碱基单元; LSC. 大单拷贝区; SSC. 小单拷贝区; IRA. 反向重复序列区A; IRB. 反向重复序列区B。

  • Note: c. Mononucleotide; p2. Dinucleotide; p3. Trinucleotide; P4. Tetranucleotide; P6. Hexanucleotide; LSC. Large single copy; SSC. Small single copy; IRA. Inverted repeat region A; IRB. Inverted repeat region B.

  • 图2 15种植物的cpDNA序列的系统进化树

  • Fig.2 Phylogenetic tree constructed using cpDNA of 15 plants

  • 系统发育基因组学是利用分子数据来研究生物间发育关系的。由于cpDNA具有序列保守、结构稳定、易测序等优点,因此基于cpDNA进行的系统发育研究得到了很好的发展(Eisen,1998; Eisen &Hanawalt,1999; Delsuc et al.,2005)。本研究对优质稻大粒香cpDNA测序数据进行了系统发育分析,研究结果表明大粒香与热带粳稻聚为一类; 粳稻与籼稻不为一类,这一结果与林张翔等(2014)的研究结果相同,支持了Huang等(2012)的籼粳稻起源假说。

  • 综上所述,本研究所获得的大粒香的cpDNA大小、结构、基因数量、重复序列、密码子偏好、系统发育树等特征信息,为进一步研究大粒香的系统进化和育种研究提供了理论依据。

  • 参考文献

    • DELSUC F, BRINKMANN H, PHILIPPE H, 2005. Phylogenomics and the reconstruction of the tree of life [J]. Nat Rev Genet, 6(5): 61-375.

    • EISEN JA, 1998. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis [J]. Genom Res, 8(3): 163-167.

    • EISEN JA, HANAWALT PC, 1999. A phylogenomic study of DNA repair genes, proteins, and processes [J]. Mutat Res-DNA Repair, 435(3): 171-213.

    • FAN J, ZHU WY, LI ZF, et al. , 2020. Chloroplast genome sequence of a yellow colored rice (Oryza sativa L. ): insight into the genome structure and phylogeny [J]. Mitochondrial DNA Part B, 5(3): 3650-3652.

    • FU T, WANG ZL, QIAN PX, et al. , 2016. The latest research progress and application of the DNA barcode in higher plants [J]. J Nucl Agric Sci, 30(5): 887-896. [付涛, 王志龙, 钱萍仙, 等, 2016. 高等植物 DNA 条形码最新研究进展及其应用 [J]. 核农学报, 30(5): 887-896. ]

    • HUANG XH, KURATA N, WEI XH, et al. , 2012. A map of rice genome variation reveals the origin of cultivated rice [J]. Nature, 490(7421): 497-501.

    • JEON JH, KIM SC, 2019. Comparative analysis of the complete chloroplast genome sequences of three closely related east-Asian wild roses(Rosa sect. synstylae Rosaceae) [J]. Genes, 10 (1): 1-14.

    • JIANG ZQ, 2008. Breeding and application of Dalixiang, a new quality rice line [J]. Guizhou Agric Sci, 36(5): 12-13. [蒋志谦, 2008. 优质水稻新品系大粒香的选育及应用 [J]. 贵州农业科学, 36(5): 12-13. ]

    • LI XY, XIAO BG, GAO YL, et al. , 2011. Analysis of SSR loci in chloroplast and mitochondrial genomes of tobacco [J]. Acta Bot Boreal-Occident Sin, 31(12): 2399-2405. [李绪英, 肖炳光, 高玉龙, 等, 2011. 烟草叶绿体基因组和线粒体基因组 SSR 位点分析 [J]. 西北植物学报, 31(12): 2399-2405. ]

    • LI YH, REN YK, ZHAO XH, et al. , 2020. Research progress on chloroplast genome of major gramineous crops [J]. Biotechnol Bull, 36(11): 112-121. [李裕华, 任永康, 赵兴华, 等, 2020. 禾本科主要农作物叶绿体基因组研究进展 [J]. 生物技术通报, 36(11): 112-121. ]

    • LI YT, ZHANG J, HUANG YL, et al. , 2020. Analysis of chloroplast genome of Pyrus betulaefolia [J]. Acta Hortic Sin, 47(6): 1021-1032. [李泳潭, 张军, 黄亚丽, 等, 2020. 杜梨叶绿体基因组分析 [J]. 园艺学报, 47(6): 1021-1032. ]

    • LI YT, ZHANG J, LI LF, et al. , 2018. Structural and comparative analysis of the complete chloroplast genome of Pyrus hopeiensis — “wild plants with a tiny population” — and three other Pyrus species [J]. Int J Mol Sci, 19(3262): 1-19.

    • LIN ZX, WANG YY, FU F, et al. , 2014. Complete chloroplast genome of Dongxiang wild rice and its application in phylogenetic analysis [J]. J Zhejiang Univ (Agric & Life Sci), 40(4): 397-403. [林张翔, 王营营, 付菲, 等, 2014. 东乡野生稻叶绿体基因组拼接及系统进化分析 [J]. 浙江大学学报(农业与生命科学版), 40(4): 397-403. ]

    • LIU F, ZHAO Y, LUO DJ, et al. , 2017. The complete chloroplast genome sequence of Oryza rhizomatis(Poaceae) [J]. Mitochondrial DNA Part B, 2(2): 467-468.

    • LUO RF, LUO J, MEI YX, et al. , 2012. The purification, rejuvenation and application of good quality rice Dalixiang of maogong brand [J]. Seed, 31(9): 131-132. [罗仁发, 罗节, 梅映雪, 等, 2012. 茅贡牌优质稻大粒香提纯复壮及应用 [J]. 种子, 31(9): 131-132. ]

    • NIU ZT, XUE QY, WANG H, et al. , 2017. Mutational biases and GC-biased gene conversion affect GC content in the plastomes of Dendrobium genus [J]. Int J Mol Sci, 18(11): 2307-2321.

    • OHYAMA K, FUKUZAWA H, KOHCHI T, et al. , 1988. Structure and organization of Marchantia polymorpha chloroplast genome: I. Cloning and gene identification [J]. J Mol Biol, 203(2): 281-298.

    • POWELL W, MORGANTE M, MCDEVITT R, et al. , 1995. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines [J]. Proc Natl Acad Sci, 92(17): 7759-7763.

    • PUGH T, FOUET O, RISTERUCCI AM, et al. , 2004. A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers [J]. Theor Appl Genet, 108(6): 1151-1161.

    • SHINOZAKI K, OHME M, TANAKA M, et al. , 1986 . The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. Embo J, 5(9): 2043-2049.

    • SONG Y, CHEN Y, LV JZ, et al. , 2019. Comparative chloroplast genomes of sorghum species: Sequence divergence and phylogenetic relationships [J]. Biomed Res Int, 11(5046958): 1-11.

    • TANG P, RUAN QY, PENG C, 2011. Phylogeny in structure alterations of poaceae cpDNA [J]. Chin Agric Sci Bull, 27(30): 171-176. [唐萍, 阮秋燕, 彭程, 2011. 禾本科植物叶绿体基因组结构的系统进化研究 [J]. 中国农学通报, 27(30): 171-176. ]

    • WANG S, GAO LZ, 2016. Complete chloroplast genome sequence and annotation of the tropical japonica group of asian cultivated rice (Oryza sativa L. ) [J]. Genome Ann, 4(1): 1-2.

    • WANG YH, XIE YF, ZHANG ZX, et al. , 2022. The complete chloroplast genome of Sloanea sinensis and the systematic status of Elaeocarpaceae [J]. Guihaia, 42(1): 39-48. [王一麾, 谢宜飞, 张志翔, 等, 2022. 猴欢喜叶绿体全基因组及杜英科系统地位分析 [J]. 广西植物42(1): 39-48. ]

    • WU CX, XU HF, LIU XW, et al. , 2021. Analysis of chloroplast genome of ‘Goudang 3’ [J/OL]. Mol Plant Breed: 1-29 [2022-03-30]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220118. 1548. 006. html. [吴朝昕, 徐海峰, 刘雪薇, 等, 2021. ‘苟当3号’水稻叶绿体基因组特征分析 [J/OL]. 分子植物育种: 1-29 [2022-03-30]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220118. 1548. 006. html. ]

    • YAO X, TAN YH, LIU YY, et al. , 2016. Chloroplast genome structure in Ilex (Aquifoliaceae) [J]. Sci Rep, 6(1): 1-10.

    • ZHANG H, HE SB, KONG FD, et al. , 2018. Sequence of chloroplast genome and the phyletic evolution within Leonurus [J]. Inf Trad Chin Med, 35(4): 21-27. [张慧, 何帅兵, 孔繁德, 等, 2018. 益母草叶绿体基因组序列与系统进化位置分析 [J]. 中医药信息, 35(4): 21-27. ]

    • ZHANG X, RONG C, QIN L, et al. , 2018. Complete chloroplast genome sequence of Malus hupehensis: genome structure, comparative analysis, and phylogenetic relationships [J]. Molecules, 23(2917): 1-17.

    • ZHENG Y, ZHANG H, WANG QM, et al. , 2020. Complete chloroplast genome sequence of Cliviaminiata and its characteristics [J]. Acta Hortic Sin, 47(12): 2439-2450. [郑祎, 张卉, 王钦美, 等, 2020. 大花君子兰叶绿体基因组及其特征 [J]. 园艺学报, 47(12): 2439-2450. ]

    • ZHU B, GAN CC, WANG HC, 2021. Characteristics of the complete chloroplast genome of Dendrobium thyrsiflorum and its phylogenetic relationship analysis [J]. Biotechnol Bull, 37(5): 38-47. [朱斌, 甘晨晨, 王洪程, 2021. 球花石斛(Dendrobium thyrsiflorum)叶绿体基因组特征及亲缘关系解析 [J]. 生物技术通报, 37(5): 38-47. ]

  • 参考文献

    • DELSUC F, BRINKMANN H, PHILIPPE H, 2005. Phylogenomics and the reconstruction of the tree of life [J]. Nat Rev Genet, 6(5): 61-375.

    • EISEN JA, 1998. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis [J]. Genom Res, 8(3): 163-167.

    • EISEN JA, HANAWALT PC, 1999. A phylogenomic study of DNA repair genes, proteins, and processes [J]. Mutat Res-DNA Repair, 435(3): 171-213.

    • FAN J, ZHU WY, LI ZF, et al. , 2020. Chloroplast genome sequence of a yellow colored rice (Oryza sativa L. ): insight into the genome structure and phylogeny [J]. Mitochondrial DNA Part B, 5(3): 3650-3652.

    • FU T, WANG ZL, QIAN PX, et al. , 2016. The latest research progress and application of the DNA barcode in higher plants [J]. J Nucl Agric Sci, 30(5): 887-896. [付涛, 王志龙, 钱萍仙, 等, 2016. 高等植物 DNA 条形码最新研究进展及其应用 [J]. 核农学报, 30(5): 887-896. ]

    • HUANG XH, KURATA N, WEI XH, et al. , 2012. A map of rice genome variation reveals the origin of cultivated rice [J]. Nature, 490(7421): 497-501.

    • JEON JH, KIM SC, 2019. Comparative analysis of the complete chloroplast genome sequences of three closely related east-Asian wild roses(Rosa sect. synstylae Rosaceae) [J]. Genes, 10 (1): 1-14.

    • JIANG ZQ, 2008. Breeding and application of Dalixiang, a new quality rice line [J]. Guizhou Agric Sci, 36(5): 12-13. [蒋志谦, 2008. 优质水稻新品系大粒香的选育及应用 [J]. 贵州农业科学, 36(5): 12-13. ]

    • LI XY, XIAO BG, GAO YL, et al. , 2011. Analysis of SSR loci in chloroplast and mitochondrial genomes of tobacco [J]. Acta Bot Boreal-Occident Sin, 31(12): 2399-2405. [李绪英, 肖炳光, 高玉龙, 等, 2011. 烟草叶绿体基因组和线粒体基因组 SSR 位点分析 [J]. 西北植物学报, 31(12): 2399-2405. ]

    • LI YH, REN YK, ZHAO XH, et al. , 2020. Research progress on chloroplast genome of major gramineous crops [J]. Biotechnol Bull, 36(11): 112-121. [李裕华, 任永康, 赵兴华, 等, 2020. 禾本科主要农作物叶绿体基因组研究进展 [J]. 生物技术通报, 36(11): 112-121. ]

    • LI YT, ZHANG J, HUANG YL, et al. , 2020. Analysis of chloroplast genome of Pyrus betulaefolia [J]. Acta Hortic Sin, 47(6): 1021-1032. [李泳潭, 张军, 黄亚丽, 等, 2020. 杜梨叶绿体基因组分析 [J]. 园艺学报, 47(6): 1021-1032. ]

    • LI YT, ZHANG J, LI LF, et al. , 2018. Structural and comparative analysis of the complete chloroplast genome of Pyrus hopeiensis — “wild plants with a tiny population” — and three other Pyrus species [J]. Int J Mol Sci, 19(3262): 1-19.

    • LIN ZX, WANG YY, FU F, et al. , 2014. Complete chloroplast genome of Dongxiang wild rice and its application in phylogenetic analysis [J]. J Zhejiang Univ (Agric & Life Sci), 40(4): 397-403. [林张翔, 王营营, 付菲, 等, 2014. 东乡野生稻叶绿体基因组拼接及系统进化分析 [J]. 浙江大学学报(农业与生命科学版), 40(4): 397-403. ]

    • LIU F, ZHAO Y, LUO DJ, et al. , 2017. The complete chloroplast genome sequence of Oryza rhizomatis(Poaceae) [J]. Mitochondrial DNA Part B, 2(2): 467-468.

    • LUO RF, LUO J, MEI YX, et al. , 2012. The purification, rejuvenation and application of good quality rice Dalixiang of maogong brand [J]. Seed, 31(9): 131-132. [罗仁发, 罗节, 梅映雪, 等, 2012. 茅贡牌优质稻大粒香提纯复壮及应用 [J]. 种子, 31(9): 131-132. ]

    • NIU ZT, XUE QY, WANG H, et al. , 2017. Mutational biases and GC-biased gene conversion affect GC content in the plastomes of Dendrobium genus [J]. Int J Mol Sci, 18(11): 2307-2321.

    • OHYAMA K, FUKUZAWA H, KOHCHI T, et al. , 1988. Structure and organization of Marchantia polymorpha chloroplast genome: I. Cloning and gene identification [J]. J Mol Biol, 203(2): 281-298.

    • POWELL W, MORGANTE M, MCDEVITT R, et al. , 1995. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines [J]. Proc Natl Acad Sci, 92(17): 7759-7763.

    • PUGH T, FOUET O, RISTERUCCI AM, et al. , 2004. A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers [J]. Theor Appl Genet, 108(6): 1151-1161.

    • SHINOZAKI K, OHME M, TANAKA M, et al. , 1986 . The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. Embo J, 5(9): 2043-2049.

    • SONG Y, CHEN Y, LV JZ, et al. , 2019. Comparative chloroplast genomes of sorghum species: Sequence divergence and phylogenetic relationships [J]. Biomed Res Int, 11(5046958): 1-11.

    • TANG P, RUAN QY, PENG C, 2011. Phylogeny in structure alterations of poaceae cpDNA [J]. Chin Agric Sci Bull, 27(30): 171-176. [唐萍, 阮秋燕, 彭程, 2011. 禾本科植物叶绿体基因组结构的系统进化研究 [J]. 中国农学通报, 27(30): 171-176. ]

    • WANG S, GAO LZ, 2016. Complete chloroplast genome sequence and annotation of the tropical japonica group of asian cultivated rice (Oryza sativa L. ) [J]. Genome Ann, 4(1): 1-2.

    • WANG YH, XIE YF, ZHANG ZX, et al. , 2022. The complete chloroplast genome of Sloanea sinensis and the systematic status of Elaeocarpaceae [J]. Guihaia, 42(1): 39-48. [王一麾, 谢宜飞, 张志翔, 等, 2022. 猴欢喜叶绿体全基因组及杜英科系统地位分析 [J]. 广西植物42(1): 39-48. ]

    • WU CX, XU HF, LIU XW, et al. , 2021. Analysis of chloroplast genome of ‘Goudang 3’ [J/OL]. Mol Plant Breed: 1-29 [2022-03-30]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220118. 1548. 006. html. [吴朝昕, 徐海峰, 刘雪薇, 等, 2021. ‘苟当3号’水稻叶绿体基因组特征分析 [J/OL]. 分子植物育种: 1-29 [2022-03-30]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220118. 1548. 006. html. ]

    • YAO X, TAN YH, LIU YY, et al. , 2016. Chloroplast genome structure in Ilex (Aquifoliaceae) [J]. Sci Rep, 6(1): 1-10.

    • ZHANG H, HE SB, KONG FD, et al. , 2018. Sequence of chloroplast genome and the phyletic evolution within Leonurus [J]. Inf Trad Chin Med, 35(4): 21-27. [张慧, 何帅兵, 孔繁德, 等, 2018. 益母草叶绿体基因组序列与系统进化位置分析 [J]. 中医药信息, 35(4): 21-27. ]

    • ZHANG X, RONG C, QIN L, et al. , 2018. Complete chloroplast genome sequence of Malus hupehensis: genome structure, comparative analysis, and phylogenetic relationships [J]. Molecules, 23(2917): 1-17.

    • ZHENG Y, ZHANG H, WANG QM, et al. , 2020. Complete chloroplast genome sequence of Cliviaminiata and its characteristics [J]. Acta Hortic Sin, 47(12): 2439-2450. [郑祎, 张卉, 王钦美, 等, 2020. 大花君子兰叶绿体基因组及其特征 [J]. 园艺学报, 47(12): 2439-2450. ]

    • ZHU B, GAN CC, WANG HC, 2021. Characteristics of the complete chloroplast genome of Dendrobium thyrsiflorum and its phylogenetic relationship analysis [J]. Biotechnol Bull, 37(5): 38-47. [朱斌, 甘晨晨, 王洪程, 2021. 球花石斛(Dendrobium thyrsiflorum)叶绿体基因组特征及亲缘关系解析 [J]. 生物技术通报, 37(5): 38-47. ]