en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱鹏锦(1983-),硕士,高级农艺师,主要从事作物生理生态学研究,(E-mail)zhupengjin04@163.com。

通讯作者:

龙盛风,副研究员,主要从事作物栽培育种研究,(E-mail)15077136500@163.com。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2022)11-1840-14

DOI:10.11931/guihaia.gxzw202101060

参考文献
AMBROS V, 2004. The function of animal MicroRNAs [J]. Nature, 431: 350-355.
参考文献
BONNET E, HE Y, BILLIAU K, et al. , 2010. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics [J]. Bioinformatics, 26: 1566-1568.
参考文献
DANG CY, 2013. Expression anaysis of chilling-stress regulated miRNAs and their targets in Chorispora bungeana [J]. Lanzhou: Lanzhou University. [党春艳, 2013. 高山离子芥低温胁迫调控的miRNAs及其靶基因的表达分析 [D]. 兰州: 兰州大学. ]
参考文献
DEMMIG-ADAMS B, ADAMS WW, 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis [J]. Trends Plant Sci, 1: 21-26.
参考文献
EVERS M, HUTTNER M, DUECK A, et al. , 2015. miRA: adaptable novel miRNA identification in plants using small RNA sequencing data [J]. BMC Bioinf, 16: 370.
参考文献
FAHLGREN N, CARRINGTON JC, 2010. miRNA target prediction in plants [J]. Meth Mol B, 592: 51-57.
参考文献
FRIEDLANDER MR, CHEN W, ADAMIDI C, et al. , 2008. Discovering microRNAs from deep sequencing data using miRDeep [J]. Nat Biotechnol, 26: 407-415.
参考文献
GU L, HUANG ZG, LI WB, et al. , 2011. Analysis on climatic factors affecting sugarcane meteorological yield in Nanning area during 1980-2007 [J]. J S Agric, 42(5): 492-495. [古丽, 黄智刚, 李文宝, 等, 2011. 1980—2007年南宁蔗区甘蔗气象产量变化及影响因子分析 [J]. 南方农业学报, 42(5): 492-495. ]
参考文献
GUO T, LI GL, WEI Q, et al. , 2011. The function of plant MicroRNA [J]. Acta Bot Boreal-Occident Sin, 31(11): 2237-2254. [郭韬, 李广林, 魏强, 等, 2011. 植物MicroRNA功能的研究进展 [J]. 西北植物学报, 31(11): 2347-2254. ]
参考文献
GUPTA O, MEENA N, SHARMA I, et al. , 2014. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat [J]. Mol Biol Rep, 41: 4623-4629.
参考文献
HE Y, TAN ZK, DING MH, et al. , 2009. Infrequent disaster of the cold and freezing disaster and its impacts on sugarcane production in Guangxi [J]. J Catastrophol, 24(1): 68-72. [何燕, 谭宗琨, 丁美花, 等, 2009. 2008年罕见低温冻害对广西甘蔗及蔗糖业的影响 [J]. 灾害学, 24(1): 68-72. ]
参考文献
HOLT NE, ZIGMANTAS D, VALKUNAS L, et al. , 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting [J]. Science, 307: 433-436.
参考文献
KUANG ZM, LI Q , RAO YM, et al. , 2009. Application of EOS/MODIS data to monitoring sugarcane cold damage [J]. J Appl Meteorol Sci, 20(3): 360-364. [匡昭敏, 李强, 尧永梅, 等. 2009. EOS/MODIS数据在甘蔗寒害监测评估中的应用 [J]. 应用气象学报, 20(3): 360-364. ]
参考文献
LI MN, LONG RC, YANG QC, et al. , 2014. Cloning and function analysis of a salt-stress-induced HD-Zip transcription factor MsHB2 from Alfalfa [J]. Plant Physiol J, 47(4): 622-632. [李明娜, 龙瑞才, 杨青川, 等, 2014. 紫花苜蓿盐诱导HD-Zip类转录因子MsHB2的克隆及功能分析 [J]. 中国农业科学, 47(4): 622-632. ]
参考文献
LI MY, WANG F, XU ZS, et al. , 2014. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response [J]. BMC Genom, 15: 242.
参考文献
LI YR, FANG FX, WU JM, et al. , 2011. Survey of frost and cold damage on sugarcane production in Guangxi in 2010/2011 milling season and countermeasures [J]. J S Agric, 42(1): 37-42. [李杨瑞, 方锋学, 吴建明, 等, 2011. 2010/2011榨季广西甘蔗生产冻害调查及防御对策 [J]. 南方农业学报, 42(1): 37-42. ]
参考文献
LIU YH, LIU ZZ, LUO LJ, et al. , 2007. Plant miRNA and its potential role in plant developmental process and environmental stress responses [J]. Plant Physiol J, 43(5): 987-992. [刘运华, 刘灶长, 罗利军, 2007. 植物miRNA及其在植物发育进程和环境胁迫响应中的潜在功能 [J]. 植物生理学报, 43(5): 987-992. ]
参考文献
LIU ZF, YAN HC, WANG KB, et al. , 2004. Crystal structure of spinach major light-harvesting complex at 2. 72 Å resolution [J]. Nature, 428 (6980): 287-292.
参考文献
LÜ DK, BAI X, LI Y, et al. , 2010. Profiling of cold-stress-responsive miRNAs in rice by microarrays [J]. Gene, 459: 39-47.
参考文献
MEI L, 2016. Cloning four kinds of miRNAs and analysis of expression pattern with cold related in Triticum aestivum L. [D]. Harbin: Northeast Agricultural University. [梅琳, 2016. 冬小麦抗寒相关4种miRNAs的克隆及表达特征分析 [D]. 哈尔滨: 东北农业大学. ]
参考文献
MENG F, LIU H, WANG K, et al. , 2013. Development-associated microRNAs in grains of wheat (Triticum aestivum L. ) [J]. BMC Plant Biol, 13: 140.
参考文献
MORTAZAVI A, WILLIAMS BA, MCCUE K, et al. , 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods, 5: 621-628.
参考文献
PASQUINELLI AE, REINHART BJ, SLACK F, et al. , 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA [J]. Nature, 408(6808): 86-89.
参考文献
PILCHER RLR, MOXON S, PAKSERESHT N, et al. , 2007. Identification of novel small RNAs in tomato (Solanum lycopersicum) [J]. Planta, 226: 709-717.
参考文献
POURCEL L, ROUTABOUL JM, KERHOAS L, et al. , 2005. Transparent TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat [J]. Plant Cell, 17: 2966-2980.
参考文献
SRIPATHI, VR, CHOI Y, CHAN AP, et al. , 2014. Small RNA transcriptome profiles of four cotton species, Gossypium hirsutum, G. herbaceum, G. arboreum and G. raimondii [C]. San Diego: International Plant and Animal Genome Conference XXII.
参考文献
SU YX, LI Z, SUN H, 2006. Climate division of sugarcane planting based on GIS in Guangxi [J]. Chin J Agrometeorol, 27(3): 987-992. 苏永秀, 李政, 孙涵, 2006. 基于GIS的广西甘蔗种植气候区划 [J]. 中国农业气象, 27(3): 252-255.
参考文献
SUN XM, FAN GT, SU LY, et al. , 2015. Identification of cold-inducible microRNAs in grapevine [J]. Front Plant Sci, 6: 595.
参考文献
SUNKAR R, CHINNUSAMY V, ZHU JH, et al. , 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation [J]. Trends Plant Sci, 12: 301-309.
参考文献
SUNKAR R, LI YF, JAGADEESWARAN G, 2012. Functions of microRNAs in plant stress responses [J]. Trends Plant Sci, 17: 196-203.
参考文献
SUNKAR R, ZHU JK, 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 16: 2001-2019.
参考文献
THIEBAUT F, ROJAS CA, ALMEIDA KL, et al. , 2012. Regulation of miR319 during cold stress in sugarcane [J]. Plant Cell Environ, 35: 502-512.
参考文献
TURNER M, YU O, SUBRAMANIAN S, 2012. Genome organization and characteristics of soybean microRNAs [J]. BMC Genom, 13: 169.
参考文献
WANG LL, ZHAO TL, GE JT, et al. , 2017. Application prospects of plant cold-stress-responsive miRNAs in cold resistance research of plants [J]. Acta Agric Shanghai, 33(6): 129-134. [王丽丽, 赵统利, 葛金涛, 等, 2017. 植物低温胁迫响应miRNAs在植物抗寒研究中的应用前景 [J]. 上海农业学报, 33(6): 129-134. ]
参考文献
WANG XS, TONG YA, WANG SH, 2010. Rapid and accurate detection of plant miRNAs by liquid northern hybridization [J]. Int J Mol Sci, 11: 3138-3148.
参考文献
WU G, POETHIG RS, 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3 [J]. Development, 133: 3539-3547.
参考文献
WU HJ, MA YK, TONG C, et al. , 2012. PsRobot: a web-based plant small RNA meta-analysis toolbox [J]. Nucl Acid Res, 40: 22-28.
参考文献
WU MG, LIN YQ, ZHANG H, 2010. Research status and prospect on industrial standard of sugarcane in China [J]. Subtrop Agric Res, 6: 209-212. [吴棉国, 林彦铨, 张华, 2010. 我国甘蔗产业标准研究现状与展望 [J]. 亚热带农业研究, 6: 209-212. ]
参考文献
XIONG L, ZHU JK, 2003. Regulation of abscisic acid biosynthesis [J]. Plant Physiol, 133: 29-36.
参考文献
ZHANG YY, REN YY, CHEN L, et al. , 2017. Differential expression analysis of 12 MicroRNAs under cold stress in Populus tomentosa [J]. Chin Agric Sci Bull, 28(7): 1-7. [张译云, 任媛媛, 陈磊, 等. 2012, 毛白杨12种microRNAs的低温胁迫差异表达分析 [J]. 中国农学通报, 28(7): 1-7. ]
目录contents

    摘要

    为了解不同基因型甘蔗(Saccharum officinarum)响应低温胁迫的分子机制,该研究以低温胁迫4 ℃处理 24 h 后的3个不同耐寒性甘蔗品种的叶片为材料进行Illumina HiSeqTM 2000 高通量测序,构建了18个低温胁迫前后sRNA文库。结果表明:(1)共获得分属于84个家族的322个已知miRNA及预测得到110个新miRNA,并在已知miRNA中筛选出100个差异表达miRNA(61个上调,39个下调),新miRNA中筛选出37个差异表达 miRNA(15个上调, 22个下调)。(2)利用psRNATarget、TargetFinder、Tapirhybrid软件对所获得的差异表达miRNA进行靶基因预测,得到1844个靶基因并进行GO分析揭示其主要功能类别,即分子功能、细胞组分与生物过程。(3)为验证高通量测序数据的可靠性,筛选14个miRNA及其靶基因进行qRT-PCR验证,结果显示这些miRNA均被检测发现且大多表达结果与测序结果一致。(4)鉴定出部分差异表达miRNA的靶基因,这些基因参与植物生长、发育及低温胁迫反应。综上认为,耐寒型甘蔗体内miRNA直接或间接作用靶基因实现表达调控相关代谢途径,对其重要农艺性状均起着关键的调控作用。

    Abstract

    In order to identify the molecular mechanisms of different sugarcane (Saccharum officinarum ) responding to cold stress, the leaves of different sugarcane genotypes with different cold tolerance treated at 4 ℃ for 24 h were sampled as the materials for high-through transcriptome sequencing with Illumina HiSeqTM 2000, and 18 sRNA libraries before and after cold stress were constructed. The results were as follows: (1)A total of 322 known miRNAs of 84 families were discovered, and 110 new miRNAs were predicted. Among the known miRNAs, 100 differentially expressed miRNAs were screened out (61 up-regulated, 39 down-regulated), and 37 differentially expressed miRNAs (15 up-regulated, 22 down-regulated) were screened out from the new miRNAs. (2) A total of 1844 target genes were predicted by using psRNATarget, TargetFinder and Tapirhybrid software. Three main functional categories of these target genes were revealed via the functional analysis of gene ontology, namely molecular function, cellular component and biological process. (3) In order to verify the reliability of high-throughput sequencing data, 14 miRNAs and their target genes were selected for qRT-PCR analysis, which showed that the 14 miRNAs were detected and most of the expressions were consistent with the sequencing results. (4) Some miRNA target genes were identified, which involved in plant growth, development and cold stress responses. All the above results indicate that miRNA in cold tolerant sugarcane directly or indirectly regulates the expression of target genes to realize the expression regulation of related metabolic pathways, and plays a key role in regulating the important agronomic traits.

    关键词

    甘蔗低温胁迫耐寒性miRNA生物信息学

  • miRNA是一类含有20~24个碱基的小分子内源性非编码RNA,具有高度的保守性、时序性和组织特异性(Ambros,2004)。miRNA主要在转录后水平上通过介导靶基因mRNA的切割或抑制翻译来调节基因的表达,在生物体代谢过程中起到多种调控作用,如参与调控植物器官的形态建成(Sunkar et al.,2012)、生长发育(Thiebaut,et al.,2012)、激素分泌、信号转导以及对外界环境胁迫(Xiong &Zhu,2003)的响应等过程。在拟南芥和水稻响应低温的研究中发现,miR-167、miR-169、miR-319和miR-171等miRNA家族在低温响应具有重要的生物学作用(Wang et al.,2010),其中miR-169的靶基因为低温诱导的重要基因CBF(Sunkar et al.,2007); 还在水稻响应低温胁迫的研究中证明,miRNA-319和miRNA-171的靶基因属于MYB类的转录因子,两者的表达量互为消长关系,进而说明miRNA在水稻耐低温途径中所起的调控作用(Lü et al.,2010)。因此,准确高效分离和鉴定miRNA及其靶基因并分析它们的功能,更精确地掌握miRNA在植物抗逆胁迫过程中的调控机制,是目前植物miRNA研究领域的重要内容。

  • 甘蔗是热带、亚热带地区重要的糖料作物,低温是限制其扩大种植区域和实现高产稳产的重要因素之一(吴棉国等,2010)。出现的偶发性大范围冰冻雨雪或严重的霜冻天气会导致我国甘蔗主产区遭受巨大的经济损失(何燕等,2009; 匡昭敏等,2009); 广西地理环境特殊,冬季持续低温以及春季“倒春寒”形成的阴雨霜冻频发导致大面积甘蔗受到冷害,具体表现在甘蔗叶片枯萎、茎杆坏死以致蔗糖含量、甘蔗产量下降(李杨瑞等,2011)。古丽等(2011)采集甘蔗主产市县40多年的气象数据,结合甘蔗种植面积、甘蔗产量和蔗糖产量等指标进行分析发现,低温霜冻灾害是影响甘蔗种植、甘蔗生产和蔗糖产量的主要环境因子。因此,了解甘蔗的耐低温调控机制是培育耐寒性强或适合我国热带北缘气候的甘蔗品种的前提。

  • 本研究在观察不同甘蔗品种的田间农艺性状和模拟低温胁迫的生理生化研究基础上,筛选出抗寒能力较强的甘蔗品种作为材料,利用高通量测序技术及生物信息学方法,获得与甘蔗响应低温胁迫相关的miRNA,分析miRNA的差异表达情况,明确miRNA与靶基因的作用关系,并对预测所得的靶基因进行基因本体(gene ontology,GO)分析,挖掘低温胁迫应答基因,为选育耐寒性强的优良甘蔗新品种提供理论依据和技术支撑。

  • 1 材料与方法

  • 1.1 材料

  • 以广西壮族自治区农业科学院甘蔗研究所选育的‘桂糖28号’(GT28)、广西蔗区主栽品种‘新台糖22号’(ROC22)和广西壮族自治区亚热带作物研究所新选育的‘桂热2号’(GR2)为材料。

  • 1.2 方法

  • 1.2.1 实验设计与管理

  • 选择无病虫害、蔗茎大小均匀的种茎切成单芽段,用清水冲洗种茎、干布擦洗干净; 用50%多菌灵可湿性粉剂1 000倍液浸12 h消毒; 用蒸馏水浸洗种茎1 min后,再用蒸馏水浸洗拧干的棉布将种茎包好并做好标记; 用橡皮筋扎好放进温度为25℃的恒温箱催芽。当种茎萌芽并长出幼根时,将其移植到装有营养土的塑料盆并做好标记。每盆1段种茎,盆高17.5 cm,盆宽16 cm。育苗期间,每株施用完全营养液2次,每次10 mL。当幼苗两叶一心时,选择长势、大小均一的幼苗进行低温处理。低温胁迫处理温度为4℃,光照强度为5 000 lx,处理24 h; 对照(CK)温度为28℃,光照强度为5 000 lx。

  • 1.2.2 RNA 提取及 Illumina 测序

  • 采集低温处理和对照样本的叶片,及时用TRNzol Reagent试剂盒(天根生化科技有限公司,北京)提取并检测RNA。将低温胁迫处理组与对照样本组提取获得的高质量RNA送往华大基因科技有限公司(深圳)进行文库构建,每处理3个重复。采用Illumina HiSeqTM 2000平台对质量合格的RNA文库进行测序(Ali et al.,2008)。通过去接头、去低质量、去污染等过程完成数据处理获得干净序列后,使用Bowtie2软件按照MiRbase > pirnabank > snoRNA(human/plant)> Rfam > other sRNA的优先级顺序将小RNA(sRNA)遍历注释获得未注释RNA片段。

  • 1.2.3 已知miRNA的鉴定及新miRNA预测

  • 用miRDeep 2软件对所得的未注释sRNA序列与参考基因组 [割手密(Saccharum spontaneum)基因组]进行序列比对分析(Maurits et al.,2015),鉴定出已知的甘蔗耐寒相关miRNA; 将过滤获得的未比对序列比对参考序列,通过碱基数目延伸、miRNA结构预测方法获得新的miRNA。

  • 1.2.4 差异表达miRNA的鉴定

  • 对耐寒型甘蔗样品的已知miRNA的读数进行分析,判断低温胁迫前后不同耐寒型甘蔗样品中miRNA的差异表达,以|log2(FoldChange)|≥1,P<0.05为筛选标准,获得低温胁迫前后差异表达 miRNA。

  • 1.2.5 miRNA靶基因预测

  • 用psRNATarget(Wu et al.,2012)、TargetFinder(Fahlgren &Carrington,2010)和Tapirhybrid(Peer,2010)软件进行差异表达miRNA的靶基因预测,并在GO数据库对预测靶基因进行同源性搜索,确定其参与的信号传导及生物代谢途径。

  • 1.2.6 实时荧光定量PCR验证

  • 选取14个差异表达miRNA及其靶基因,先用Premier 5.0设计其成熟miRNA特异正向引物、通用反向引物(表4),再用LightCycler® 480 Instrument II进行 RT-PCR扩增,设阴性对照(不添加cDNA模板)以监控可能的污染。以甘蔗GAPDH为内参基因,每个样品均设置3次重复,采用2-ΔΔCt法计算基因相对表达。

  • 2 结果与分析

  • 2.1 高通量测序数据分析

  • 选择3个耐寒性不同甘蔗品种的幼苗进行低温胁迫,每个品种的对照(CK)和低温处理(T)3个重复,分别取叶片共18个样本进行高通量测序,构建低温胁迫前后sRNA文库; 对原始测序数据进行3′端去接头、Trim低质量、片段大小选择等质控处理,获取高质量clean read序列(表1)。从表1可以看出,在GR2的CK和T叶片中分别挖掘出24 310 558、23 925 673条测序数据,最终处理分别得到21 343 194、21 576 594条,高质量clean read序列分别占总序列的87.83%、90.25%,且所构建的文库与参考基因组进行比对,其CK和T分别有86.71%与84.32%的序列与参考基因组匹配; GT28的CK和T叶片中分别挖掘出23 915 244、23 528 103条测序数据,最终处理分别得到22 045 186、21 481 129条,高质量clean read序列分别占总序列的92.18%与91.28%,所构建的文库与参考基因组进行比对,其CK和T分别有71.75%与84.10%的序列与参考基因组匹配; ROCC22的CK和T叶片中分别挖掘出27 069 867、23 631 208条测序数据,最终处理分别得到21 007 371、20 640 357条,高质量clean read序列占总序列的79.50%与87.35%,所构建的文库与参考基因组进行比对,其CK和T分别有92.62%与85.67%的序列与参考基因组匹配(表1)。

  • sRNA长度与不同功能有关,其中21~22 nt的主要与mRNA切割和转录后基因沉默相关,24 nt的主要与RNA导向的DNA甲基化和转录基因沉默相关。对total clean reads进行统计发现,sRNA主要集中在21~24 nt之间,但不同抗寒能力的材料之间有一定差异,且不同长度的测序频率不同(图1)。

  • 表1 样品测序数据统计

  • Table1 Sequencing data statistics of samples

  • 根据基因表达量进一步对每个样品进行Pearson相关系数计算,并将这些系数以热图的形式反映出来(图2)。从Pearson相关系数可以看出,同一品种相同处理的重复样品间相关性较高(0.667~0.990),表明所有样品的表达量基本保持一致,说明其符合样本重复性实验标准,可以满足后续的差异表达分析。

  • 2.2 已知miRNA分析及新miRNA预测

  • 用AASRA软件将核苷酸序列比对到参考基因组及miRBase数据库,鉴定得到分属于84个已知miRNA家族的322个miRNA,其中对照组的297个miRNA分属于69个家族,低温处理组的305个miRNA分属于74个家族,这些家族中拥有最多家族成员数量的为miR169(32个),其次分别为miR166、miR171、miR167、miR156、miR396(图3)。

  • 根据成熟植物miRNA序列的高度保守型及miRNA前体拥有标志性发夹结构的特性,利用同源搜寻比对的方法在割手密miRBase数据库中进行搜索,对具有同源性的miRNA序列进行提取,选取其中表达量最高的作为甘蔗响应低温的保守miRNA的候选者,最终得到甘蔗响应低温的110个新miRNA。

  • 2.3 差异表达miRNA分析

  • 通过比较对照组与低温处理组miRNA的表达量变化情况,可以判断低温胁迫下抗寒能力不同的甘蔗品种miRNA的差异表达情况。在差异表达miRNA 检测过程中,以|log2(FC)|≥2,P<0.05作为筛选标准,低温胁迫时差异表达miRNA 如表2所示,包括 100个已知miRNA(61个上调,39个下调),37个新miRNA(15个上调,22个下调)。呈下调趋势的miRNA家族包括miR8175、miR5564、miR444、miR166在内的21个家族,呈上调趋势的miRNA家族包括miR156、 miR169、miR172、miR393、miR397、miR408等10个家族。这些具有差异性表达的miRNA在甘蔗响应低温胁迫情况下可能发挥特定的功能。

  • 图1 sRNA长度分布图

  • Fig.1 Graphs sRNA length distribution

  • 2.4 miRNA作用靶基因预测与分析

  • 根据筛选差异表达的miRNA与对应物种的基因序列信息,使用psRNATarget、TargetFinder和Tapurhybrid软件进行靶基因预测,结果见图4。3种预测方法共预测了1 844个相同的潜在靶基因,其中1 696个属于已知miRNA靶基因,148个属于新miRNA靶基因。为进一步分析预测所得靶基因的潜在生物学功能,对预测所得的靶基因进行GO分析,共鉴定出甘蔗响应低温胁迫miRNA靶基因:在生物过程(biological process)有13个功能亚类,在细胞组分(cellular component)有11个功能亚类,在分子功能(molecular function)有7个功能亚类(图4)。在生物过程类别中,预测靶基因的主要生物学功能富集于细胞过程和代谢过程; 在细胞组分类别中,预测靶基因生物学功能主要富集于细胞、细胞器和生物膜; 在分子功能类别中,预测靶基因生物学功能主要富集于结合和催化活性及转运活性。大多靶基因功能均与这些结合功能及其他相近的结合功能相关。大多miRNA通过直接或间接介导靶基因的表达调控相关代谢途径响应低温胁迫,这些miRNA所调控的靶基因对甘蔗的耐寒性起关键的调控作用(表3)。

  • 2.6 qRT-PCR验证

  • 利用qRT-PCR技术对测序所得到的miRNA及靶基因的差异丰度进行验证,miRNA及其靶基因的引物序列如表4所示。在对照组与低温处理组中共筛选出14个差异表达的miRNA及其靶基因,并对它们进行qRT-PCR验证,包括miR156、miR160g_1、miR167d、miR169 a-3p_3、miR171b-3p_3、miR172d-5p_4、miR393-3p_1、miR396b、 miR397a_3、miR398b、miR399k_1、miR408d、novel_mir36、novel_mir89(图5)。根据表4和图5的结果,除novel-miR36外,选择的其余13个miRNA在qRT-PCR实验中的表达模式与高通量测序检测到的表达模式一致(图5:A),这表明大部分高通量测序结果均能被荧光定量 PCR 技术所验证,此次研究数据为真实可信的。所筛选的14个miRNA,除novel-miR36外,其余13个miRNA均与其靶基因呈负调控关系(图5:B),证明miRNA通常以负调控或沉默靶基因的方式来调控植物的生长、发育及对环境的应激反应。

  • 3 讨论与结论

  • 甘蔗热带种原产热带地区,喜温,现代甘蔗栽培品种以热带种的种质为主体。作为广西传统的主导产业,而低温不仅是限制其扩大种植区域和实现高产稳产的重要因素之一,还影响蔗农收益和糖业稳定发展(苏永秀等,2006)。为了解甘蔗响应低温的内在分子机制,挖掘其与耐寒相关的miRNA及相关靶基因,本研究对不同基因型甘蔗进行低温胁迫处理,通过高通量测序技术及生物信息学方法,系统分析不同抗寒能力的甘蔗对低温胁迫的响应。

  • 通过高通量测序技术及生物信息学分析发现,sRNA主要集中在21~24 nt之间,不同抗寒能力的材料之间有一定差异且不同长度的测序频率不同。sRNA在不同物种间的长度分布会有所区别,如拟南芥(Pasquinelli et al.,2000)、小麦(Meng et al.,2013)、棉花(Sripathi et al.,2014)的sRNA长度最多分布在24 nt,杨树(李明娜等,2014)、大豆(Turner et al.,2012)和番茄(Pilcheret al.,2007)的sRNA长度最多分布在21 nt,这些结果与本研究结果高度相似。本研究通过生物信息学手段共挖掘137个miRNA在低温胁迫前后进行差异性表达,其中100个已知miRNA(61个上调,39个下调),37个新miRNA(15个上调,22个下调)。在低温胁迫下植物通过调节miRNA的表达水平,进而调节对应靶基因的表达,从而引起相关代谢与信号转导途径的变化来实现对逆境的响应,其信号转导途径主要包括胞外信号途径、胞内第二信使、转录因子以及功能基因等。Wu和Poethig(2006)的研究发现,低温胁迫导致miR156下调而其靶基因表达量增加,进而调控拟南芥营和养期延长、生长代谢变缓,以应对不良环境,这与本研究低温胁迫后miR156下调的结果一致。王丽丽等(2017)在拟南芥、小麦和水稻研究中发现miR160响应低温胁迫。而本研究中,在低温胁迫后miR160g_1表达下调,靶基因表达受抑制且作用于生长素信号通路从而在抵抗低温中发挥作用。Pourcel等( 2005)研究表明miR397的靶基因与漆酶有关,与细胞壁木质素的合成、抗病、对环境的适应过程密切相关。而本研究发现,低温胁迫后甘蔗叶片miR397a_3呈上调表达,其靶基因与抗坏血酸氧化酶(L-ascorbate oxidase)有关,可能参与调控抗坏血酸氧化酶的表达而增强低温响应能力。Li等(2014)研究旱芹miRNA对低温胁迫的响应发现,miR160、 miR164、miR394、 miR395、miR408具有表达差异。Sunkar和Zhu(2004)在研究分析拟南芥响应胁迫miRNA中,发现一些miRNA能被多种胁迫因素诱导,如miR393受到低温、干旱、高盐的诱导表达。Gupta等(2014)研究小麦miRNA对低温胁迫、盐胁迫、渗透胁迫的响应发现,在盐胁迫和低温胁迫下,miR168、miR397均表达下调,而miR172表达上调; miR393在渗透和盐胁迫下表达量上升,在低温胁迫下表达量下降。Sun等(2015)研究发现,在低温胁迫下对葡萄的miR169的表达量上调,但在拟南芥、扁桃中研究发现miR169的表达量下调。结合前人的研究结果,本研究认为特定miRNA对低温胁迫的响应可能因植物种类、同一植物的不同基因型、不同的组织类型、胁迫的时间等而有所差异。

  • 表2 甘蔗响应低温差异表达miRNA

  • Table2 Differential expressions of miRNAs in sugarcane responding to low temperature

  • 续表2

  • 续表2

  • 表3 响应低温的部分甘蔗miRNA及其靶基因

  • Table3 Some miRNAs and their target genes in sugarcane responding to low temperature

  • 图2 样品间相关性分析热图

  • Fig.2 Correlation heatmap of different samples

  • 图3 miRNA家族数量分布前18位

  • Fig.3 Top 18 miRNA family members

  • 图4 差异表达miRNA靶基因的GO功能分析

  • Fig.4 GO function analysis of miRNAs target genes for differentially expressed

  • 表4 miRNA和靶基因qRT-PCR引物设计

  • Table4 Design of qRT-PCR primer for miRNAs and target genes

  • 图5 miRNA及其靶基因qRT-PCR分析

  • Fig.5 qRT-PCR analysis of miRNA and target genes

  • 本研究利用psRNATarget、TargetFinder 及Tapirhybrid三种分析方式预测靶基因,对预测所得的靶基因进行GO分析发现,在生物过程类别中预测靶基因的主要生物学功能富集于细胞过程和代谢过程; 在细胞组分类别中预测靶基因生物学功能主要富集于细胞、细胞器和生物膜; 在分子功能类别中预测靶基因生物学功能主要富集于结合和催化活性及转运活性。在逆境胁迫条件下植物通过调节miRNA的表达水平,进而调节对应靶基因的表达,从而引起相关代谢与信号转导途径的变化来实现对逆境的响应。因此,进一步对参与调控植物激素信号传导、光合色素合成、抗氧化酶系统、泛素介导蛋白水解、淀粉与蔗糖代谢等通路的靶基因进行qRT-PCR验证。本研究发现,miR156靶向调控SBP转录因子,低温胁迫前后,miR156下调表达,负向调控SBP转录因子,使甘蔗生长代谢变缓而耐寒能力增强。梅琳(2007)研究冬小麦发现,低温胁迫下miR160的靶基因ARF17在过表达miR160f拟南芥植株中表达量明显下降。在拟南芥、水稻、玉米研究中证明miR160、miR167的靶基因是ARFAuxin Response Factors),主要通过调控生长素信号通路应对逆境。而本研究也发现甘蔗在低温胁迫后miR160g_1上调表达且其作用于转录因子ARF。张译云等(2012)研究发现毛白杨在低温胁迫下miR169ac表达下调,对其靶基因转录因子NAC负向调控。党春艳(2013)在研究高山离子芥低温胁迫响应中发现,miR169a在冷胁迫下无显著表达,而miR169在冷胁迫下表达下调,表明miR169家族之间响应低温存在差异。本研究中,miR169 a-3p_3在低温胁迫后表达上调,作用于细胞核转录因子使其表达下调,推测miR169 a-3p_3与调控甘蔗低温耐受能力密切相关。

  • 此外,本研究通过生物信息学挖掘甘蔗响应低温的miRNA,不仅参与抗氧化酶系统、植物激素信号传导、遗传信息等,而且参与类胡萝卜素代谢、卟啉与叶绿素代谢、淀粉与蔗糖代谢途径相关基因的表达。有研究表明叶绿体内的类胡萝卜素既可作为吸收光能的辅助色素将能量传递给叶绿素a,又可在持续胁迫条件下将过剩光能安全耗散而保护光合机构(Liu et al.,2004; Holt et al.,2005)。我们前期的研究也发现,低温胁迫时甘蔗能够通过增加光合机构过剩激发能的耗散和调整其叶片光合色素含量与构成进行有效的光能利用和分配。本研究对部分差异表达miRNA及其靶基因进行qRT-PCR检验发现,参与类胡萝卜素代谢的miR167d对靶基因具有负向调控作用。因此,后续我们将对低温条件下参与光合生理过程的miRNA分子调控机制进行深入研究,为抗寒育种提供重要理论依据和实验基础。

  • 参考文献

    • AMBROS V, 2004. The function of animal MicroRNAs [J]. Nature, 431: 350-355.

    • BONNET E, HE Y, BILLIAU K, et al. , 2010. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics [J]. Bioinformatics, 26: 1566-1568.

    • DANG CY, 2013. Expression anaysis of chilling-stress regulated miRNAs and their targets in Chorispora bungeana [J]. Lanzhou: Lanzhou University. [党春艳, 2013. 高山离子芥低温胁迫调控的miRNAs及其靶基因的表达分析 [D]. 兰州: 兰州大学. ]

    • DEMMIG-ADAMS B, ADAMS WW, 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis [J]. Trends Plant Sci, 1: 21-26.

    • EVERS M, HUTTNER M, DUECK A, et al. , 2015. miRA: adaptable novel miRNA identification in plants using small RNA sequencing data [J]. BMC Bioinf, 16: 370.

    • FAHLGREN N, CARRINGTON JC, 2010. miRNA target prediction in plants [J]. Meth Mol B, 592: 51-57.

    • FRIEDLANDER MR, CHEN W, ADAMIDI C, et al. , 2008. Discovering microRNAs from deep sequencing data using miRDeep [J]. Nat Biotechnol, 26: 407-415.

    • GU L, HUANG ZG, LI WB, et al. , 2011. Analysis on climatic factors affecting sugarcane meteorological yield in Nanning area during 1980-2007 [J]. J S Agric, 42(5): 492-495. [古丽, 黄智刚, 李文宝, 等, 2011. 1980—2007年南宁蔗区甘蔗气象产量变化及影响因子分析 [J]. 南方农业学报, 42(5): 492-495. ]

    • GUO T, LI GL, WEI Q, et al. , 2011. The function of plant MicroRNA [J]. Acta Bot Boreal-Occident Sin, 31(11): 2237-2254. [郭韬, 李广林, 魏强, 等, 2011. 植物MicroRNA功能的研究进展 [J]. 西北植物学报, 31(11): 2347-2254. ]

    • GUPTA O, MEENA N, SHARMA I, et al. , 2014. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat [J]. Mol Biol Rep, 41: 4623-4629.

    • HE Y, TAN ZK, DING MH, et al. , 2009. Infrequent disaster of the cold and freezing disaster and its impacts on sugarcane production in Guangxi [J]. J Catastrophol, 24(1): 68-72. [何燕, 谭宗琨, 丁美花, 等, 2009. 2008年罕见低温冻害对广西甘蔗及蔗糖业的影响 [J]. 灾害学, 24(1): 68-72. ]

    • HOLT NE, ZIGMANTAS D, VALKUNAS L, et al. , 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting [J]. Science, 307: 433-436.

    • KUANG ZM, LI Q , RAO YM, et al. , 2009. Application of EOS/MODIS data to monitoring sugarcane cold damage [J]. J Appl Meteorol Sci, 20(3): 360-364. [匡昭敏, 李强, 尧永梅, 等. 2009. EOS/MODIS数据在甘蔗寒害监测评估中的应用 [J]. 应用气象学报, 20(3): 360-364. ]

    • LI MN, LONG RC, YANG QC, et al. , 2014. Cloning and function analysis of a salt-stress-induced HD-Zip transcription factor MsHB2 from Alfalfa [J]. Plant Physiol J, 47(4): 622-632. [李明娜, 龙瑞才, 杨青川, 等, 2014. 紫花苜蓿盐诱导HD-Zip类转录因子MsHB2的克隆及功能分析 [J]. 中国农业科学, 47(4): 622-632. ]

    • LI MY, WANG F, XU ZS, et al. , 2014. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response [J]. BMC Genom, 15: 242.

    • LI YR, FANG FX, WU JM, et al. , 2011. Survey of frost and cold damage on sugarcane production in Guangxi in 2010/2011 milling season and countermeasures [J]. J S Agric, 42(1): 37-42. [李杨瑞, 方锋学, 吴建明, 等, 2011. 2010/2011榨季广西甘蔗生产冻害调查及防御对策 [J]. 南方农业学报, 42(1): 37-42. ]

    • LIU YH, LIU ZZ, LUO LJ, et al. , 2007. Plant miRNA and its potential role in plant developmental process and environmental stress responses [J]. Plant Physiol J, 43(5): 987-992. [刘运华, 刘灶长, 罗利军, 2007. 植物miRNA及其在植物发育进程和环境胁迫响应中的潜在功能 [J]. 植物生理学报, 43(5): 987-992. ]

    • LIU ZF, YAN HC, WANG KB, et al. , 2004. Crystal structure of spinach major light-harvesting complex at 2. 72 Å resolution [J]. Nature, 428 (6980): 287-292.

    • LÜ DK, BAI X, LI Y, et al. , 2010. Profiling of cold-stress-responsive miRNAs in rice by microarrays [J]. Gene, 459: 39-47.

    • MEI L, 2016. Cloning four kinds of miRNAs and analysis of expression pattern with cold related in Triticum aestivum L. [D]. Harbin: Northeast Agricultural University. [梅琳, 2016. 冬小麦抗寒相关4种miRNAs的克隆及表达特征分析 [D]. 哈尔滨: 东北农业大学. ]

    • MENG F, LIU H, WANG K, et al. , 2013. Development-associated microRNAs in grains of wheat (Triticum aestivum L. ) [J]. BMC Plant Biol, 13: 140.

    • MORTAZAVI A, WILLIAMS BA, MCCUE K, et al. , 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods, 5: 621-628.

    • PASQUINELLI AE, REINHART BJ, SLACK F, et al. , 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA [J]. Nature, 408(6808): 86-89.

    • PILCHER RLR, MOXON S, PAKSERESHT N, et al. , 2007. Identification of novel small RNAs in tomato (Solanum lycopersicum) [J]. Planta, 226: 709-717.

    • POURCEL L, ROUTABOUL JM, KERHOAS L, et al. , 2005. Transparent TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat [J]. Plant Cell, 17: 2966-2980.

    • SRIPATHI, VR, CHOI Y, CHAN AP, et al. , 2014. Small RNA transcriptome profiles of four cotton species, Gossypium hirsutum, G. herbaceum, G. arboreum and G. raimondii [C]. San Diego: International Plant and Animal Genome Conference XXII.

    • SU YX, LI Z, SUN H, 2006. Climate division of sugarcane planting based on GIS in Guangxi [J]. Chin J Agrometeorol, 27(3): 987-992. 苏永秀, 李政, 孙涵, 2006. 基于GIS的广西甘蔗种植气候区划 [J]. 中国农业气象, 27(3): 252-255.

    • SUN XM, FAN GT, SU LY, et al. , 2015. Identification of cold-inducible microRNAs in grapevine [J]. Front Plant Sci, 6: 595.

    • SUNKAR R, CHINNUSAMY V, ZHU JH, et al. , 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation [J]. Trends Plant Sci, 12: 301-309.

    • SUNKAR R, LI YF, JAGADEESWARAN G, 2012. Functions of microRNAs in plant stress responses [J]. Trends Plant Sci, 17: 196-203.

    • SUNKAR R, ZHU JK, 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 16: 2001-2019.

    • THIEBAUT F, ROJAS CA, ALMEIDA KL, et al. , 2012. Regulation of miR319 during cold stress in sugarcane [J]. Plant Cell Environ, 35: 502-512.

    • TURNER M, YU O, SUBRAMANIAN S, 2012. Genome organization and characteristics of soybean microRNAs [J]. BMC Genom, 13: 169.

    • WANG LL, ZHAO TL, GE JT, et al. , 2017. Application prospects of plant cold-stress-responsive miRNAs in cold resistance research of plants [J]. Acta Agric Shanghai, 33(6): 129-134. [王丽丽, 赵统利, 葛金涛, 等, 2017. 植物低温胁迫响应miRNAs在植物抗寒研究中的应用前景 [J]. 上海农业学报, 33(6): 129-134. ]

    • WANG XS, TONG YA, WANG SH, 2010. Rapid and accurate detection of plant miRNAs by liquid northern hybridization [J]. Int J Mol Sci, 11: 3138-3148.

    • WU G, POETHIG RS, 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3 [J]. Development, 133: 3539-3547.

    • WU HJ, MA YK, TONG C, et al. , 2012. PsRobot: a web-based plant small RNA meta-analysis toolbox [J]. Nucl Acid Res, 40: 22-28.

    • WU MG, LIN YQ, ZHANG H, 2010. Research status and prospect on industrial standard of sugarcane in China [J]. Subtrop Agric Res, 6: 209-212. [吴棉国, 林彦铨, 张华, 2010. 我国甘蔗产业标准研究现状与展望 [J]. 亚热带农业研究, 6: 209-212. ]

    • XIONG L, ZHU JK, 2003. Regulation of abscisic acid biosynthesis [J]. Plant Physiol, 133: 29-36.

    • ZHANG YY, REN YY, CHEN L, et al. , 2017. Differential expression analysis of 12 MicroRNAs under cold stress in Populus tomentosa [J]. Chin Agric Sci Bull, 28(7): 1-7. [张译云, 任媛媛, 陈磊, 等. 2012, 毛白杨12种microRNAs的低温胁迫差异表达分析 [J]. 中国农学通报, 28(7): 1-7. ]

  • 参考文献

    • AMBROS V, 2004. The function of animal MicroRNAs [J]. Nature, 431: 350-355.

    • BONNET E, HE Y, BILLIAU K, et al. , 2010. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics [J]. Bioinformatics, 26: 1566-1568.

    • DANG CY, 2013. Expression anaysis of chilling-stress regulated miRNAs and their targets in Chorispora bungeana [J]. Lanzhou: Lanzhou University. [党春艳, 2013. 高山离子芥低温胁迫调控的miRNAs及其靶基因的表达分析 [D]. 兰州: 兰州大学. ]

    • DEMMIG-ADAMS B, ADAMS WW, 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis [J]. Trends Plant Sci, 1: 21-26.

    • EVERS M, HUTTNER M, DUECK A, et al. , 2015. miRA: adaptable novel miRNA identification in plants using small RNA sequencing data [J]. BMC Bioinf, 16: 370.

    • FAHLGREN N, CARRINGTON JC, 2010. miRNA target prediction in plants [J]. Meth Mol B, 592: 51-57.

    • FRIEDLANDER MR, CHEN W, ADAMIDI C, et al. , 2008. Discovering microRNAs from deep sequencing data using miRDeep [J]. Nat Biotechnol, 26: 407-415.

    • GU L, HUANG ZG, LI WB, et al. , 2011. Analysis on climatic factors affecting sugarcane meteorological yield in Nanning area during 1980-2007 [J]. J S Agric, 42(5): 492-495. [古丽, 黄智刚, 李文宝, 等, 2011. 1980—2007年南宁蔗区甘蔗气象产量变化及影响因子分析 [J]. 南方农业学报, 42(5): 492-495. ]

    • GUO T, LI GL, WEI Q, et al. , 2011. The function of plant MicroRNA [J]. Acta Bot Boreal-Occident Sin, 31(11): 2237-2254. [郭韬, 李广林, 魏强, 等, 2011. 植物MicroRNA功能的研究进展 [J]. 西北植物学报, 31(11): 2347-2254. ]

    • GUPTA O, MEENA N, SHARMA I, et al. , 2014. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat [J]. Mol Biol Rep, 41: 4623-4629.

    • HE Y, TAN ZK, DING MH, et al. , 2009. Infrequent disaster of the cold and freezing disaster and its impacts on sugarcane production in Guangxi [J]. J Catastrophol, 24(1): 68-72. [何燕, 谭宗琨, 丁美花, 等, 2009. 2008年罕见低温冻害对广西甘蔗及蔗糖业的影响 [J]. 灾害学, 24(1): 68-72. ]

    • HOLT NE, ZIGMANTAS D, VALKUNAS L, et al. , 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting [J]. Science, 307: 433-436.

    • KUANG ZM, LI Q , RAO YM, et al. , 2009. Application of EOS/MODIS data to monitoring sugarcane cold damage [J]. J Appl Meteorol Sci, 20(3): 360-364. [匡昭敏, 李强, 尧永梅, 等. 2009. EOS/MODIS数据在甘蔗寒害监测评估中的应用 [J]. 应用气象学报, 20(3): 360-364. ]

    • LI MN, LONG RC, YANG QC, et al. , 2014. Cloning and function analysis of a salt-stress-induced HD-Zip transcription factor MsHB2 from Alfalfa [J]. Plant Physiol J, 47(4): 622-632. [李明娜, 龙瑞才, 杨青川, 等, 2014. 紫花苜蓿盐诱导HD-Zip类转录因子MsHB2的克隆及功能分析 [J]. 中国农业科学, 47(4): 622-632. ]

    • LI MY, WANG F, XU ZS, et al. , 2014. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response [J]. BMC Genom, 15: 242.

    • LI YR, FANG FX, WU JM, et al. , 2011. Survey of frost and cold damage on sugarcane production in Guangxi in 2010/2011 milling season and countermeasures [J]. J S Agric, 42(1): 37-42. [李杨瑞, 方锋学, 吴建明, 等, 2011. 2010/2011榨季广西甘蔗生产冻害调查及防御对策 [J]. 南方农业学报, 42(1): 37-42. ]

    • LIU YH, LIU ZZ, LUO LJ, et al. , 2007. Plant miRNA and its potential role in plant developmental process and environmental stress responses [J]. Plant Physiol J, 43(5): 987-992. [刘运华, 刘灶长, 罗利军, 2007. 植物miRNA及其在植物发育进程和环境胁迫响应中的潜在功能 [J]. 植物生理学报, 43(5): 987-992. ]

    • LIU ZF, YAN HC, WANG KB, et al. , 2004. Crystal structure of spinach major light-harvesting complex at 2. 72 Å resolution [J]. Nature, 428 (6980): 287-292.

    • LÜ DK, BAI X, LI Y, et al. , 2010. Profiling of cold-stress-responsive miRNAs in rice by microarrays [J]. Gene, 459: 39-47.

    • MEI L, 2016. Cloning four kinds of miRNAs and analysis of expression pattern with cold related in Triticum aestivum L. [D]. Harbin: Northeast Agricultural University. [梅琳, 2016. 冬小麦抗寒相关4种miRNAs的克隆及表达特征分析 [D]. 哈尔滨: 东北农业大学. ]

    • MENG F, LIU H, WANG K, et al. , 2013. Development-associated microRNAs in grains of wheat (Triticum aestivum L. ) [J]. BMC Plant Biol, 13: 140.

    • MORTAZAVI A, WILLIAMS BA, MCCUE K, et al. , 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods, 5: 621-628.

    • PASQUINELLI AE, REINHART BJ, SLACK F, et al. , 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA [J]. Nature, 408(6808): 86-89.

    • PILCHER RLR, MOXON S, PAKSERESHT N, et al. , 2007. Identification of novel small RNAs in tomato (Solanum lycopersicum) [J]. Planta, 226: 709-717.

    • POURCEL L, ROUTABOUL JM, KERHOAS L, et al. , 2005. Transparent TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat [J]. Plant Cell, 17: 2966-2980.

    • SRIPATHI, VR, CHOI Y, CHAN AP, et al. , 2014. Small RNA transcriptome profiles of four cotton species, Gossypium hirsutum, G. herbaceum, G. arboreum and G. raimondii [C]. San Diego: International Plant and Animal Genome Conference XXII.

    • SU YX, LI Z, SUN H, 2006. Climate division of sugarcane planting based on GIS in Guangxi [J]. Chin J Agrometeorol, 27(3): 987-992. 苏永秀, 李政, 孙涵, 2006. 基于GIS的广西甘蔗种植气候区划 [J]. 中国农业气象, 27(3): 252-255.

    • SUN XM, FAN GT, SU LY, et al. , 2015. Identification of cold-inducible microRNAs in grapevine [J]. Front Plant Sci, 6: 595.

    • SUNKAR R, CHINNUSAMY V, ZHU JH, et al. , 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation [J]. Trends Plant Sci, 12: 301-309.

    • SUNKAR R, LI YF, JAGADEESWARAN G, 2012. Functions of microRNAs in plant stress responses [J]. Trends Plant Sci, 17: 196-203.

    • SUNKAR R, ZHU JK, 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 16: 2001-2019.

    • THIEBAUT F, ROJAS CA, ALMEIDA KL, et al. , 2012. Regulation of miR319 during cold stress in sugarcane [J]. Plant Cell Environ, 35: 502-512.

    • TURNER M, YU O, SUBRAMANIAN S, 2012. Genome organization and characteristics of soybean microRNAs [J]. BMC Genom, 13: 169.

    • WANG LL, ZHAO TL, GE JT, et al. , 2017. Application prospects of plant cold-stress-responsive miRNAs in cold resistance research of plants [J]. Acta Agric Shanghai, 33(6): 129-134. [王丽丽, 赵统利, 葛金涛, 等, 2017. 植物低温胁迫响应miRNAs在植物抗寒研究中的应用前景 [J]. 上海农业学报, 33(6): 129-134. ]

    • WANG XS, TONG YA, WANG SH, 2010. Rapid and accurate detection of plant miRNAs by liquid northern hybridization [J]. Int J Mol Sci, 11: 3138-3148.

    • WU G, POETHIG RS, 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3 [J]. Development, 133: 3539-3547.

    • WU HJ, MA YK, TONG C, et al. , 2012. PsRobot: a web-based plant small RNA meta-analysis toolbox [J]. Nucl Acid Res, 40: 22-28.

    • WU MG, LIN YQ, ZHANG H, 2010. Research status and prospect on industrial standard of sugarcane in China [J]. Subtrop Agric Res, 6: 209-212. [吴棉国, 林彦铨, 张华, 2010. 我国甘蔗产业标准研究现状与展望 [J]. 亚热带农业研究, 6: 209-212. ]

    • XIONG L, ZHU JK, 2003. Regulation of abscisic acid biosynthesis [J]. Plant Physiol, 133: 29-36.

    • ZHANG YY, REN YY, CHEN L, et al. , 2017. Differential expression analysis of 12 MicroRNAs under cold stress in Populus tomentosa [J]. Chin Agric Sci Bull, 28(7): 1-7. [张译云, 任媛媛, 陈磊, 等. 2012, 毛白杨12种microRNAs的低温胁迫差异表达分析 [J]. 中国农学通报, 28(7): 1-7. ]