en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王丽娟(1996-),硕士研究生,主要从事经济林栽培与利用和分子植物育种研究,(E-mail)3281739886@qq.com。

通讯作者:

王毅,博士,副研究员,主要从事植物学和分子生物学研究,(E-mail)22825818@qq.com。

中图分类号:Q943.2

文献标识码:A

文章编号:1000-3142(2022)12-2032-12

DOI:10.11931/guihaia.gxzw202103044

参考文献
AHN H, JUNG I, SHIN SJ, et al. , 2017. Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice [J]. Front Plant Sci, 8: 1-18.
参考文献
AMIRA Z, SAHAR N, AMIRA Z, et al. , 2020. Phytochemical profile, cytotoxic, antioxidant, and allelopathic potentials of aqueous leaf extracts of Olea europaea [J]. Food Sci Nutr, 8(9): 1-9.
参考文献
BUI LT, GIUNTOLI B, KOSMACZ M, et al. , 2015. Constitutively expressed ERF-Ⅶ transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana [J]. Plant Sci, 236: 37-43.
参考文献
CAO S, WANG Y, LI X. , et al. , 2020. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus [J]. Plants, 9(4): 1-20.
参考文献
CHENG ZZ, HE JS, ZHAN MM, et al. , 2014. Synthesis of olive oil during olive development and ripening [J]. Sci Silv Sin, 50(5): 123-131. [程子彰, 贺靖舒, 占明明, 等, 2014. 油橄榄果生长与成熟过程中油脂的合成 [J]. 林业科学, 50(5): 123-131. ]
参考文献
DENG CJ, YU XF, CHEN J, et al. , 2011. Processing technology and quality evaluation of olive oil [J]. Chin for Prod Ins, 38(1): 62-63. [邓丛静, 于小飞, 陈军, 等, 2011. 橄榄油的加工工艺及品质评价 [J]. 林产工业, 38(1): 62-63. ]
参考文献
FRANCESCO L, JOOST T, VAN D, et al. , 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana [J]. Plant J, 62(2): 302-315.
参考文献
FU MJ, KANG HK, SON SH, et al. , 2014. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA [J]. Plant Cell Physiol, 55: 1892-1904.
参考文献
GOU YL, ZHANG L, GUO H, et al. , 2020. Research progress on the AP2/ERF transcription factor in plants [J]. Pratac Sci, 37(6): 1150-1159. [苟艳丽, 张乐, 郭欢, 等, 2020. 植物AP2/ERF类转录因子研究进展 [J]. 草业科学, 37(6): 1150-1159. ]
参考文献
GONG L, SHI L, SONG YX, et al. , 2013. Research progress on drought stress responsive transcription factors in crops [J]. Chin Agric Sci Bull, 29(30): 10-17. [巩檑, 石磊, 宋玉霞, 等, 2013. 农作物旱胁迫响应相关转录因子的研究进展 [J]. 中国农学通报, 29(30): 10-17. ]
参考文献
HAN MH, TENG RM, LI H, et al. , 2020. Cloning of CsDREB-A2 transcription factor gene and it′s response to abiotic stress in Camellia sinensis [J]. Acta Agric Nucl Sin, 34(12): 2647-2657. [韩妙华, 滕瑞敏, 李辉, 等, 2020. 茶树CsDREB-A2转录因子基因的克隆与非生物胁迫响应分析 [J]. 核农学报, 34(12): 2647-2657. ]
参考文献
HONG L, YANG L, YANG HJ, et al. , 2020. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress [J]. Chin Bull Bot, 55(4): 481-496. [洪林, 杨蕾, 杨海健, 等, 2020. AP2/ERF转录因子调控植物非生物胁迫响应研究进展 [J]. 植物学报, 55(4): 481-496. ]
参考文献
JI Q, ZHOU F, ZHOU J, et al. , 2018. Whole genome identification and bioinformatics analysis of AP2/EREBP transcription factors of Ziziphus jujube [J]. Genom Appl Biol, (7): 2983-2997. [纪晴, 周凡, 周军, 等, 2018. 枣AP2/EREBP转录因子的全基因组鉴定及生物信息学分析 [J]. 基因组学与应用生物学, (7): 2983-2997. ]
参考文献
KE XW. , ZHANG JP, LIU GH, et al. , 2020. Identification of Adzuki bean AP2 /ERF gene family and expression analysis in response to rust infection [J]. Acta Phytopathol Sin, 50(4): 16-34. [柯希望, 张金鹏, 刘国辉, 等, 2020. 小豆AP2/ERF基因家族鉴定及其应答锈菌侵染的表达分析 [J]. 植物病理学报, 50(4): 16-34. ]
参考文献
LI JD, NI J, YE X, et al. , 2020. Genomic identification of jujube AP2/ERF transcription factors and their expression pattern during Jujube witches’ broom pathogenesis process [J]. Acta Hortic Sin, 47(8): 1463-1474. [李继东, 倪静, 叶霞, 等, 2020. 枣AP2/ERF转录因子鉴定及其响应枣疯病植原体表达分析 [J]. 园艺学报, 47(8): 1463-1474. ]
参考文献
LI Y, ZHANG H, ZHANG Q, LIU QC, et al. , 2019. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis [J]. Plant Sci, 281: 19-30.
参考文献
LIU GZ, LI XL, JIN SX, et al. , 2014. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS ONE, 9(1): e86895.
参考文献
LIU ZW, XIONG YY, LI T, et al. , 2014. Isolation and expression profiles analysis of two ERF subfamily transcription factor genes under temperature stresses in Camellia sinensis [J]. Acta Phytophysiol Sin, 50(12): 1821-1832. [刘志薇, 熊洋洋, 李彤, 等, 2014. 茶树中两个ERF类转录因子的分离及不同茶树中温度胁迫的响应分析 [J]. 植物生理学报, 50(12): 1821-1832. ]
参考文献
MAREN M, SERGI MB, 2015. Ethylene response factors: A key regulatory hub in hormone and stress signaling [J]. Plant Physiol, 169: 32-41.
参考文献
MARINHO JP, COUTINHO ID, LAMEIRO RF, et al. , 2019. Metabolic alterations in conventional and genetically modified soybean plants with GmDREB2A; 2 FL and GmDREB2A; 2 CA transcription factors during water deficit [J]. Plant Physiol Biochem, 140: 122-135.
参考文献
NIU EL, FU YL, LIU LE, et al. , 2021. Screening of outstanding Olea europaea varieties and compatable pollinizers for southern China [J]. Acta Agric Nucl Sin, 35(4): 960-968. [牛二利, 傅玉楼, 刘丽娥, 等, 2021. 南方油橄榄适宜良种及其授粉品种筛选 [J]. 核农学报, 35(4): 960-968. ]
参考文献
OH SJ, KIM YS, KWON CW, PARK HK, et al. , 2009. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions [J]. Plant Physiol, 150(3): 1368-1379.
参考文献
PAN Y, SEYMOUR GB, LU CG, et al. , 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato [J]. Plant Cell Rep, 31(2): 349-360.
参考文献
RAO GD, SUI JK, ZENG YF, et al. , 2015. Genome-wide analysis of the AP2/ERF gene family in Salix arbutifolia [J]. FEBS Open Bio, 5(1): 132-137.
参考文献
SANJANA N, HIMANSHU T, GANAPATHI TR, 2016. Expression analysis of MusaNAC68 transcription factor and its functional analysis by overexpression in transgenic banana plants [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 125(1): 59-70.
参考文献
SAITO S. 2004. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid [J]. Plant Physiology, 134(4): 1439-1449.
参考文献
TAKASAKI H, MARUYMA K, KIDOKORO S, et al. , 2010. The abiotic stress-responsive NAC-type transcription factorOsNAC5 regulates stress-inducible genes and stress tolerance in rice [J]. Mol genet genomics, 284(3): 173-183.
参考文献
TRAN LP, NAKASHIMA K, SAKUMA Y, et al. , 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell, 16(9): 2481-2498.
参考文献
WANG C, DENG PY, CHEN LL, et al. , 2017. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco [J]. PLoS ONE, 8(6): e65120-1-13.
参考文献
WANG L, ZHANG X, LI AY, et al. , 2021. Cloning and expression analysis of SpsDREB8 gene in Salix psammophila [J]. Mol Plant Breed. : 1-11 [2021-02-28]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20210107. 1656. 014. html. [王雷, 张鑫, 李安玉, 等, 沙柳SpsDREB8基因的克隆与表达分析 [J]. 分子植物育种: 1-11 [2021-02-28]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20210107. 1656. 014. html. ]
参考文献
WU ZJ, LI XH, LI ZW, et al. , 2015. Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis) [J]. Funct Integr Genom, 15(6): 741-752.
参考文献
XU KN, XU X, FUKAO T, et al. , 2006. Sub1A is an ethylene-response-factorlike gene that confers submergence tolerance to rice [J]. Nature, 442(7103): 705-708.
参考文献
XU L, FENG GY, YANG ZF, et al. , 2020. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchardgrass ( Dactylis glomerata ) [J]. Mol Biol Rep, 47(prepublish): 5225-5241.
参考文献
XU ZS, CHEN M, LI LC, et al. , 2011. Functions and application of the AP2/ERF transcription factor family in crop improvement [J]. J Integr Plant Biol, 53(7): 570-585.
参考文献
YOH S, KYONOSHIN M, YURIKO O, et al. , 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression [J]. Plant Cell, 18(5): 1292-1309.
参考文献
YUAN HH, LI LL, CHENG H, et al, 2022. Identification of AP2/ERF transcription factors in Ginkgo biloba and the expression analysis of ERF gene family under adversity stresses [J]. Mol Plant Breed, 20(1): 113-123. [袁红慧, 李琳玲, 程华, 等, 2022. 银杏AP2/ERF转录因子鉴定及其ERF家族在逆境胁迫下的表达分析 [J]. 分子植物育种, 20(1): 113-123. ]
参考文献
YU YW, YANG DX, ZHOU SR, et al. , 2017. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice [J]. Protoplasma, 254(1): 401-408.
参考文献
ZHANG LL, CHENG J, SUN XM, et al. , 2018. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes [J]. Plant Cell Rep, 37(8): 1159-1172.
参考文献
ZHANG WH, 2016. Regulation mechanism of BpERF11 gene from Betula platyphylla response to severe salt and drought stress [D]. Harbin: Northeast Forestry University. [张文慧, 2016. 白桦BPERF11基因响应高盐干旱胁迫的调控机理研究 [D]. 哈尔滨: 东北林业大学. ]
参考文献
ZHANG WH, HUANG Y, HE DM, et al. , 2020. Bioinformatic analysis on AP2 /ERF genes from Betula platyphylla [J]. J West China For Sci, 49(6): 112-117. [张文慧, 黄勇, 贺登美, 等, 2020. 白桦AP2/ERF家族基因的生物信息学分析 [J]. 西部林业科学, 49(6): 112-117. ]
参考文献
ZHANG ZJ, LI F, LI DJ, et al. , 2010. Expression of ethylene response factor JERF1 in rice improves tolerance to drought [J]. Planta, 232(3): 765-774.
参考文献
ZHAO H, ZHAO X, LI M, et al. , 2018. Ectopic expression of limonium bicolor (Bag. ) kuntze DREB (LbDREB)results in enhanced salt stress tolerance of transgenic Populus ussuriensis Kom [J]. Plant Cell Tiss Organ Cult, 132(1): 123-136.
参考文献
ZHAO MJ, WU WJ, JIANG CY, et al. , 2021. Olive germplasm resources development in Turkey: status and enlightenment [J]. World For Res Sci, 34(1): 102-106. [赵梦炯, 吴文俊, 姜成英, 等, 2021. 土耳其油橄榄种质资源发展现状与启示 [J]. 世界林业研究, 34(1): 102-106. ]
参考文献
ZHU YY, LIU XL, GAO YD, et al. , 2021. Transcriptome-based identification of AP2/ERF family genes and their cold-regulated expression during the dormancy phase transition of Chinese cherry flower buds [J]. Sci Hortic, 275: 1-12.
目录contents

    摘要

    为探究油橄榄AP2/ERF基因家族对水胁迫的响应机制,该研究对受干旱及水淹胁迫的‘佛奥’和‘TYZ-1号’2个品种的根和叶进行转录组测序,并对油橄榄中AP2/ERF转录因子的蛋白理化性质、基因结构及系统进化进行分析,同时分析与水胁迫相关的AP2/ERF转录因子在2个油橄榄品种中的基因表达差异且进行RT-qPCR验证。结果表明:(1)在油橄榄中鉴定得到110个AP2/ERF基因家族成员,该110个蛋白质所含氨基酸大小为173~717 bp,均不存在信号肽,为非分泌蛋白。将油橄榄AP2/ERF与模式植物拟南芥AP2/ERF蛋白构建进化树发现,油橄榄AP2/ERF蛋白分为AP2、RAV、ERF和Solosist 4大类,其中ERF分为ERF和DREB 2个亚类,ERF包含ERF B1~ERF B66个子亚类,DREB包含DREB A1~DREB A66个子亚类,这与模式植物拟南芥AP2/ERF的分类一致,每个亚家族同时包含了油橄榄和拟南芥AP2/ERF蛋白,说明拟南芥和油橄榄的AP2/ERF家族在进化水平上有一定的相似性。(2)油橄榄AP2/ERF同一亚家族蛋白具有相同的基因结构及保守元件,结合基因表达和进化树中已知水分调控功能的基因初步推测OeAP2-75、OeAP2-97、OeAP2-101、OeAP2-23、 OeAP2-13与油橄榄水分调节密切相关,OeAP2-13、OeAP2-28、OeAP2-104、 OeAP2-75、 OeAP2-80、OeAP2-50在2个品种中都有不同的表达量,推测可能是‘佛奥’和‘TYZ-1号’抗性不同的原因。(3)利用RT-qPCR技术检测油橄榄AP2/ERF基因在不同胁迫下的表达变化,OeAP2-101、OeAP2-28、OeAP2-42受水胁迫诱导显著上调,这与转录组分析结果一致。该研究结果为油橄榄AP2/ERF家族基因的抗逆性表达及基因功能研究奠定了基础,为油橄榄选育抗旱和耐涝砧木品种提供了方法和理论依据。

    Abstract

    In order to explore the response mechanism of AP2/ERF gene family in the water stress of O. europaea, this study performed transcriptome sequencing on the roots and leaves of two cultivars ‘Frantoio’ and ‘TYZ-1’ that were under drought and flooding stresses. And based on the whole genome data, the protein physicochemical properties, gene structure and system evolution of AP2/ERF transcription factor in O. europaea were analyzed. At the same time, the difference in gene expression of AP2/ERF transcription factor related to water stress in the two O. europaea cultivars was analyzed by transcriptome sequencing data and verified by RT-qPCR. The results were as follows: (1) A total of 110 AP2/ERF gene family members were identified in O. europaea. The amino acid size of the 110 proteins was 173-717 bp, there was no signal peptide and it was a non-secreted protein. The phylogenetic tree was constructed between O. europaea AP2/ERF and model plant Arabidopsis AP2/ERF protein. It was found that O. europaea AP2/ERF protein was divided into four categories, AP2, RAV, ERF and Solosist. Among them, ERF was divided into two subtypes, ERF and DREB. ERF included six subtypes of ERF B1 to ERF B6, and DREB included six subtypes of DREB A1 to DREB A6, which was consistent with the classification of the model plant Arabidopsis AP2/ERF. Each subfamily contained AP2/ERF proteins of O. europaea and Arabidopsis at the same time, indicating that the AP2/ERF family of Arabidopsis and O. europaea were similar in evolution. (2) The analysis of gene structure and conserved elements found that the proteins of the same subfamily of O. europaea AP2/ERF had the same gene structure and conserved elements. Combining gene expression with genes with known water regulation functions in the evolutionary tree, it was preliminarily speculated that OeAP2-75, OeAP2-97, OeAP2-101, OeAP2-23 and OeAP2-13 were closely related to the water regulation of O. europaea, OeAP2-13, OeAP2-28, OeAP2-104, OeAP2-75, OeAP2-80 and OeAP2-50 had different expression levels in the two cultivars. It is speculated that this may be the reason for the different resistance of ‘Frantoio’ and ‘TYZ-1’. (3) The RT-qPCR technique was used to detect the expression changes of O. europaea AP2/ERF gene under different stresses. The results showed that OeAP2-101, OeAP2-28 and OeAP2-42 were significantly up-regulated by water stress, which was consistent with the results of transcriptome analysis. The results of this study lay a foundation for the research on the stress resistance expression and gene function of the AP2/ERF family genes of O. europaea, and provides the method and theoretical basis for the selection of drought-resistant and flood-tolerant rootstock cultivars of O. europaea.

  • 植物在自然界生长发育和进化的过程中,通常面临着诸如干旱、水淹、极端高低温、高盐等非生物胁迫,这对植物的生长、发育产生了负面影响。目前,研究发现在非生物胁迫中起重要作用的转录因子包括AP2/ERF、WRKY、NAC、MYB、ZFP、bHLH等家族(Xu et al.,2011)。AP2/ERF是植物中最大的转录因子家族之一,涉及植物的生长发育及各个生理过程,参与植物非生物胁迫调控机制,AP2/ERF家族蛋白的主要特征是含有1个或2个AP2结合域,每个AP2结合域含58~70个氨基酸残基(Cao et al.,2020)。根据AP2家族蛋白结构域中特征元件的种类和数量不同可将其分为AP2、ERF、RAV、Soloist 4个亚家族(Wu et al.,2015),各个亚家族在植物体内有不同的功能,AP2亚家族包含2个AP2保守结构域,主要与植物生长发育及细胞生长分化有关(纪晴等,2018),RAV含有1个AP2结构域和1个B3 DNA结合域,通常在乙烯、芸苔素内酯及一些生物和非生物胁迫中起作用(柯希望等,2020); ERF和Soloist只包含1个AP2结构域,其中ERF又分为DREB和ERF2个亚类,通常与植物的生物胁迫、干旱、高盐、低温、热胁迫、多重胁迫相关(刘志薇等,2014; 苟艳丽等,2020)。AP2/ERF转录因子在植物生长发育及非生物胁迫中起关键的调控作用,如沙柳(Salix cheilophilaSpsDREB8基因在干旱胁迫下表达下调(王雷等,2021),拟南芥(Arabidopsis thaliana)中转入甘薯(Ipomoea batatas)的IbRAP2-12基因提高其植株的耐盐性和抗旱性(Li et al.,2019),过表达OsERF71提高水稻(Oryza sativa)的耐旱性(Ahn et al.,2017)。近年随着植物基因组数据相继公布发现,不同植物中AP2/ERF转录因子的数量不同,如中国樱花(Cerasus serrulata)中鉴定出了68个AP2/ERF转录因子家族成员(Zhu et al.,2021),鸭茅(Dactylis glomerata)和白桦(Betula platyphylla)中分别有193个和45个AP2/ERF转录因子家族成员(Xu et al.,2020; 张文慧等,2020)。然而,目前对油橄榄(Olea europaea)基因组中的AP2/ERF转录因子的研究未见报道。

  • 油橄榄为木犀科(Europaea)木犀榄属(Olea)油料作物,原产于地中海沿岸,适应夏季长、热、干燥,冬季温和多雨的半干旱气候(Amira et al.,2020),是世界著名的亚热带果树和重要经济林木(牛二利等,2021)。它全身是宝,橄榄叶和橄榄油中富含多种有益活性物质,易于人体吸收(程子彰等,2014),橄榄油在西方被誉为“液体黄金”,是世界上唯一直接采用鲜果冷榨工艺以自然形态榨取的木本植物油(邓从静等,2011)。随着社会经济发展,橄榄油消费需求急剧增长,橄榄油市场长期供不应求、价格居高不下(赵梦炯等,2021)。云南油橄榄栽培由于引种地和原产地生态条件差异还面临很多问题,夏季湿润多雨,冬季干旱的气候与原产地气候正好相反,因此选育夏季耐涝、冬季抗旱的油橄榄砧木品种是解决云南油橄榄栽培问题的关键。本研究基于课题组前期田间试验结果‘田园1号’(TYZ-1号)在水胁迫下抗逆性强于‘佛奥’,为探究2个品种抗逆性差异的原因,本文对油橄榄AP2/ERF基因进行挖掘鉴定,并分析其蛋白理化性质、系统发育及水胁迫下的基因表达模式,以期为进一步研究油橄榄AP2/ERF家族基因的抗逆性表达及功能基因的挖掘奠定基础,也为油橄榄选育抗旱、耐涝砧木品种提供了方法和理论依据。

  • 1 材料与方法

  • 1.1 材料获取及转录组测序

  • 材料为油橄榄‘TYZ-1号’和‘佛奥’一年生扦插苗,由云南省林业和草原科学院树木园提供(‘TYZ-1号’是绿化用的油橄榄种子通过杂合培育出的实生苗中选育的优良无性系,其耐瘠薄、抗旱耐涝性强。‘佛奥’是我国通过国家审定的油橄榄良种,中国油橄榄适生区大都有种植,但抗逆性不强)。试验前期选取2个品种油橄榄各30株幼苗分干旱、水淹及对照组。2019年9月3日开始对2个品种扦插苗进行干旱、水淹及正常培养处理,2019年9月8日采集不同处理(干旱、水淹、对照)下油橄榄(‘TYZ-1号’‘佛奥’)扦插苗的叶片和根各3个混合样。所采集的样品当即处理后用液氮速冻,-80℃下保存,按照RNA试剂盒(Qiagen)说明提取RNA,以RNA为模板合成cDNA且构建文库。委托上海派森诺生物科技有限公司利用二代测序技术(next-generation sequencing,NGS)基于Illumina测序平台对样品文库进行双末端(Paired-end,2×150 bp,PE)测序。

  • 1.2 OeAP2/ERF蛋白序列的获取

  • 油橄榄的全基因组数据从NCBI上下载,搜索获得油橄榄AP2/ERF转录因子的cDNA序列及蛋白序列,利用NCBI进行BLAST同源序列比对及蛋白结构域分析,除去无AP2/ERF结构域的蛋白序列。

  • 1.3 OeAP2/ERF蛋白理化性质分析

  • 利用 ExPASy ProtParam tool在线软件分析AP2/ERF蛋白理化性质,通过 signalP-5.0和 Euk-mPLoc 2.0 server预测蛋白的信号肽和亚细胞定位,利用 Prabi在线软件(NPS@: SOPMA secondary structure prediction)预测蛋白的二级结构。

  • 1.4 OeAP2/ERF蛋白进化树构建及保守元件和基因结构分析

  • 利用 MEGA X和Figtree将来自油橄榄和拟南芥AP2/ERF蛋白序列构建进化树及修饰,执行参数为None。油橄榄AP2/ERF家族蛋白分类参考拟南芥AP2/ERF家族蛋白的分类方法,拟南芥蛋白序列从拟南芥基因数据库下载(https://www.arabidopsis.org/download/index-auto.jsp? dir=%2Fdownload_ files% 2FProteins),利用 MEME(http://meme.nbcr.net/meme/tools/ meme)对110个OeAP2/ERF蛋白保守结构域进行预测。具体参数设置:基序位点分布情况,选择重复次数不限制; 保守性基序的数目限制选择6,其他参数均采用默认值。

  • 1.5 OeAP2/ERF水分胁迫基因表达谱分析

  • 通过有参转录组测序获得油橄榄AP2/ERF转录因子基因表达谱,利用派森诺基因云在线软件作基因表达交互热图。水分胁迫基因表达谱数据的处理及筛选采用FPKM对表达量进行标准化,保留所有FPKM 值数据,对其进行排序,删除FPKM 无变化或者变化范围不超过5倍的数据,筛选出基因表达量变化最大的15个基因。

  • 1.6 RT-qPCR分析

  • 为了验证转录组测序的结果及目标基因的表达模式,设计特异引物(表1),tubulin作为内参基因,经RT-qPCR检测油橄榄OeAP2基因在‘TYZ-1号’和‘佛奥’不同处理下的表达情况。用SYBR Green(invitrogen)检测特异引物的PCR产物。25 μL反应体系的可选参数如下:2× SYBR绿色主混合物12.5 μL,上下游引物(10 μm/L)0.5 μL,模板(cDNA)1 μL,ddH2O 10.5 μL。使用PCR热循环仪(ABI 7300; 应用生物系统,Foster City,CA,USA)。PCR反应程序:变性程序(95℃,10 min),放大定量程序重复45次(95℃,15 s; 57℃,10 s; 72℃,15 s; 单次荧光测量),熔化曲线程序(60℃至95℃,加热速度0.1℃·s-1,连续荧光测量),冷却至40℃。以tubulin基因作为基因正常表达的内部调控因子,通过RT-qPCR分析每个样品3个独立的生物学重复和每个生物学重复的3个技术重复。

  • 表1 油橄榄RT-qPCR检测引物序列

  • Table1 Sequence of the primers for RT-qPCR detection of Olea europaea

  • 2 结果与分析

  • 2.1 有参转录组测序数据整理

  • 油橄榄‘TYZ-1号’及‘佛奥’在干旱、水淹、正常浇水下的根与叶共12组文库经上机测序,得到图像文件,由Illumina测序平台自带软件进行转化,生成 FASTQ 的原始数据(Raw Data),对每个样品的下机原始数据分别进行统计,包括样品名、Q30、模糊碱基所占百分比、Q20(%)和Q30(%),统计结果见表1。测序数据结果(表2)显示,所有样品Reads总数在38 191 054~46 939 278之间,碱基总数在5 728 658 100 bp以上,Q20碱基百分比均大于96.91%,Q30碱基百分比均在92.2%以上,模糊碱基所占比例在0.000 769%以下,后经数据过滤去除这些带接头、低质量的Reads。

  • 2.2 样品基因差异表达分析

  • 采用DESeq对基因表达进行差异分析,表达差异倍数 |log2FoldChange| > 1,显著性P< 0.05。不同条件下的样品进行两两比较,图1为干旱胁迫下油橄榄2个品种基因表达差异分析结果簇状柱形图,图2为水淹胁迫下油橄榄2个品种基因表达差异分析结果簇状柱形图,图1中FDR与FDL之间差异基因数量最少,差异基因总数为92个,上调差异基因数为45个,下调差异基因数为47个; FR与OL之间差异基因数最大,这是两个品种在正常浇水下的根与叶之间的基因表达差异分析,差异基因总数为2 803个,上调差异基因数有1 076个,下调差异基因数有1 727个。图2中OSR与OR之间差异基因数最少为1 550个,上调差异基因数有693个,下调差异基因数有857个; 除FR与OL外,FR与FL之间差异基因数最大为2 791个,上调差异基因数为976个,下调差异基因数为1 815个。可见,在干旱和水淹胁迫下油橄榄不同品种中根与叶之间的差异基因数量较明显。

  • 2.3 油橄榄AP2/ERF 转录因子家族成员鉴定及理化性质分析

  • 从油橄榄全基因组中搜索AP2/ERF蛋白,共鉴定出110个成员,该110个蛋白质所含氨基酸大小为173~717 bp,平均氨基酸个数为344个。通过ExPASy protparam tool分析OeAP2/ERF蛋白理化性质,110个OeAP2/ERF蛋白中37个蛋白的PI大于7,平均PI为6.63; 有4个AP2/ERF转录因子(OeAP2-97、OeAP2-6、OeAP2-28、OeAP2-109)不稳定系数小于40,为稳定蛋白,其余106个为不稳定蛋白(不稳定系>40); 110个OeAP2/ERF蛋白的脂肪族系数均小于100; 预测蛋白信号肽发现,110个OeAP2/ERF蛋白都不存在信号肽,为非分泌蛋白; 亚细胞定位中有56个OeAP2/ERF蛋白定位于细胞核中,28个定位于细胞质中,25个同时定位于细胞质和细胞核中,OeAP2-85定位于细胞质和线粒体中; 预测二级结构发现,OeAP2/ERF蛋白无规则卷曲为主要结构,α-螺旋为次要结构。

  • 表2 测序数据统计

  • Table2 Sequencing data statistics

  • F. ‘佛奥’; O. ‘TYZ-1号’; D. 干旱; S. 水淹; R. 根; L. 叶片。

  • F. ‘Frantoio’; O. ‘TYZ-1’; D. Drought; S. Flooding; R . Root; L. Leaf.

  • 2.4 OeAP2/ERF蛋白进化分析与分类

  • 利用MEGA X对油橄榄110个AP2/ERF转录因子蛋白及拟南芥32个AP2/ERF蛋白进行系统进化树构建及分析,结果如图3所示,AP2/ERF蛋白总体分为4类,其中与拟南芥AP2类聚在一起包含2个AP2保守结构域的成员共有21个,被分为AP2类; 另外2个成员(OeAP2-28、OeAP2-87)包含1个AP2结构域和1个B3结合域,与拟南芥RAV聚在一个分支上,属于RAV类; 拟南芥中Solosist类蛋白与RAV类聚在一起,在RAV类和Solosist类旁有一个单独的分支OeAP2-60,推测其属于油橄榄中Solosist类成员,单独分支可能是Solosist与AP2/ERF转录因子家族其他成员差距较大; 其余86个成员都包含1个AP2保守结构域,同属于ERF类,ERF类中又包含ERF和DREB 2个亚类,分别与拟南芥ERF和DREB聚在一起,总共分为12个亚组,ERF分为ERF B1~ERF B6,DREB分为DREB A1~DREB A6,除Solosist外,其余每个亚组中都同时包含AtAP2/ERF和OeAP2/ERF蛋白,说明拟南芥和油橄榄的AP2/ERF家族在进化水平上有一定相似性。

  • 2.5 油橄榄AP2/ERF保守元件及基因结构分析

  • 利用MEME对OeAP2/ERF进行保守元件分析,得到相关性最高的6个保守元件如图4所示,所有的OeAP2/ERF都包含motif 1,说明motif 1是油橄榄AP2/ERF的保守结构域,油橄榄AP2/ERF转录因子的保守元件及基因结构还与其分类相关,在油橄榄AP2/ERF分类中的AP2类转录因子100%包含motif 1,96.4%包含motif 2,89.7%包含motif 3,55.2%包含motif 4,37.9%包含motif 5; RAV类只包含motif 1,可能是由于在进化过程中发生了变异,导致该类转录因子与其他成员之间没有共同的保守基序; ERF类均包含motif 1,motif 2和motif 3; DREB类均包含motif 1,motif 2和motif 6,每一亚类中的保守基序位置大致相同,基因结构也一致,说明油橄榄OeAP2/ERF在进化过程中的高度保守性。

  • 图1 干旱胁迫下基因表达差异分析结果统计图

  • Fig.1 Statistical diagram of under gene expression difference analysis results

  • 2.6 油橄榄AP2/ERF水分胁迫基因表达谱分析

  • 通过基因表达谱作出水胁迫基因表达交互热图(图5),油橄榄AP2/ERF家族成员中共检测到100个基因表达,未检测到OeAP2-29、OeAP2-30、OeAP2-40、OeAP2-56、OeAP2-59、OeAP2-72、OeAP2-81、OeAP2-87、OeAP2-88、OeAP2-105基因的表达,推测这10个基因未参与水胁迫响应。干旱胁迫下,与正常浇水相比,‘佛奥’叶片中40%基因表达上调,27%的基因无表达,33%的基因表达下调,根部33%基因表达上调,9%基因表达量无变化,58%基因表达下调; 而‘TYZ-1号’与正常浇水相比,叶片中有32%基因表达上调,39%基因表达量无变化,29%基因表达下调,根部中36%基因表达上调,15%基因表达量无差异,49%基因表达下调; 在水淹胁迫下,‘佛奥’根部基因表达量与正常浇水相比,42%基因表达上调,9%基因表达量无变化,49%基因表达下调,叶片中30%的基因表达上调,40%的基因表达量不变,30%的基因表达下调; ‘TYZ-1号’在水淹胁迫下与正常浇水相比,55%的基因在根部中表达上调,11%的基因在根部表达无变化,44%的基因在根部中表达下调,叶片中29%的基因表达上调,39%的基因表达无变化,32%的基因表达下调。未受胁迫时,‘TYZ-1号’基因本底表达普遍高于‘佛奥’(绿色块多于‘佛奥’),胁迫后‘TYZ-1号’基因表达量变化不显著,色块普遍较浅,而‘佛奥’胁迫后深色块多于‘TYZ-1号’,表明‘佛奥’基因上调或下调表达量变化较显著。根据基因表达谱,我们从中筛选出15个在干旱胁迫下表达量变化较大的干旱胁迫相关基因(OeAP2-13、OeAP2-33、OeAP2-28、OeAP2-104、OeAP2-82、OeAP2-86、OeAP2-42、OeAP2-23、OeAP2-75、OeAP2-10、 OeAP2-80、OeAP2-101、OeAP2-79、OeAP2-50、OeAP2-97)与15个水淹胁迫下表达量变化较大的基因(OeAP2-23、OeAP2-13、OeAP2-101、OeAP2-75、OeAP2-80、OeAP2-12、OeAP2-28、OeAP2-17、OeAP2-50、OeAP2-55、 OeAP2-104、OeAP2-14、OeAP2-97、OeAP2-2、OeAP2-91),发现有9个相同的基因(OeAP2-13、OeAP2-28、 OeAP2-104、OeAP2-23、OeAP2-75、OeAP2-80、OeAP2-101、OeAP2-50、OeAP2-97)共同调控干旱与水淹胁迫,这9个基因可能与水分胁迫调控相关。

  • 2.7 油橄榄AP2/ERF基因RT-qPCR分析

  • 经特异引物tubulinF和tubulinR检测反转录得到油橄榄cDNA,采用RT-qPCR分析油橄榄AP2/ERF基因在FDL、FDR、ODL、ODR、FSR、FSL、OSR、OSL、FL、FR、OL、OR中的具体表达情况,结果(图6)显示,OeAP2/ERF基因在FDL、FDR、ODL、ODR、FSR、FSL、OSR、OSL、FL、FR、OL、OR中表达量差异显著,与正常浇水处理相比,OeAP2-28在ODR中表达量差异显著,OeAP2-42在FDL中表达量差异显著,OeAP2-101、OeAP2-55、OeAP2-42、OeAP2-28在FSR中均呈高水平表达。

  • 3 讨论

  • 用已知功能蛋白作用机制预测未知功能蛋白作用机制是研究物种未知功能蛋白作用机制的一种方法。本研究将油橄榄AP2/ERF在水胁迫下具有表达量的ERF亚类蛋白与番茄(SolanumlycopersicumSlERF5(Pan et al.,2012),转基因大豆(Glycine maxGmDREB2A,水稻OsAP37、HRE1、HRE2、JERF1和OsERF109(Oh et al.,2009; Francesco et al.,2010; Zhang et al.,2010; Yu et al.,2017),拟南芥DREB2A(Yoh et al.,2006),沙柳SpsDREB8(王雷等,2021)等此类水分调节功能基因共同构建蛋白系统进化树(图7),发现水胁迫基因表达谱中基因表达量变化较大的5个基因(OeAP2-75、OeAP2-97、OeAP2-101、OeAP2-23、OeAP2-13)聚在同一分支上,且该分支中包含3个已知具有水分调节功能的基因(HRE1,JERF1,HRE2),由此可推测OeAP2-75、OeAP2-97、OeAP2-101、OeAP2-23、OeAP2-13与HRE1,JERF1,HRE2具有相似调节功能,可能与油橄榄水分调节密切相关。通过RT-qPCR检测,结果表明OeAP2-101基因在FSR及OSR中表达量差异显著,OeAP2-23在OSR中表达量差异显著,OeAP2-42在FDL中表达量差异显著,水胁迫下OeAP2-28在2个品种的叶片和根部表达量均有显著性差异,OeAP2-101、OeAP2-55、OeAP2-42、OeAP2-28在FSR中均呈高水平表达,这进一步说明OeAP2/ERF基因参与油橄榄水胁迫响应。

  • 图2 水淹胁迫下基因表达差异分析结果统计图

  • Fig.2 Statistical diagram of gene expression difference analysis results under flooding stress

  • 图3 油橄榄与拟南芥AP2/ERF家族系统进化树

  • Fig.3 Phylogenetic tree of the AP2/ERF family of Olea europaea and Arabidopsis

  • 本研究中基因表达谱分析发现,9个共同参与干旱与水淹调节的基因(OeAP2-13、OeAP2-28、OeAP2-104、 OeAP2-23、OeAP2-75、OeAP2-80、OeAP2-101、OeAP2-50、OeAP2-97),这9个基因在油橄榄水胁迫(干旱、水淹)下根与叶的表达量与非胁迫下根与叶的表达量有较大的差异。与非胁迫条件下的基因表达量相比,水淹胁迫下OeAP2-13在‘佛奥’中表达下调,在‘TYZ-1号’中表达上调; 水胁迫下的OeAP2-28在‘佛奥’和‘TYZ-1号’的根与叶中均表达上调; OeAP2-75在干旱胁迫下2个品种的不同组织中均下调表达; OeAP2-101在干旱胁迫下‘TYZ-1号’中明显下调表达,在水淹胁迫下‘佛奥’根部明显上调表达; OeAP2-104在干旱胁迫下2个品种不同组织中均上调; OeAP2-23,OeAP2-80,OeAP2-50,OeAP2-97在水胁迫(干旱、水淹)下不同组织中表达量都有显著差异,这些基因在不同组织中表达量的不同可能就是‘佛奥’和‘TYZ-1号’抗逆性差异的原因。转录组数据中NR基因功能注释表明这9个基因均为乙烯响应因子,通过调控乙烯合成关键基因的表达,从而调节乙烯的生物合成和信号传导。OeAP2-13,OeAP2-75,OeAP2-23,OeAP2-101,OeAP2-97在油橄榄AP2/ERF蛋白系统进化树中属于ERF B2亚族成员,Maren和Sergi(2015)研究报道乙烯响应因子是激素和胁迫信号的一个重要调节中心,ERF B2亚族成员在低氧和淹水反应中发挥重要作用(Bui et al.,2015),Xu等(2006)研究发现Sub1A-1(ERF亚族B2亚组成员之一)超表达的同时促进乙醇脱氢酶基因上调表达,抑制Sub1C(水淹不耐受基因)的转录水平,表明Sub1A-1在淹水胁迫应答调控中起关键作用(Xu et al.,2006)。OeAP2-13在油橄榄中的表达模式与Sub1A-1相似,在耐涝品种‘TYZ-1号’中表达上调,不耐涝品种‘佛奥’中表达下调,推测OeAP2-13在‘TYZ-1号’中也通过促进乙醇脱氢酶基因上调表达,从而增强‘TYZ-1号’耐涝性。洪林等(2020)研究发现RAVsAP2s调控植物的非生物胁迫响应,拟南芥RAV1,RAV1LRAV2在干旱胁迫下表达水平下降(Fu et al.,2014),Saito(2004)发现过表达RAV1抑制ABA降解基因(CYP707A1和CYP707A2)的活性,从而实现不依赖ABA的途径调控植物的非生物胁迫响应,本研究中OeAP2-28,OeAP2-104、OeAP2-80在OeAP2/ERF蛋白系统进化树中属于RAV,为AP2亚族成员,在干旱胁迫下同样表达下调,推测其通过促进或抑制干旱胁迫相关酶的表达从而调控油橄榄干旱调控。

  • 图4 油橄榄AP2/ERF基因家族保守元件和基因结构分析

  • Fig.4 Analysis of conserved elements and gene structures of Olea europaea AP2/ERF gene family

  • 图5 油橄榄AP2/ERF水分胁迫基因表达交互热图

  • Fig.5 Interactive heat map of Olea europaea AP2/ERF gene expression under water stress

  • AP2/ERF转录因子在植物胁迫中调控机制较复杂,其启动子包含ABRE( ABA反应元件结合蛋白)、DREB(干旱应答元件结合蛋白)、乙烯等顺式作用元件(Zhao et al.,2018; 韩妙华等,2020),Sanjana等(2016)研究显示在植物胁迫中,DREBs和ABREs等与胁迫相关的顺式作用元件可以和NAC转录因子结合从而应对植物胁迫,Cao等(2020)研究发现DREB结合WRKY转录因子共同调节小沙冬青(Ammopiptanthus nanus)低温和干旱胁迫,这一研究表明DREB、ABRE作为顺式作用元件,可同时调节AP2/ERF、NAC和WRKY转录因子从而应对植物非生物胁迫(Takasaki et al.,2010; 巩檑等,2013)。AP2/ERF、WRKY、 NAC转录因子在植物水分调控中扮演十分重要的角色,过表达TaWRKY10、VaWRKY14提高拟南芥及转基因烟草耐旱性(Wang et al.,2017; Zhang et al.,2018); GmDREB2A参与大豆水分亏缺调节(Marinho et al.,2019),OsAP37、JERF1、OsERF109的过表达提高水稻抗旱性(Oh et al.,2009; Zhang et al.,2010; Yu et al.,2017); ANAC019、ANAC055和ANAC072能使转基因植株抗旱性增强(Tran et al.,2004),过表达SNAC1增强转基因棉花(Gossypium hirsutum)的耐旱性(Liu et al.,2014); 这充分说明了AP2/ERF、WRKY、NAC转录因子与植物的水胁迫相关,并且在水胁迫中发挥重要作用,由此可推测植物体内WRKY、NAC转录因子通过与AP2/ERF中水相关顺式作用元件结合从而共同调节水胁迫。课题组前期研究发现,WRKY和NAC转录因子参与油橄榄水胁迫调控,可能与内源激素ABA表达水平相关,推测在油橄榄水胁迫响应机制中,DREBs、ABREs作为顺式作用元件,同时调节AP2/ERF、WRKY和NAC转录因子从而共同调控油橄榄水胁迫。

  • 图6 OeAP2/ERF基因在水胁迫下的表达情况

  • Fig.6 The expression of OeAP2/ERF gene under water stress

  • 图7 水分胁迫中具有表达量的OeAP2/ERF蛋白与其他植物AP2/ERF水分调控因子进化关系

  • Fig.7 Evolutionary relationship between OeAP2 /ERF proteins expressed in water stress and AP2/ERF water regulatory factors in other plants

  • 本研究发现,油橄榄AP2/ERF基因家族包含110个成员,分类与模式植物拟南芥一致,其在进化水平上有一定的相似性。AP2/ERF家族中转录因子的数量不仅与物种的基因组有关,而且与植物长期进化过程中外界环境的影响有关,与枣(Ziziphus jujuba)基因家族中145个(李继东等,2020),银杏(Ginkgo biloba)中61个(袁红慧等,2022),杨柳(Salix arbutifolia)中173个(Rao et al.,2015)AP2/ERF家族成员相比,油橄榄中AP2/ERF转录因子的数量属于中等类型,由此推测油橄榄在自然进化过程中,AP2/ERF基因家族受到一定的外部环境压力。

  • 目前,对油橄榄水胁迫响应机制及胁迫相关基因的综合研究还较少,我们对‘TYZ-1号’和‘佛奥’2个品种的油橄榄进行了转录组测序,后续将结合全基因组重测序以揭示油橄榄水胁迫关键基因及潜在遗传和相关突变,为油橄榄分子辅助育种提供理论依据。

  • 参考文献

    • AHN H, JUNG I, SHIN SJ, et al. , 2017. Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice [J]. Front Plant Sci, 8: 1-18.

    • AMIRA Z, SAHAR N, AMIRA Z, et al. , 2020. Phytochemical profile, cytotoxic, antioxidant, and allelopathic potentials of aqueous leaf extracts of Olea europaea [J]. Food Sci Nutr, 8(9): 1-9.

    • BUI LT, GIUNTOLI B, KOSMACZ M, et al. , 2015. Constitutively expressed ERF-Ⅶ transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana [J]. Plant Sci, 236: 37-43.

    • CAO S, WANG Y, LI X. , et al. , 2020. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus [J]. Plants, 9(4): 1-20.

    • CHENG ZZ, HE JS, ZHAN MM, et al. , 2014. Synthesis of olive oil during olive development and ripening [J]. Sci Silv Sin, 50(5): 123-131. [程子彰, 贺靖舒, 占明明, 等, 2014. 油橄榄果生长与成熟过程中油脂的合成 [J]. 林业科学, 50(5): 123-131. ]

    • DENG CJ, YU XF, CHEN J, et al. , 2011. Processing technology and quality evaluation of olive oil [J]. Chin for Prod Ins, 38(1): 62-63. [邓丛静, 于小飞, 陈军, 等, 2011. 橄榄油的加工工艺及品质评价 [J]. 林产工业, 38(1): 62-63. ]

    • FRANCESCO L, JOOST T, VAN D, et al. , 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana [J]. Plant J, 62(2): 302-315.

    • FU MJ, KANG HK, SON SH, et al. , 2014. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA [J]. Plant Cell Physiol, 55: 1892-1904.

    • GOU YL, ZHANG L, GUO H, et al. , 2020. Research progress on the AP2/ERF transcription factor in plants [J]. Pratac Sci, 37(6): 1150-1159. [苟艳丽, 张乐, 郭欢, 等, 2020. 植物AP2/ERF类转录因子研究进展 [J]. 草业科学, 37(6): 1150-1159. ]

    • GONG L, SHI L, SONG YX, et al. , 2013. Research progress on drought stress responsive transcription factors in crops [J]. Chin Agric Sci Bull, 29(30): 10-17. [巩檑, 石磊, 宋玉霞, 等, 2013. 农作物旱胁迫响应相关转录因子的研究进展 [J]. 中国农学通报, 29(30): 10-17. ]

    • HAN MH, TENG RM, LI H, et al. , 2020. Cloning of CsDREB-A2 transcription factor gene and it′s response to abiotic stress in Camellia sinensis [J]. Acta Agric Nucl Sin, 34(12): 2647-2657. [韩妙华, 滕瑞敏, 李辉, 等, 2020. 茶树CsDREB-A2转录因子基因的克隆与非生物胁迫响应分析 [J]. 核农学报, 34(12): 2647-2657. ]

    • HONG L, YANG L, YANG HJ, et al. , 2020. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress [J]. Chin Bull Bot, 55(4): 481-496. [洪林, 杨蕾, 杨海健, 等, 2020. AP2/ERF转录因子调控植物非生物胁迫响应研究进展 [J]. 植物学报, 55(4): 481-496. ]

    • JI Q, ZHOU F, ZHOU J, et al. , 2018. Whole genome identification and bioinformatics analysis of AP2/EREBP transcription factors of Ziziphus jujube [J]. Genom Appl Biol, (7): 2983-2997. [纪晴, 周凡, 周军, 等, 2018. 枣AP2/EREBP转录因子的全基因组鉴定及生物信息学分析 [J]. 基因组学与应用生物学, (7): 2983-2997. ]

    • KE XW. , ZHANG JP, LIU GH, et al. , 2020. Identification of Adzuki bean AP2 /ERF gene family and expression analysis in response to rust infection [J]. Acta Phytopathol Sin, 50(4): 16-34. [柯希望, 张金鹏, 刘国辉, 等, 2020. 小豆AP2/ERF基因家族鉴定及其应答锈菌侵染的表达分析 [J]. 植物病理学报, 50(4): 16-34. ]

    • LI JD, NI J, YE X, et al. , 2020. Genomic identification of jujube AP2/ERF transcription factors and their expression pattern during Jujube witches’ broom pathogenesis process [J]. Acta Hortic Sin, 47(8): 1463-1474. [李继东, 倪静, 叶霞, 等, 2020. 枣AP2/ERF转录因子鉴定及其响应枣疯病植原体表达分析 [J]. 园艺学报, 47(8): 1463-1474. ]

    • LI Y, ZHANG H, ZHANG Q, LIU QC, et al. , 2019. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis [J]. Plant Sci, 281: 19-30.

    • LIU GZ, LI XL, JIN SX, et al. , 2014. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS ONE, 9(1): e86895.

    • LIU ZW, XIONG YY, LI T, et al. , 2014. Isolation and expression profiles analysis of two ERF subfamily transcription factor genes under temperature stresses in Camellia sinensis [J]. Acta Phytophysiol Sin, 50(12): 1821-1832. [刘志薇, 熊洋洋, 李彤, 等, 2014. 茶树中两个ERF类转录因子的分离及不同茶树中温度胁迫的响应分析 [J]. 植物生理学报, 50(12): 1821-1832. ]

    • MAREN M, SERGI MB, 2015. Ethylene response factors: A key regulatory hub in hormone and stress signaling [J]. Plant Physiol, 169: 32-41.

    • MARINHO JP, COUTINHO ID, LAMEIRO RF, et al. , 2019. Metabolic alterations in conventional and genetically modified soybean plants with GmDREB2A; 2 FL and GmDREB2A; 2 CA transcription factors during water deficit [J]. Plant Physiol Biochem, 140: 122-135.

    • NIU EL, FU YL, LIU LE, et al. , 2021. Screening of outstanding Olea europaea varieties and compatable pollinizers for southern China [J]. Acta Agric Nucl Sin, 35(4): 960-968. [牛二利, 傅玉楼, 刘丽娥, 等, 2021. 南方油橄榄适宜良种及其授粉品种筛选 [J]. 核农学报, 35(4): 960-968. ]

    • OH SJ, KIM YS, KWON CW, PARK HK, et al. , 2009. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions [J]. Plant Physiol, 150(3): 1368-1379.

    • PAN Y, SEYMOUR GB, LU CG, et al. , 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato [J]. Plant Cell Rep, 31(2): 349-360.

    • RAO GD, SUI JK, ZENG YF, et al. , 2015. Genome-wide analysis of the AP2/ERF gene family in Salix arbutifolia [J]. FEBS Open Bio, 5(1): 132-137.

    • SANJANA N, HIMANSHU T, GANAPATHI TR, 2016. Expression analysis of MusaNAC68 transcription factor and its functional analysis by overexpression in transgenic banana plants [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 125(1): 59-70.

    • SAITO S. 2004. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid [J]. Plant Physiology, 134(4): 1439-1449.

    • TAKASAKI H, MARUYMA K, KIDOKORO S, et al. , 2010. The abiotic stress-responsive NAC-type transcription factorOsNAC5 regulates stress-inducible genes and stress tolerance in rice [J]. Mol genet genomics, 284(3): 173-183.

    • TRAN LP, NAKASHIMA K, SAKUMA Y, et al. , 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell, 16(9): 2481-2498.

    • WANG C, DENG PY, CHEN LL, et al. , 2017. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco [J]. PLoS ONE, 8(6): e65120-1-13.

    • WANG L, ZHANG X, LI AY, et al. , 2021. Cloning and expression analysis of SpsDREB8 gene in Salix psammophila [J]. Mol Plant Breed. : 1-11 [2021-02-28]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20210107. 1656. 014. html. [王雷, 张鑫, 李安玉, 等, 沙柳SpsDREB8基因的克隆与表达分析 [J]. 分子植物育种: 1-11 [2021-02-28]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20210107. 1656. 014. html. ]

    • WU ZJ, LI XH, LI ZW, et al. , 2015. Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis) [J]. Funct Integr Genom, 15(6): 741-752.

    • XU KN, XU X, FUKAO T, et al. , 2006. Sub1A is an ethylene-response-factorlike gene that confers submergence tolerance to rice [J]. Nature, 442(7103): 705-708.

    • XU L, FENG GY, YANG ZF, et al. , 2020. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchardgrass ( Dactylis glomerata ) [J]. Mol Biol Rep, 47(prepublish): 5225-5241.

    • XU ZS, CHEN M, LI LC, et al. , 2011. Functions and application of the AP2/ERF transcription factor family in crop improvement [J]. J Integr Plant Biol, 53(7): 570-585.

    • YOH S, KYONOSHIN M, YURIKO O, et al. , 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression [J]. Plant Cell, 18(5): 1292-1309.

    • YUAN HH, LI LL, CHENG H, et al, 2022. Identification of AP2/ERF transcription factors in Ginkgo biloba and the expression analysis of ERF gene family under adversity stresses [J]. Mol Plant Breed, 20(1): 113-123. [袁红慧, 李琳玲, 程华, 等, 2022. 银杏AP2/ERF转录因子鉴定及其ERF家族在逆境胁迫下的表达分析 [J]. 分子植物育种, 20(1): 113-123. ]

    • YU YW, YANG DX, ZHOU SR, et al. , 2017. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice [J]. Protoplasma, 254(1): 401-408.

    • ZHANG LL, CHENG J, SUN XM, et al. , 2018. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes [J]. Plant Cell Rep, 37(8): 1159-1172.

    • ZHANG WH, 2016. Regulation mechanism of BpERF11 gene from Betula platyphylla response to severe salt and drought stress [D]. Harbin: Northeast Forestry University. [张文慧, 2016. 白桦BPERF11基因响应高盐干旱胁迫的调控机理研究 [D]. 哈尔滨: 东北林业大学. ]

    • ZHANG WH, HUANG Y, HE DM, et al. , 2020. Bioinformatic analysis on AP2 /ERF genes from Betula platyphylla [J]. J West China For Sci, 49(6): 112-117. [张文慧, 黄勇, 贺登美, 等, 2020. 白桦AP2/ERF家族基因的生物信息学分析 [J]. 西部林业科学, 49(6): 112-117. ]

    • ZHANG ZJ, LI F, LI DJ, et al. , 2010. Expression of ethylene response factor JERF1 in rice improves tolerance to drought [J]. Planta, 232(3): 765-774.

    • ZHAO H, ZHAO X, LI M, et al. , 2018. Ectopic expression of limonium bicolor (Bag. ) kuntze DREB (LbDREB)results in enhanced salt stress tolerance of transgenic Populus ussuriensis Kom [J]. Plant Cell Tiss Organ Cult, 132(1): 123-136.

    • ZHAO MJ, WU WJ, JIANG CY, et al. , 2021. Olive germplasm resources development in Turkey: status and enlightenment [J]. World For Res Sci, 34(1): 102-106. [赵梦炯, 吴文俊, 姜成英, 等, 2021. 土耳其油橄榄种质资源发展现状与启示 [J]. 世界林业研究, 34(1): 102-106. ]

    • ZHU YY, LIU XL, GAO YD, et al. , 2021. Transcriptome-based identification of AP2/ERF family genes and their cold-regulated expression during the dormancy phase transition of Chinese cherry flower buds [J]. Sci Hortic, 275: 1-12.

  • 参考文献

    • AHN H, JUNG I, SHIN SJ, et al. , 2017. Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice [J]. Front Plant Sci, 8: 1-18.

    • AMIRA Z, SAHAR N, AMIRA Z, et al. , 2020. Phytochemical profile, cytotoxic, antioxidant, and allelopathic potentials of aqueous leaf extracts of Olea europaea [J]. Food Sci Nutr, 8(9): 1-9.

    • BUI LT, GIUNTOLI B, KOSMACZ M, et al. , 2015. Constitutively expressed ERF-Ⅶ transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana [J]. Plant Sci, 236: 37-43.

    • CAO S, WANG Y, LI X. , et al. , 2020. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus [J]. Plants, 9(4): 1-20.

    • CHENG ZZ, HE JS, ZHAN MM, et al. , 2014. Synthesis of olive oil during olive development and ripening [J]. Sci Silv Sin, 50(5): 123-131. [程子彰, 贺靖舒, 占明明, 等, 2014. 油橄榄果生长与成熟过程中油脂的合成 [J]. 林业科学, 50(5): 123-131. ]

    • DENG CJ, YU XF, CHEN J, et al. , 2011. Processing technology and quality evaluation of olive oil [J]. Chin for Prod Ins, 38(1): 62-63. [邓丛静, 于小飞, 陈军, 等, 2011. 橄榄油的加工工艺及品质评价 [J]. 林产工业, 38(1): 62-63. ]

    • FRANCESCO L, JOOST T, VAN D, et al. , 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana [J]. Plant J, 62(2): 302-315.

    • FU MJ, KANG HK, SON SH, et al. , 2014. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA [J]. Plant Cell Physiol, 55: 1892-1904.

    • GOU YL, ZHANG L, GUO H, et al. , 2020. Research progress on the AP2/ERF transcription factor in plants [J]. Pratac Sci, 37(6): 1150-1159. [苟艳丽, 张乐, 郭欢, 等, 2020. 植物AP2/ERF类转录因子研究进展 [J]. 草业科学, 37(6): 1150-1159. ]

    • GONG L, SHI L, SONG YX, et al. , 2013. Research progress on drought stress responsive transcription factors in crops [J]. Chin Agric Sci Bull, 29(30): 10-17. [巩檑, 石磊, 宋玉霞, 等, 2013. 农作物旱胁迫响应相关转录因子的研究进展 [J]. 中国农学通报, 29(30): 10-17. ]

    • HAN MH, TENG RM, LI H, et al. , 2020. Cloning of CsDREB-A2 transcription factor gene and it′s response to abiotic stress in Camellia sinensis [J]. Acta Agric Nucl Sin, 34(12): 2647-2657. [韩妙华, 滕瑞敏, 李辉, 等, 2020. 茶树CsDREB-A2转录因子基因的克隆与非生物胁迫响应分析 [J]. 核农学报, 34(12): 2647-2657. ]

    • HONG L, YANG L, YANG HJ, et al. , 2020. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress [J]. Chin Bull Bot, 55(4): 481-496. [洪林, 杨蕾, 杨海健, 等, 2020. AP2/ERF转录因子调控植物非生物胁迫响应研究进展 [J]. 植物学报, 55(4): 481-496. ]

    • JI Q, ZHOU F, ZHOU J, et al. , 2018. Whole genome identification and bioinformatics analysis of AP2/EREBP transcription factors of Ziziphus jujube [J]. Genom Appl Biol, (7): 2983-2997. [纪晴, 周凡, 周军, 等, 2018. 枣AP2/EREBP转录因子的全基因组鉴定及生物信息学分析 [J]. 基因组学与应用生物学, (7): 2983-2997. ]

    • KE XW. , ZHANG JP, LIU GH, et al. , 2020. Identification of Adzuki bean AP2 /ERF gene family and expression analysis in response to rust infection [J]. Acta Phytopathol Sin, 50(4): 16-34. [柯希望, 张金鹏, 刘国辉, 等, 2020. 小豆AP2/ERF基因家族鉴定及其应答锈菌侵染的表达分析 [J]. 植物病理学报, 50(4): 16-34. ]

    • LI JD, NI J, YE X, et al. , 2020. Genomic identification of jujube AP2/ERF transcription factors and their expression pattern during Jujube witches’ broom pathogenesis process [J]. Acta Hortic Sin, 47(8): 1463-1474. [李继东, 倪静, 叶霞, 等, 2020. 枣AP2/ERF转录因子鉴定及其响应枣疯病植原体表达分析 [J]. 园艺学报, 47(8): 1463-1474. ]

    • LI Y, ZHANG H, ZHANG Q, LIU QC, et al. , 2019. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis [J]. Plant Sci, 281: 19-30.

    • LIU GZ, LI XL, JIN SX, et al. , 2014. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS ONE, 9(1): e86895.

    • LIU ZW, XIONG YY, LI T, et al. , 2014. Isolation and expression profiles analysis of two ERF subfamily transcription factor genes under temperature stresses in Camellia sinensis [J]. Acta Phytophysiol Sin, 50(12): 1821-1832. [刘志薇, 熊洋洋, 李彤, 等, 2014. 茶树中两个ERF类转录因子的分离及不同茶树中温度胁迫的响应分析 [J]. 植物生理学报, 50(12): 1821-1832. ]

    • MAREN M, SERGI MB, 2015. Ethylene response factors: A key regulatory hub in hormone and stress signaling [J]. Plant Physiol, 169: 32-41.

    • MARINHO JP, COUTINHO ID, LAMEIRO RF, et al. , 2019. Metabolic alterations in conventional and genetically modified soybean plants with GmDREB2A; 2 FL and GmDREB2A; 2 CA transcription factors during water deficit [J]. Plant Physiol Biochem, 140: 122-135.

    • NIU EL, FU YL, LIU LE, et al. , 2021. Screening of outstanding Olea europaea varieties and compatable pollinizers for southern China [J]. Acta Agric Nucl Sin, 35(4): 960-968. [牛二利, 傅玉楼, 刘丽娥, 等, 2021. 南方油橄榄适宜良种及其授粉品种筛选 [J]. 核农学报, 35(4): 960-968. ]

    • OH SJ, KIM YS, KWON CW, PARK HK, et al. , 2009. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions [J]. Plant Physiol, 150(3): 1368-1379.

    • PAN Y, SEYMOUR GB, LU CG, et al. , 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato [J]. Plant Cell Rep, 31(2): 349-360.

    • RAO GD, SUI JK, ZENG YF, et al. , 2015. Genome-wide analysis of the AP2/ERF gene family in Salix arbutifolia [J]. FEBS Open Bio, 5(1): 132-137.

    • SANJANA N, HIMANSHU T, GANAPATHI TR, 2016. Expression analysis of MusaNAC68 transcription factor and its functional analysis by overexpression in transgenic banana plants [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 125(1): 59-70.

    • SAITO S. 2004. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid [J]. Plant Physiology, 134(4): 1439-1449.

    • TAKASAKI H, MARUYMA K, KIDOKORO S, et al. , 2010. The abiotic stress-responsive NAC-type transcription factorOsNAC5 regulates stress-inducible genes and stress tolerance in rice [J]. Mol genet genomics, 284(3): 173-183.

    • TRAN LP, NAKASHIMA K, SAKUMA Y, et al. , 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell, 16(9): 2481-2498.

    • WANG C, DENG PY, CHEN LL, et al. , 2017. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco [J]. PLoS ONE, 8(6): e65120-1-13.

    • WANG L, ZHANG X, LI AY, et al. , 2021. Cloning and expression analysis of SpsDREB8 gene in Salix psammophila [J]. Mol Plant Breed. : 1-11 [2021-02-28]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20210107. 1656. 014. html. [王雷, 张鑫, 李安玉, 等, 沙柳SpsDREB8基因的克隆与表达分析 [J]. 分子植物育种: 1-11 [2021-02-28]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20210107. 1656. 014. html. ]

    • WU ZJ, LI XH, LI ZW, et al. , 2015. Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis) [J]. Funct Integr Genom, 15(6): 741-752.

    • XU KN, XU X, FUKAO T, et al. , 2006. Sub1A is an ethylene-response-factorlike gene that confers submergence tolerance to rice [J]. Nature, 442(7103): 705-708.

    • XU L, FENG GY, YANG ZF, et al. , 2020. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchardgrass ( Dactylis glomerata ) [J]. Mol Biol Rep, 47(prepublish): 5225-5241.

    • XU ZS, CHEN M, LI LC, et al. , 2011. Functions and application of the AP2/ERF transcription factor family in crop improvement [J]. J Integr Plant Biol, 53(7): 570-585.

    • YOH S, KYONOSHIN M, YURIKO O, et al. , 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression [J]. Plant Cell, 18(5): 1292-1309.

    • YUAN HH, LI LL, CHENG H, et al, 2022. Identification of AP2/ERF transcription factors in Ginkgo biloba and the expression analysis of ERF gene family under adversity stresses [J]. Mol Plant Breed, 20(1): 113-123. [袁红慧, 李琳玲, 程华, 等, 2022. 银杏AP2/ERF转录因子鉴定及其ERF家族在逆境胁迫下的表达分析 [J]. 分子植物育种, 20(1): 113-123. ]

    • YU YW, YANG DX, ZHOU SR, et al. , 2017. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice [J]. Protoplasma, 254(1): 401-408.

    • ZHANG LL, CHENG J, SUN XM, et al. , 2018. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes [J]. Plant Cell Rep, 37(8): 1159-1172.

    • ZHANG WH, 2016. Regulation mechanism of BpERF11 gene from Betula platyphylla response to severe salt and drought stress [D]. Harbin: Northeast Forestry University. [张文慧, 2016. 白桦BPERF11基因响应高盐干旱胁迫的调控机理研究 [D]. 哈尔滨: 东北林业大学. ]

    • ZHANG WH, HUANG Y, HE DM, et al. , 2020. Bioinformatic analysis on AP2 /ERF genes from Betula platyphylla [J]. J West China For Sci, 49(6): 112-117. [张文慧, 黄勇, 贺登美, 等, 2020. 白桦AP2/ERF家族基因的生物信息学分析 [J]. 西部林业科学, 49(6): 112-117. ]

    • ZHANG ZJ, LI F, LI DJ, et al. , 2010. Expression of ethylene response factor JERF1 in rice improves tolerance to drought [J]. Planta, 232(3): 765-774.

    • ZHAO H, ZHAO X, LI M, et al. , 2018. Ectopic expression of limonium bicolor (Bag. ) kuntze DREB (LbDREB)results in enhanced salt stress tolerance of transgenic Populus ussuriensis Kom [J]. Plant Cell Tiss Organ Cult, 132(1): 123-136.

    • ZHAO MJ, WU WJ, JIANG CY, et al. , 2021. Olive germplasm resources development in Turkey: status and enlightenment [J]. World For Res Sci, 34(1): 102-106. [赵梦炯, 吴文俊, 姜成英, 等, 2021. 土耳其油橄榄种质资源发展现状与启示 [J]. 世界林业研究, 34(1): 102-106. ]

    • ZHU YY, LIU XL, GAO YD, et al. , 2021. Transcriptome-based identification of AP2/ERF family genes and their cold-regulated expression during the dormancy phase transition of Chinese cherry flower buds [J]. Sci Hortic, 275: 1-12.