en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

尹雁玲(1995-),博士研究生,研究方向为棉花黄萎病生物防治,(E-mail)YinYanLing2020@163.com。

通讯作者:

沈锡辉,博士导师,研究方向为农业与环境微生物,(E-mail)xihuishen@nwsuaf.edu.cn。

中图分类号:Q948.12

文献标识码:A

文章编号:1000-3142(2023)02-0212-09

DOI:10.11931/guihaia.gxzw202201042

参考文献
ABDALLAH RAB, MOKNI-TLILI S, NEFZI A, et al. , 2016. Biocontrol of fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs [J]. Biol Control, 97: 80-88.
参考文献
ABDEL RAZEK MM, MOUSSA AY, EL-SHANAWANY MA, et al. , 2020. A new phenolic alkaloid from Halocnemum strobilaceum endophytes: antimicrobial, antioxidant and biofilm inhibitory activities [J]. Chem Biodivers, 17(10): e2000496.
参考文献
AFZAL I, SHINWARI ZK, SIKANDAR S, et al. , 2019. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants [J]. Microbiol Res, 221: 36-49.
参考文献
AHEMAD M, KIBRET M, 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective [J]. J King Saud Univ Sci, 26(1): 1-20.
参考文献
AHMAD T, BASHIR A, FAROOQ S, et al. , 2021. Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn. , induces host resistance against corm-rot caused by Fusarium oxysporum [J]. J Appl Microbiol, 132(1): 495-508.
参考文献
AKSHATHA V, NALINI M, D'SOUZA C, et al. , 2014. Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake [J]. Lett Appl Microbiol, 58(5): 433-439.
参考文献
AMEEN F, ALMANSOB A, AL TAMI M, et al. , 2021. Epigenetic modifiers affect the bioactive compounds secreted by an endophyte of the tropical plant Piper longum [J]. Molecules, 26(1): 29-32.
参考文献
ANANDAN K, VITTAL RR, 2019. Quorum quenching activity of AiiA lactonase KMMI17 from endophytic Bacillus thuringiensis KMCL07 on AHL-mediated pathogenic phenotype in Pseudomonas aeruginosa [J]. Microb Pathog, 132: 230-242.
参考文献
ASYIAH IN, PRIHATIN J, HASTUTI AD, et al. , 2021. Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants [J]. Biodivers J Biol Diver, 22(6): 3256-3264.
参考文献
AYDI-BEN-ABDALLAH R, JABNOUN-KHIAREDDINE H, DAAMI-REMADI M, 2020. Fusarium wilt biocontrol and tomato growth stimulation, using endophytic bacteria naturally associated with Solanum sodomaeum and S. bonariense plants [J]. Egypt J Biol Pest Control, 30(1): 1-13.
参考文献
BALDOTTO LEB, OLIVARES FL, BRESSAN-SMITH R, 2011. Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets ‘Vitória’ [J]. Braz J Microbiol, 42: 114-125.
参考文献
BODENHAUSEN N, HORTON M, BERGELSON J, et al. , 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana [J]. PLoS ONE, 8(2): e56329.
参考文献
BRIGHT M, BULGHERESI S, 2010. A complex journey: transmission of microbial symbionts [J]. Nat Rev Microbiol, 8(3): 218-230.
参考文献
CARRIóN VJ, PEREZ-JARAMILLO J, CORDOVEZ V, et al. , 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome [J]. Science, 366(6465): 606-612.
参考文献
CHATURVEDI H, SINGH V, GUPTA G, 2016. Potential of bacterial endophytes as plant growth promoting factors [J]. J Plant Pathol Microbiol, 7(9): 1-6.
参考文献
CHEN L, SHI H, HENG JY, et al. , 2019. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2 [J]. Microbiol Res, 218: 41-48.
参考文献
COMPANT S, REITER B, SESSITSCH A, et al. , 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN [J]. Appl Environ Microbiol, 71(4): 1685-1693.
参考文献
DAS G, PARK S, BAEK KH, 2017. Diversity of endophytic bacteria in a fern species Dryopteris uniformis (Makino) Makino and evaluation of their antibacterial potential against five foodborne pathogenic bacteria [J]. Foodborne Pathog Dis, 14(5): 260-268.
参考文献
DING T, MELCHER U, 2016. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants [J]. PLoS ONE, 11(3): e0150895.
参考文献
DING T, SU B, CHEN XJ, et al. , 2017. An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight [J]. Front Microbiol, 8: 903.
参考文献
ETESAMI H, ALIKHANI H, AMIRSEYED HOSSEINI H, 2019. Root bacterial endophytes as potential biological control agents against fungal rice pathogens [J]. Archiv Phytopathol Plant Protect, 52(7/8): 560-581.
参考文献
FUKAMI J, NOGUEIRA MA, ARAUJO RS, et al. , 2016. Accessing inoculation methods of maize and wheat with Azospirillum brasilense [J]. Amb Express, 6(1): 1-13.
参考文献
FOSTER KR, WENSELEERS T, 2006. A general model for the evolution of mutualisms [J]. J Evol Biol, 19(4): 1283-1293.
参考文献
GANGWAR M, DOGRA S, GUPTA UP, et al. , 2014. Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India [J]. Afr J Microbiol Res, 8(2): 184-191.
参考文献
HA NT, MINH TQ, HOI PX, et al. , 2018. Biological control of potato tuber soft rot using N-acyl-L-homoserine lactone-degrading endophytic bacteria [J]. Curr Sci, 115(10): 1921-1927.
参考文献
HAYAT R, ALI S, AMARA U, et al. , 2010. Soil beneficial bacteria and their role in plant growth promotion: a review [J]. Ann Microbiol, 60(4): 579-598.
参考文献
HERRE EA, KNOWLTON N, MUELLER UG, et al. , 1999. The evolution of mutualisms: exploring the paths between conflict and cooperation [J]. Trend Ecol Evol, 14(2): 49-53.
参考文献
HEWITT KG, MACE WJ, MCKENZIE CM, et al. , 2020. Fungal alkaloid occurrence in endophyte-infected perennial ryegrass during seedling establishment [J]. J Chem Ecol, 46(4): 410-421.
参考文献
HUANG JF, WEI Z, HU J, et al. , 2017. Chryseobacterium nankingense sp. nov. WR21 effectively suppresses Ralstonia solanacearum growth via intensive root exudates competition [J]. Biol Control, 62(4): 567-577.
参考文献
HUANG JY, ZHANG CJ, YAO YL, et al. , 2017. Progress in antimicrobial substances of endophytes [J]. Chin J Biotechnol, 33(2): 178-186. [黄敬瑜, 张楚军, 姚瑜龙, 等, 2017. 植物内生菌生物抗菌活性物质研究进展 [J]. 生物工程学报, 33(2): 178-186. ]
参考文献
ISLAM MN, CHOI J, BAEK KH, 2019. Control of foodborne pathogenic bacteria by endophytic bacteria isolated from Ginkgo biloba L. [J]. Foodborne Pathog Dis, 16(10): 661-670.
参考文献
ISLAM N, CHOI J, BAEK KH, 2018. Antibacterial activities of endophytic bacteria isolated from Taxus brevifolia against foodborne pathogenic bacteria [J]. Foodborne Pathog Dis, 15(5): 269-276.
参考文献
JIA M, CHEN L, XIN HL, et al. , 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review [J]. Front Microbiol, 7: 906-912.
参考文献
JOOSTE M, ROETS F, MIDGLEY GF, et al. , 2019. Nitrogen-fixing bacteria and Oxalis — evidence for a vertically inherited bacterial symbiosis [J]. BMC Plant Biol, 19(1): 1-10.
参考文献
KIAROOD SLA, RAHNAMA K, GOLMOHAMMADI M, et al. , 2020. Quorum-quenching endophytic bacteria inhibit disease caused by Pseudomonas syringae pv. syringae in Citrus cultivars [J]. J Basic Microbiol, 60(9): 746-757.
参考文献
KHAN B, YAN W, WEI S, et al. , 2019. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5 [J]. FEMS Microbiol Lett, 366(14): fnz169.
参考文献
LATHA P, KARTHIKEYAN M, RAJESWARI E, 2019. Endophytic bacteria: Prospects and applications for the plant disease management [M]. Springer: Plant Health Under Biotic Stress: 1-50.
参考文献
LARRAN S, PERELLÓ A, SIMÓ MR, et al. , 2007. The endophytic fungi from wheat (Triticum aestivum L. ) [J]. World J Microbiol Biot, 23(4): 565-572.
参考文献
LASTOCHKINA O, PUSENKOVA L, GARSHINA D, et al. , 2020. The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with fusarium dry rot [J]. Plants, 9(6): 738-743.
参考文献
LIU F, YUAN ZS, ZHANG XT, et al. , 2017. Characteristics and diversity of endophytic bacteria in moso bamboo (Phyllostachys edulis) based on 16S rDNA sequencing [J]. Arch Microbiol, 199(9): 1259-1266.
参考文献
LIU GY, LIN X, XU SY, et al. , 2020. Screening, identification and application of soil bacteria with nematicidal activity against root-knot nematode (Meloidogyne incognita) on tomato [J]. Pest Manag Sci, 76(6): 2217-2224.
参考文献
LI Q, CHAI S, FENG QX, et al. , 2021. Analysis of the application of endophytic bacteria in crops [J]. Seeds Sci Technol, 33 (12) 6: 8-9. [李晴, 柴霜, 冯千禧, 等, 2021. 植物内生菌在农作物方面的应用探析 [J]. 种子科技, 39(12): 8-9. ]
参考文献
MARDHIANA M, PRADANA AP, ADIWENA M, et al. , 2017. Use of endophytic bacteria from roots of Cyperus rotundus for biocontrol of Meloidogyne incognita [J]. Biodiversitas J Biol Diver, 18(4): 1308-1315.
参考文献
MAJEWSKA-SAWKA A, NAKASHIMA H, 2004. Endophyte transmission via seeds of Lolium perenne L. : immunodetection of fungal antigens [J]. Fungal Genet Biol, 41(5): 534-541.
参考文献
MENDES R, GARBEVA P, RAAIJMAKERS JM, 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiol Rev, 37(5): 634-663.
参考文献
MILIUTE I, BUZAITE O, BANIULIS D, et al. , 2015. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review [J]. Zemdirbyste, 102(4): 465-478.
参考文献
PAL KK, GARDENER BBM, 2006. Biological control of plant pathogens [J]. Plant Health Inst. DOI: 10. 1094/PHI-A-2006-1117-02.
参考文献
PHILIPPOT L, RAAIJMAKERS JM, LEMANCEAU P, et al. , 2013. Going back to the roots: the microbial ecology of the rhizosphere [J]. Nat Rev Microbiol, 11: 789-799.
参考文献
PORRAS-ALFARO A, BAYMAN P, 2011. Hidden fungi, emergent properties: endophytes and microbiomes [J]. Ann Rev Phytopathol, 49: 291-315.
参考文献
QI X, LI XQ, ZHAO JY, et al. , 2019. GKK1032C, a new alkaloid compound from the endophytic fungus Penicillium sp. CPCC 400817 with activity against methicillin-resistant S. aureus [J]. J Antibiot, 72(4): 237-240.
参考文献
RENUKA S, RAMANUJAM B, 2016. Fungal endophytes from maize (Zea mays L. ): isolation, identification and screening against maize stem borer, Chilo partellus (Swinhoe) [J]. J Pur Appl Microbiol, 10(1): 523-529.
参考文献
REINHOLD-HUREK B, HUREK T, 1998. Life in grasses: diazotrophic endophytes [J]. Trends Microbiol, 6(4): 139-144.
参考文献
RHO H, HSIEH M, KANDEL SL, et al. , 2018. Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes [J]. Microbial Ecol, 75(2): 407-418.
参考文献
RODRIGUES KF, 1994. The foliar fungal endophytes of the Amazonian palm Euterpe oleracea [J]. Mycologia, 86(3): 376-385.
参考文献
RODRIGUEZ R, REDMAN R, 2008. More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis [J]. J Exp Bot, 59(5): 1109-1114.
参考文献
SAIKKONEN K, FAETH SH, HELANDER M, et al. , 1998. Fungal endophytes: a continuum of interactions with host plants [J]. Ann Rev Ecol Syst, 29(1): 319-343.
参考文献
SANTOYO G, MORENO-HAGELSIEB G, OROZCO-MOSQUEDA MDC, et al. , 2016. Plant growth-promoting bacterial endophytes [J]. Microbiol Res, 183: 92-99.
参考文献
SAIKIA K, BORA L, 2021. Exploring actinomycetes and endophytes of rice ecosystem for induction of disease resistance against bacterial blight of rice [J]. Eur J Plant Pathol, 159(1): 67-79.
参考文献
SELIM HMM, GOMAA NM, MESSA AMM, 2017. Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: Ceratobasidiaceae) damping-off disease in cotton seedlings [J]. Biocontrol Sci Technol, 27(1): 81-95.
参考文献
SIDDIQUI IA, SHAUKAT SS, 2003. Endophytic bacteria: prospects and opportunities for the biological control of plant-parasitic nematodes [J]. Nematol Mediterr, 31(1): 111-120.
参考文献
SINGH S, PANDEY SS, SHANKER K, et al. , 2020. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots [J]. J Appl Microbiol, 128(4): 1128-1142.
参考文献
SPADARO D, DROBY S, 2016. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists [J]. Trends Food Sci Technol, 47: 39-49.
参考文献
TAO G, LIU Z, HYDE K, et al. , 2008. Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae) [J]. Fungal Divers, 33(1): 101-112.
参考文献
TAN SY, GU Y, YANG CL, et al. , 2016. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion [J]. Biol Fert Soils, 52(3): 341-351.
参考文献
VAN LOON LC, 2000. Helping plants to defend themselves: biocontrol by disease-suppressing rhizobacteria [M]//developments in plant genetics and breeding. Amsterdam: Elsevier, 6: 203-213.
参考文献
VAN LOON LC, BAKKER PAHM, 2003. Signalling in rhizobacteria-plant interactions [J]. Root Ecol, 168: 297-330.
参考文献
VAN WEES SCM, VAN DERENT S, PIETERSE CMJ, 2008. Plant immune responses triggered by beneficial microbes [J]. Curr Opin Plant Biol, 11(4): 443-448.
参考文献
VERMA VC, GOND SK, KUMAR A, et al. , 2009. Endophytic actinomycetes from Azadirachta indica A. Juss. : isolation, diversity, and anti-microbial activity [J]. Microbial Ecol, 57(4): 749-756.
参考文献
VILJOEN JJF, LABUSCHAGNE N, FOURIE H, et al. , 2019. Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria [J]. Trop Plant Pathol, 44(3): 284-291.
参考文献
WANI ZA, ASHRAF N, MOHIUDDIN T, et al. , 2015. Plant-endophyte symbiosis, an ecological perspective [J]. Appl Microbiol Biotechnol, 99(7): 2955-2965.
参考文献
WANG WF, ZHAI YY, CAO LX, et al. , 2016. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L. ) [J]. Microbiol Res, 188: 1-8.
参考文献
WANG SS, LIU JM, SUN J, et al. , 2019. Diversity of culture-independent bacteria and antimicrobial activity of culturable endophytic bacteria isolated from different Dendrobium stems [J]. Sci Rep, 9(1): 1-12.
参考文献
WALLER F, ACHATZ B, BALTRUSCHAT H, et al. , 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield [J]. Proc Nat Acad Sci, 102(38): 13386-13391.
参考文献
WEARN JA, SUTTON BC, MORLEY NJ, et al. , 2012. Species and organ specificity of fungal endophytes in herbaceous grassland plants [J]. J Ecol, 100(5): 1085-1092.
参考文献
WIRATNO W, SYAKIR M, SUCIPTO I, et al. , 2019. Isolation and characterization of endophytic bacteria from roots of Piper nigrum and their activities against Fusarium oxysporum and Meloidogyne incognita [J]. Biodivers J Biol Divers, 20(3): 682-687.
参考文献
WILSON D, 1995. Endophyte: the evolution of a term, and clarification of its use and definition [J]. Oikos, 73(2): 274-276.
参考文献
XING HQ, MA JC, XU BL, et al. , 2018. Mycobiota of maize seeds revealed by rDNA-ITS sequence analysis of samples with varying storage times [J]. Microbiol Open, 7(6): e00609.
参考文献
YANG Z, CAO J, 2016. Research progress of endophytic fungi and their secondary metabolites [J]. J Microbiol, 36(4): 1-6. [杨镇, 曹君, 2016. 植物内生菌及其次级代谢产物的研究进展 [J]. 微生物学杂志, 36(4): 1-6. ]
参考文献
YANTI Y, WARNITA, REFLIN, 2019. Involvement of jasmonic acid in the induced systemic resistance of tomato against Ralstonia syzigiisub sp. indonesiensis by indigenous endophyte bacteria [C]. IOP Conference Series: Earth and Environmental Science: 347(1): 012024.
参考文献
ZENG JR, XU T, CAO LD, et al. , 2018. The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae [J]. Microbial Ecol, 76(4): 1021-1029.
参考文献
ZHAO LF, XU YJ, LAI XH, 2018. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L. ) and plant growth-promoting properties [J]. Braz J Microbiol, 49: 269-278.
目录contents

    摘要

    植物在生长发育过程中因遭遇多种逆境的威胁而出现营养流失、产量大幅下降等问题,而使用传统的化学农药调控植物抗逆作用会对环境造成严重污染甚至危及人类健康,因此需要从天然成分中寻找合适的农药代替品。生活在每种植物体内的内生菌几乎都是植物微生态系统中的天然成分,因其特殊的生态位而可能对植物具有更加积极和直接的影响。然而目前,关于内生菌在提高宿主生物胁迫抗性等方面的作用机制还知之甚少。该文就植物内生菌的来源、多样性和对生物胁迫的抗性展开叙述。首先,总结了植物内生菌传播的主要方式,即水平传播和垂直传播;其次对内生菌种类的多样性以及在植物中的分布多样性进行了归纳与分析;最后,详细阐述了植物内生菌增强植物对生物胁迫应激耐受性(抗致病菌病害、抗虫害)的基本特点与作用机制,即植物内生菌可利用生态位竞争或营养位竞争产生的诱导抗性遏制病原菌感染,或合成抗生素类、生物碱类、几丁质类等次生代谢产物抑制病原菌或线虫的生长,从而防治病虫害。此外,基于内生菌增强植物生物胁迫抗性的研究现状进行了展望,为更加环保的生物防治制剂的开发与利用提供了参考。

    Abstract

    Plant growth and development can be threatened by a variety of adversities, which cause problems such as loss of nutrients and significant decrease of yied. Using traditional agrochemicals to regulate the plant resistence to stresses can result in the resistance in insect pests and diseases not only in traditional plant varieties but also in transgenic plants. These agrochemicals cannot be degraded by biological means, and cause environmental pollution. Also, prevalence of these chemicals can even cause severe health issues to the farmers, livestock, and consumers. Therefore, application of naturally available microbes is a safe and alternative complementary way to tackle the pests and phytopathogens. Endophytes living in almost every plant are natural components of plant microecosystems and may have more positive and direct effects on plants because of their special ecological niches. However, the mechanism of endophytic bacteria in improving host biostress resistance is still poorly understood. In this review, we describe the origin, diversity and resistance to biotic stress of endophytes. Firstly, we provide an overview of the transmission routes that endophyte can take to colonize plants, including vertically via seeds and pollen, and horizontally via soil, atmosphere, and insects; secondly, summarize and analyze the diversity of endophyte species and distribution diversity in plants; finally, the basic characteristics and action mechanisms of endophytes in enhancing the tolerance of plants to biotic stress (anti-pathogenic bacteria and insect resistence) are described in detail. Endophytes use niche competition or nutrient competition to promote plant induced resistance to inhibit pathogen infection, or use synthetic antibiotics, alkaloids, chitin and other secondary metabolites to inhibit the growth of pathogenic bacteria or nematodes, so as to prevent and control insect pests and diseases. In addition, based on the research status of endophyte enhancing plant biotic stress resistance, the future development direction is prospected, and this article provides reference for the development and utilization of more environmentally friendly biological control agents.

  • 植物内生菌(endophyte)是指在生活于正常状态的植物器官和组织内的细菌、真菌和放线菌等,不会引起明显的宿主植物外在感染症状,是植物微生态系统中的天然组分(Wilson,1995; Jia et al.,2016)。目前,从多种植物中均已分离得到内生菌,在与宿主协同进化过程中既满足了自身生存条件的需要,又增强了宿主对外界环境的适应性,二者相辅相成(Rodriguez &Redman,2008; Philippot et al.,2013; Mendes et al.,2013)。内生菌与宿主植物的协同进化塑造了内生菌特有的基因特征和代谢产物,既能通过分泌激素和次级代谢产物直接或间接地促进植物生长(Ahemad &Kibret,2014),又能产生抗生素、水解酶类和生物碱等次级代谢产物协助应对宿主由病原菌、虫害等引起的生物胁迫(Waller et al.,2005; Hayat et al.,2010; Rho et al.,2018; Carrión et al.,2019),在宿主植物的生长发育和抵抗不良环境过程中起着重要作用。

  • 近年来,由病原菌导致的植物病害日益严重,亟待寻找新的抗逆药物、生物菌肥等应对生物问题,而大多数此类药物的研发都是从微生物互作关系中发现的。关于内生菌的特性、产生的天然产物以及与植物之间的相互作用关系等方面,已有文献报道(Porras-Alfaro &Bayman,2011; Wani et al.,2015; Jia et al.,2016)。本文就植物内生菌的来源、多样性和对生物胁迫抗性进行全面综述,并对植物内生菌的开发与利用进行了展望,以期为植物内生菌产品开发、农作物抗逆性状改良等提供参考。

  • 1 植物内生菌的来源

  • 大多数的内生菌是水平传播的,与宿主相关的有益菌可以通过环境水平定植到宿主体内。例如,在土壤中微生物可以进入植物的根部并定植,或者空气中的微生物通过植物体表进入并定植,从而感染植物(Saikkonen et al.,1998; Compant et al.,2005; Baldotto et al.,2011)。通过喷叶接种应用于玉米和小麦时,Fukami等(2016)认为巴西固氮螺菌(Azospirillumbrasilense)是通过气孔进入植物并能够在叶和茎的内部定植。当内生菌在植株内定植,形成共生关系,为确保有益共生体从一代传到下一代,就会形成垂直传播(Herre et al.,1999)。垂直传播发生在被内生菌感染的种子或花粉内,萌发后的植株带有同种内生菌。同种植物之间,如酢浆草(Oxalis corniculata)中的芽孢杆菌属(Bacillus)就是通过种子进行传播(Jooste et al.,2019)。在垂直传播的共生体中,共生体是专性的并在宿主体内度过整个生命周期,但无法在外部环境中生存(Bright &Bulghresi,2010)。植物与内生菌之间的专性关系似乎很少见,并不是所有共生体之间都进行垂直传播,有些进行水平传播,还有一些细菌内生菌两种传播方式均可,即混合模式传播(Foster &Wenseieers,2006)。

  • 2 植物内生菌多样性

  • 2.1 内生菌在植物中的分布多样性

  • 内生菌普遍存在于各种植物中,分布范围较广,具有群落多样性。至今为止,人们在研究过的植物中发现并分离出大量的内生菌,内生菌分布在植物的各个组织或器官的细胞或细胞间隙中,这种特定的分布可能与它们利用不同基质的能力有关(Rodrigues,1994; 黄敬瑜等,2017)。植物种子中传播的内生真菌(Neotyphodiumlolii)在植物组织中不规则分布,并且它只在成熟后的胚中定植,而在分化过程中不定植(Majewska-sawka &Nakashima,2004)。有些物种在植物器官内表现出特定的分布模式,如伯克霍尔德菌(Burkholderia)仅出现在竹根茎样本中; 假单胞菌(Pseudomonas putida)在竹笋和竹竿的样品中检测到,而在竹根茎中未检测到; 芽孢杆菌仅在竹笋中检测到(Liu et al.,2017)。另外,内生真菌群落在植物组织中的分布还有强烈的季节性变化,如在1月份,酸模(Rumex acetosa)根中内生真菌的含量较高(98.3%),叶中较低(仅占4.4%); 在6月份,则完全相反,叶中内生真菌的含量增加到90%(Wearn et al.,2012)。内生菌在植物时间、空间上的分布多样性是内生菌与植物互作的结果,也是共生体对环境适应的体现。

  • 2.2 植物内生菌种类的多样性

  • 2.2.1 内生真菌

  • 内生真菌已从多种植物中分离出来,包括农作物、木本植物等,尤其是药用植物、苔藓、蕨类和地衣。通常情况下,内生真菌在茎中的定植率高于叶中,叶中的高于根中(Tao et al.,2008)。已发现的植物内生真菌主要包括子囊菌门(Ascomycota)(89%)、担子菌门(Basidiomycota)(9%)和毛菌门(Mucoromycota)(2%),在镰刀菌属(Fusarium)、曲霉菌属(Aspergillus)、毛盘孢属(Colletotrichum)、青霉属(Penicillium)、赤霉菌属(Gibberella)等属中皆有分布且生物多样性十分丰富(Larran et al.,2007; Wang et al.,2016; Renuka &Ramanujam,2016; Xing et al.,2018)。

  • 2.2.2 内生细菌

  • 植物内生细菌大多存在于植物的根部和种子中,而在茎和叶中则相对较少(Afzal et al.,2019)。变形菌门是从植物中分离出来的最主要的门,包括α-、β-、γ-变形菌门,其中γ-变形菌门最具多样性且占主导地位(Miliute et al.,2015; Santoyo et al.,2016)。放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)是最常见的内生细菌门类(Reinhold-hurek &Hurek,1998; Santoyo et al.,2016),这些门的优势度随着宿主植物种类的不同而改变(Bodenhausen et al.,2013; Ding &Melcher,2016)。最常见的分离内生细菌属为芽孢杆菌属(Bacillus)、伯克霍尔德氏菌属(Burkholderia)、微杆菌属(Microbacterium)、微球菌属(Micrococcus)、泛菌属(Pantoea)、假单胞菌属(Pseudomonas)、窄养单胞菌属(Stenotrophomonas)(Chaturvedi et al.,2016)。

  • 2.2.3 内生放线菌

  • 放线菌能够产生多种抗生素类物质,从根中分离放线菌最多,其次是茎,叶中最少(Gangwar et al.,2014)。内生放线菌在链孢菌科(Streptosporangiaceae)(40%)、链霉菌科(Streptomycetaceae)(27%)、热孢菌科(Thermomonosporaceae)(16%)、小单孢菌科(Micromonosporaceae)(8%)、假心菌科(Pseudonocardiaceae)(8%)和放线菌科(Actinosynnemataceae)(2%)中皆有分布(Janso et al.,2010)。目前,分离到的内生放线菌主要为链霉菌属(Streptomyces)。此外,还有小单孢菌属(Micromonospora)、放线菌属(Actinopolyspora)、糖多孢菌属(Saccharopolyspora)、诺卡氏菌属(Nocardia)、厄氏菌属(Oerskovia)、小双孢菌属(Microhispora)、链孢菌属(Streptosporangium)、原小单胞菌属(Promicromonospora)、红球菌属(Rhodococcus)等(Verma et al.,2009; Akshatha et al.,2014)。

  • 3 植物内生菌对生物胁迫的抗性

  • 3.1 抗致病菌引起的病害

  • 许多内生菌能够抑制由病原菌引起的植物病害的发生,如Saikia和Bora(2021)研究发现内生菌假单胞菌和根际链霉菌Streptomyces fimicariusS. laurentii组合能显著降低水稻白叶枯病,并且产生的吲哚乙酸、氰化氢、铁载体等对植物生长有显著促进作用。从烟草中分离出的两种粪产碱菌(Alcaligenes faecalis)和蜡样芽孢杆菌(Bacillus cereus)和从茄属植物中分离出嗜麦芽寡氧单胞菌(Stenotrophomonas maltophilia)、芽孢杆菌、褐球固氮菌(Azotobacter chroococcum)和粘质沙雷氏菌(Serratia marcescens)均可抑制镰刀菌枯萎病并促进番茄植株的生长(Abdallah et al.,2016; Aydi-ben-abdallah et al.,2020)。内生菌通过诱导宿主抗性抵抗病原菌的侵染以及与致病菌竞争生态位和营养位产生的抗生素、水解酶类和生物碱等次生代谢产物和信号干扰可以抑制致病菌的活性,从而抵抗宿主植株中致病菌引起的病害发生。

  • 3.1.1 通过诱导抗性抑制病原菌的生长

  • van Loon和Bakker(2003)、van Wees等(2008)证实根际存在的有益菌能诱导植物产生抗性以抵抗病原菌的侵染且降低病害发生程度,植株这种反应称为诱导系统抗性(induced systemic resistance,ISR)。该系统能够诱导植物产生广谱抗性,大幅提高植物对致病菌的防御能力,从而避免或降低植物遭受到致病菌的侵害,减小植物病害的发生率(李晴等,2021)。据报道,在大多数植物中,由茉莉酸(JA)和乙烯调控诱导系统抗性。例如,蜡样芽孢杆菌(EPL1.1.3)和嗜线虫沙雷氏菌(Serratia nematodiphila TLE1.1)通过产生JA可以诱导番茄植株产生系统抗性,从而抵抗Ralstoniasyzigiisub sp.侵染(Yanti et al.,2019)。藏红花内生菌伯克霍尔德氏菌(E39CS3)通过提高内源性JA的水平诱导系统抗性,抵抗尖孢镰刀菌(Fusarium oxysporum)的侵染,对藏红花球茎腐病有抑制作用(Ahmad et al.,2021)。在杜仲叶中分离得到的枯草芽孢杆菌(Bacillus subtilis,DZSY21)能够通过激活水杨酸(SA)和JA途径依赖的信号通路激活诱导系统抗性来抑制玉米小斑病菌(Bipolaris maydis)(Ding et al.,2017)。

  • 3.1.2 竞争生态位和营养位抑制致病菌的生长

  • 有些植物内生菌与病原菌具有相同的生态位,内生菌能够与病原菌竞争生存位点,从而减少病原菌定植。Tan等(2016)发现解淀粉芽孢杆菌(Bacillus amyloliquefaciens T-5)可作为番茄幼苗生防剂,当用T-5GFP预先接种番茄幼苗时,可以抑制青枯雷尔氏菌(Ralstonia solanacearum QL-Rs)的定植,从而减少青枯病的发生。这可能是由于生存空间介导相互作用的结果。

  • 此外,内生菌还能通过与病原菌竞争营养物质(如碳水化合物、氮和氧)保护宿主植物。宿主植物可以迅速地在宿主中定植,耗尽可用的基质,使病菌因缺乏营养物质而衰亡(Pal &Gardener,2006)。季也蒙毕赤酵母(Pichia guilliermondii)作为单细胞生物体,能够在营养丰富的水果伤口的有利条件下快速繁殖。它们不仅可以消耗多种碳水化合物(如双糖和单糖),还可以消耗各种氮源,从而抑制指状青霉(Penicillium digitatum)、灰葡萄孢菌(Botrytis cinerea)和炭疽病菌(Colletotrichum spp.)的生长(Spadaro &Droby,2016)。金黄杆菌(Chryseobacterium sp. WR21)能够与青枯雷尔氏病菌竞争根系分泌物,抑制青枯病菌的生长,从而防止青枯病的发生(Huang et al.,2017)。

  • 除碳水化合物和氮源外,铁也是植物生长所必需的微量元素之一,参与植物蒸腾和酶促反应。Fe3+离子的低溶解度限制了铁的可用性,这可能是微生物生长的限制因素。许多微生物可以产生各种低分子量的铁载体,对Fe3+具有高亲和力(van Loon,2000)。稻瘟病由稻瘟病菌(Magnaportheoryzae)引起,内生菌孢暗灰链霉菌(Streptomyces sporocinereus OsiSh-2)对稻瘟病菌有较强的抑制作用,其拮抗作用与铁的竞争有关,OsiSh-2含有更多的铁载体生物合成基因簇,利用铁的能力更显著,在缺铁情况下,能够摄取更多的铁,从而抑制稻瘟病菌的生长(Zeng et al.,2018)。

  • 3.1.3 产生次级代谢产物抑制致病菌的生长

  • 许多研究人员已经鉴定出内生细菌种类,并且越来越多的报道称它们可以产生次级代谢产物减少植物病原体的生长和活性。例如,从石斛中分离出43株内生细菌,其中巨大芽孢杆菌(Bacillus megaterium)具有较强的抗菌活性(Wang et al.,2019); 花生内生菌贝莱斯芽孢杆菌(B. velezensis LDO2)不仅具有合成多种抗菌代谢产物的强大能力,对花生病原真菌和细菌表现出强烈的拮抗活性,特别是对黄曲霉菌丝生长具有明显的抑制作用,导致菌丝畸形,也具有多种促植物生长相关特性(Chen et al.,2019)。从豆根瘤中分离鉴定出肠杆菌、不动杆菌、假单胞菌和芽孢杆菌等内生菌,它们对大豆疫霉菌(Phytophthora sojae 01)具有抗菌活性,其中醋酸钙不动杆菌(Acinetobacter calcoaceticus DD161)的抑菌活性最强,达71.14%,能引起真菌菌丝断裂、裂解、菌丝末端原生质体球的形成和分裂(Zhao et al.,2018)。内生菌对5大食源性病菌具有抗菌能力,如从银杏中分离出的内生菌枯草芽孢杆菌(GBF-96),对大肠埃希氏菌(Escherichia coli)、鼠伤寒沙门氏菌(Salmonella typhimurium)、蜡样芽孢杆菌、单核增生李斯特氏菌(Listeria monocytogenes)和金黄色葡萄球菌(Staphylococcus aureus)均有抗菌活性。此外,枯草芽孢杆菌(GBF-96)的代谢产物乙酸乙酯也具有抗菌活性,用其处理过的病原菌表面会破裂、细胞会收缩和溶解,推测其抗菌机制是通过穿透细菌细胞膜并诱发细胞裂解(Islam et al.,2019)。红豆杉中克里本类芽孢杆菌(Paenibacilluskribbensis)也有此种作用(Islam et al.,2018)。从蕨类植物同形鳞毛蕨(Dryopteris uniformis)中分离出的芽孢杆菌(Bacillus sp. cryopeg)和类芽孢杆菌(Paenibacillus sp. Rif 200865)对5株食源性病原菌同样具有抗菌性,并且其代谢产物丁醇溶剂提取物也具有抗菌作用,可使病原菌细胞呈现不规则形状或破裂(Das et al.,2017)。

  • 植物内生菌可以分泌抗生素类物质抑制和杀死病原菌。从热带药用植物荜拔(Piper longum)中提取到的内生真菌橡胶拟茎点霉(Phomopsis heveicola),具有抗细菌、抗真菌和抗氧化的潜力,其在表观遗传修饰剂丙戊酸(valproic acid)的催化下产生抗生素,可以抑制人类病原体铜绿假单胞菌(Pseudomonas aeruginosa)、宋内志贺氏菌(Shigella sonnei)、化脓链球菌(Streptococcus pyogenes)和伤寒沙门氏菌(Salmonella typhi)以及植物病原菌普氏菌(Puccinia recondita)、立枯丝核菌(Rhizoctonia solani)、晚疫霉(Phytophthora infestans)和灰霉病菌(Botrytis cinerea)的生长(Ameen et al.,2021)。在水稻中提取的内生菌粪生链霉菌(Streptomyces fimicarius)和劳伦链霉菌(S. laurentii)产生吡嘧磺辛B、卡那霉素C、新霉素A等抗生素类物质,抑制水稻白枯病菌(Xanthomonas oryzae pv. oryzae)的生长(Saikia &Bora,2021)。

  • 植物内生菌还可以通过分泌水解酶类物质抑制致病菌生长。Lastochkina等(2020)将枯草芽孢杆菌(0-4、26D)与水杨酸组成菌剂,提高了尖孢镰刀菌诱导染病块茎中淀粉酶抑制剂的活性,同时降低了镰刀菌诱导的蛋白酶活性,从而降低了尖孢镰刀菌干腐病的发病率。从藏红花中分离出的内生菌伯克霍尔德氏菌(E39CS3),能够产生几丁质酶或β-1,3-葡聚糖酶,参与尖孢镰刀菌细胞壁降解,可以有效地诱导菌丝细胞死亡(Ahman et al.,2021)。番茄中内生菌嗜麦芽寡养单胞菌(Stenotro-phomonasmaltophilia S23、S24、S28)、圆褐固氮菌(Azotobacter chroococcum S11)和粘质沙雷氏菌(S14)均可以产生几丁质酶和蛋白酶,抑制尖孢镰刀菌生长(Aydi-ben-abdallah et al.,2020)。在水稻根中筛选出的蜡样芽孢杆菌,可以产生挥发性抗生素以及几丁质酶等次生代谢物质,能够抑制拟轮枝镰孢菌(Fusarium verticillioides)、藤仓镰孢菌(F. fujikuroi)、高产镰刀菌(F. proliferum)、稻瘟菌(Magnaportheoryzae)、稻小球腔菌(Magnaporthesalvinii)5种水稻重要病原真菌菌丝的生长(Etesami et al.,2019)。从豌豆、甘蓝和辣椒中分离的铜绿假单胞菌(H40)、嗜麦芽寡养单胞菌(H8)和枯草芽孢杆菌(H18),能够分别产生 2,5-二羟基苯甲酸、4-(1-甲基乙基)苯甲醛、格尔德霉素(geldanamycin)、邻苯二甲酸、2-乙基己基酯、3,4-二甲氧基肉桂酸、1,3-二唑和2-(4-叔丁基-2,6-二甲基-3-羟基苄基)-2-咪唑啉等,这些物质均具有抗真菌和抗氧化活性,对水稻枯纹病菌(Rhizoctonia solani)都具有抑制作用(Selim et al.,2017)。

  • 内生菌产生的生物碱,能抑制病原菌的生长和代谢活性。例如,长春花中内生菌可以通过调控萜类吲哚生物碱(terpenoid indole alkaloid,TIA)生物合成途径的结构基因和调控基因的表达,从而提高长春花根中生物碱(ajmalicine和serpentine)的含量(Singh et al.,2020),也可以抵御致病菌的侵染(Hewitt et al.,2020); Qi等(2019)在红树林植物中分离的内生青霉菌(Penicillium sp. CPCC 400817),能够产生一种新的生物碱(GKK1032C),对金黄色葡萄球菌具有较强的抑菌活性; 盐节木(Halocnemumstrobilaceum)中内生菌橘青霉(Penicillium citrinum-314)产生新的氨基甲基酚类生物碱(halociline),对枯草芽孢杆菌、金黄色葡萄球菌、大肠埃希氏菌和铜绿假单胞菌具有抑制作用(Abdel et al.,2020)。

  • 3.1.4 通过信号干扰抑制致病菌的生长

  • 内生菌通过降解病原菌的N-酰基高丝氨酸内酯(N-acyl-L-homoserine lactones,AHL)信号来阻断群体感应,从而抑制病原菌的生长。在马铃薯块茎中分离出具有AHL降解活性的内生菌,通过降解病原菌的AHL信号阻断群体感应来阻止马铃薯块茎软腐果胶杆菌(Pectobacteriumcarotovorum)产生毒力因子,从而预防马铃薯块茎软腐病。经检测,这些内生菌为芽孢杆菌属、贪噬菌属(Variovorax)、V. paradoxus和根癌农杆菌(Agrobacterium tumefaciens)(Ha et al.,2018)。Anandan和Vittal(2019)发现苏云金芽孢杆菌(Bacillus thuringiensis KMCL07)可以产生内酯酶,通过降低铜绿假单胞菌(PAO1)的毒力和抑制其生物膜的形成来中断AHL介导的QS系统且无任何生长抑制作用。Kiarood等(2020)在蜡样芽孢杆菌和固氮假单胞菌中也发现了同样的抑菌机制,并且降低了由丁香假单胞菌(Pseudomonas syringae pv. syringae)引起的柑橘疾病。

  • 3.2 抗虫害

  • Siddiqui和Shaukat(2003)指出,内生细菌的定植能力既可减少初始根系损伤,又可影响宿主对病原体攻击的反应,加速植物的发育,产生丰富的根系分泌物,从而加快土壤中微生物的生长,为线虫(nematode)进行生物管理提供了很大的空间。内生菌通过产生水解酶等活性物质抑制线虫生长。例如,Liu等(2020)指出在温室试验中,耐盐芽孢杆菌(Bacillus halotolerans)、郭霍氏芽孢杆菌(B. kochii)、海洋化芽孢杆菌(B. oceanisediminis)、短小芽孢杆菌(B. pumilus)、东洋芽孢杆菌(B. toyonensis)、蜡样芽孢杆菌、铜绿假单胞菌和假蕈状芽孢杆菌(B. pseudomycoides)能够有效地抑制土壤中的根结线虫。Mardhiana等(2017)在香附(Cyperus rotundus)根中提取出8株内生菌,可以产生蛋白酶、几丁质酶和HCN,具有脲酶活性且能溶解磷酸盐。Mardhiana等(2017)试验结果表明,所有内生细菌都有效地促进了番茄生长,并抑制了南方根结线虫(Meloidogyne incognita)感染的严重程度。Wiratno等(2019)发现在黑胡椒根中分离出的内生菌能够产生几丁质酶或蛋白酶,对南方根结线虫具有致死性。来自根际内生菌类的芽孢杆菌(Paenibacillus sp.)和芽孢杆菌产生的次生代谢产物,能够减少番茄和胡萝卜线虫卵的总数(Viljoen et al.,2019)。球毛壳菌(Chaetomium globosum YSC5)产生的代谢物质毛壳球蛋白A(chaetoglobosin A)、毛壳球蛋白B(chaetoglobosin B)、黄柄曲霉素(flavipin)、3-methoxyepicoccone 和 4,5,6-三羟基-7-甲基苯酞(4,5,6-trihydroxy-7-methylphthalide)显著减少了线虫的繁殖(Khan et al.,2019)。Asyiah等(2021)将一株假单胞菌(Pseudomonas dimunita)和三株芽孢杆菌组合形成一个联合体,添加有机物和维生素等物质制成生物杀线虫剂,使土壤和根系中的根结线虫J2总数量分别减少了60.74%和66.24%。

  • 4 结论与展望

  • 目前,控制病原菌病害的主要方法仍然是农药的应用,但由于化学农药的使用对环境造成严重污染甚至危及人类健康,因此需要提出对环境以及人类健康更加可持续发展的策略,并寻找合适的农药代替品。植物内生菌可以利用生态位竞争或营养竞争,产生诱导抗性遏制病原菌感染; 或合成抗生素类、生物碱类、几丁质类等次生代谢产物抑制病原菌或线虫的生长,从而防治病虫害。因此,有些研究者认为,利用植物内生菌的生物防治是一种处理植物病原体的环保策略,具有替代或减少化学农药使用的潜力(杨镇和曹君,2016; Latha et al.,2019)。

  • 基于内菌增强植物生物胁迫抗性的研究现状提出以下展望:(1)植物内生菌是生物防治的首选菌株类型,且内生菌来源于植株,并作用于植株,不会给环境和人类健康造成危害,但要解决生物防治菌株在植株体内或由于环境中不能长时间大量存活的问题。(2)在体外内生菌可以产生多种次生代谢产物拮抗病原菌且抑制其生长,因此可以培养次级代谢产物,或将其作为前体结构,研发新型绿色农药。(3)随着对植物微生物研究的日益深入,将有益内生菌组合成菌群,大大提高生物菌剂的作用效率,维持植株不受病原菌的侵染,从而提高植株抗性。

  • 参考文献

    • ABDALLAH RAB, MOKNI-TLILI S, NEFZI A, et al. , 2016. Biocontrol of fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs [J]. Biol Control, 97: 80-88.

    • ABDEL RAZEK MM, MOUSSA AY, EL-SHANAWANY MA, et al. , 2020. A new phenolic alkaloid from Halocnemum strobilaceum endophytes: antimicrobial, antioxidant and biofilm inhibitory activities [J]. Chem Biodivers, 17(10): e2000496.

    • AFZAL I, SHINWARI ZK, SIKANDAR S, et al. , 2019. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants [J]. Microbiol Res, 221: 36-49.

    • AHEMAD M, KIBRET M, 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective [J]. J King Saud Univ Sci, 26(1): 1-20.

    • AHMAD T, BASHIR A, FAROOQ S, et al. , 2021. Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn. , induces host resistance against corm-rot caused by Fusarium oxysporum [J]. J Appl Microbiol, 132(1): 495-508.

    • AKSHATHA V, NALINI M, D'SOUZA C, et al. , 2014. Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake [J]. Lett Appl Microbiol, 58(5): 433-439.

    • AMEEN F, ALMANSOB A, AL TAMI M, et al. , 2021. Epigenetic modifiers affect the bioactive compounds secreted by an endophyte of the tropical plant Piper longum [J]. Molecules, 26(1): 29-32.

    • ANANDAN K, VITTAL RR, 2019. Quorum quenching activity of AiiA lactonase KMMI17 from endophytic Bacillus thuringiensis KMCL07 on AHL-mediated pathogenic phenotype in Pseudomonas aeruginosa [J]. Microb Pathog, 132: 230-242.

    • ASYIAH IN, PRIHATIN J, HASTUTI AD, et al. , 2021. Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants [J]. Biodivers J Biol Diver, 22(6): 3256-3264.

    • AYDI-BEN-ABDALLAH R, JABNOUN-KHIAREDDINE H, DAAMI-REMADI M, 2020. Fusarium wilt biocontrol and tomato growth stimulation, using endophytic bacteria naturally associated with Solanum sodomaeum and S. bonariense plants [J]. Egypt J Biol Pest Control, 30(1): 1-13.

    • BALDOTTO LEB, OLIVARES FL, BRESSAN-SMITH R, 2011. Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets ‘Vitória’ [J]. Braz J Microbiol, 42: 114-125.

    • BODENHAUSEN N, HORTON M, BERGELSON J, et al. , 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana [J]. PLoS ONE, 8(2): e56329.

    • BRIGHT M, BULGHERESI S, 2010. A complex journey: transmission of microbial symbionts [J]. Nat Rev Microbiol, 8(3): 218-230.

    • CARRIóN VJ, PEREZ-JARAMILLO J, CORDOVEZ V, et al. , 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome [J]. Science, 366(6465): 606-612.

    • CHATURVEDI H, SINGH V, GUPTA G, 2016. Potential of bacterial endophytes as plant growth promoting factors [J]. J Plant Pathol Microbiol, 7(9): 1-6.

    • CHEN L, SHI H, HENG JY, et al. , 2019. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2 [J]. Microbiol Res, 218: 41-48.

    • COMPANT S, REITER B, SESSITSCH A, et al. , 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN [J]. Appl Environ Microbiol, 71(4): 1685-1693.

    • DAS G, PARK S, BAEK KH, 2017. Diversity of endophytic bacteria in a fern species Dryopteris uniformis (Makino) Makino and evaluation of their antibacterial potential against five foodborne pathogenic bacteria [J]. Foodborne Pathog Dis, 14(5): 260-268.

    • DING T, MELCHER U, 2016. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants [J]. PLoS ONE, 11(3): e0150895.

    • DING T, SU B, CHEN XJ, et al. , 2017. An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight [J]. Front Microbiol, 8: 903.

    • ETESAMI H, ALIKHANI H, AMIRSEYED HOSSEINI H, 2019. Root bacterial endophytes as potential biological control agents against fungal rice pathogens [J]. Archiv Phytopathol Plant Protect, 52(7/8): 560-581.

    • FUKAMI J, NOGUEIRA MA, ARAUJO RS, et al. , 2016. Accessing inoculation methods of maize and wheat with Azospirillum brasilense [J]. Amb Express, 6(1): 1-13.

    • FOSTER KR, WENSELEERS T, 2006. A general model for the evolution of mutualisms [J]. J Evol Biol, 19(4): 1283-1293.

    • GANGWAR M, DOGRA S, GUPTA UP, et al. , 2014. Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India [J]. Afr J Microbiol Res, 8(2): 184-191.

    • HA NT, MINH TQ, HOI PX, et al. , 2018. Biological control of potato tuber soft rot using N-acyl-L-homoserine lactone-degrading endophytic bacteria [J]. Curr Sci, 115(10): 1921-1927.

    • HAYAT R, ALI S, AMARA U, et al. , 2010. Soil beneficial bacteria and their role in plant growth promotion: a review [J]. Ann Microbiol, 60(4): 579-598.

    • HERRE EA, KNOWLTON N, MUELLER UG, et al. , 1999. The evolution of mutualisms: exploring the paths between conflict and cooperation [J]. Trend Ecol Evol, 14(2): 49-53.

    • HEWITT KG, MACE WJ, MCKENZIE CM, et al. , 2020. Fungal alkaloid occurrence in endophyte-infected perennial ryegrass during seedling establishment [J]. J Chem Ecol, 46(4): 410-421.

    • HUANG JF, WEI Z, HU J, et al. , 2017. Chryseobacterium nankingense sp. nov. WR21 effectively suppresses Ralstonia solanacearum growth via intensive root exudates competition [J]. Biol Control, 62(4): 567-577.

    • HUANG JY, ZHANG CJ, YAO YL, et al. , 2017. Progress in antimicrobial substances of endophytes [J]. Chin J Biotechnol, 33(2): 178-186. [黄敬瑜, 张楚军, 姚瑜龙, 等, 2017. 植物内生菌生物抗菌活性物质研究进展 [J]. 生物工程学报, 33(2): 178-186. ]

    • ISLAM MN, CHOI J, BAEK KH, 2019. Control of foodborne pathogenic bacteria by endophytic bacteria isolated from Ginkgo biloba L. [J]. Foodborne Pathog Dis, 16(10): 661-670.

    • ISLAM N, CHOI J, BAEK KH, 2018. Antibacterial activities of endophytic bacteria isolated from Taxus brevifolia against foodborne pathogenic bacteria [J]. Foodborne Pathog Dis, 15(5): 269-276.

    • JIA M, CHEN L, XIN HL, et al. , 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review [J]. Front Microbiol, 7: 906-912.

    • JOOSTE M, ROETS F, MIDGLEY GF, et al. , 2019. Nitrogen-fixing bacteria and Oxalis — evidence for a vertically inherited bacterial symbiosis [J]. BMC Plant Biol, 19(1): 1-10.

    • KIAROOD SLA, RAHNAMA K, GOLMOHAMMADI M, et al. , 2020. Quorum-quenching endophytic bacteria inhibit disease caused by Pseudomonas syringae pv. syringae in Citrus cultivars [J]. J Basic Microbiol, 60(9): 746-757.

    • KHAN B, YAN W, WEI S, et al. , 2019. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5 [J]. FEMS Microbiol Lett, 366(14): fnz169.

    • LATHA P, KARTHIKEYAN M, RAJESWARI E, 2019. Endophytic bacteria: Prospects and applications for the plant disease management [M]. Springer: Plant Health Under Biotic Stress: 1-50.

    • LARRAN S, PERELLÓ A, SIMÓ MR, et al. , 2007. The endophytic fungi from wheat (Triticum aestivum L. ) [J]. World J Microbiol Biot, 23(4): 565-572.

    • LASTOCHKINA O, PUSENKOVA L, GARSHINA D, et al. , 2020. The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with fusarium dry rot [J]. Plants, 9(6): 738-743.

    • LIU F, YUAN ZS, ZHANG XT, et al. , 2017. Characteristics and diversity of endophytic bacteria in moso bamboo (Phyllostachys edulis) based on 16S rDNA sequencing [J]. Arch Microbiol, 199(9): 1259-1266.

    • LIU GY, LIN X, XU SY, et al. , 2020. Screening, identification and application of soil bacteria with nematicidal activity against root-knot nematode (Meloidogyne incognita) on tomato [J]. Pest Manag Sci, 76(6): 2217-2224.

    • LI Q, CHAI S, FENG QX, et al. , 2021. Analysis of the application of endophytic bacteria in crops [J]. Seeds Sci Technol, 33 (12) 6: 8-9. [李晴, 柴霜, 冯千禧, 等, 2021. 植物内生菌在农作物方面的应用探析 [J]. 种子科技, 39(12): 8-9. ]

    • MARDHIANA M, PRADANA AP, ADIWENA M, et al. , 2017. Use of endophytic bacteria from roots of Cyperus rotundus for biocontrol of Meloidogyne incognita [J]. Biodiversitas J Biol Diver, 18(4): 1308-1315.

    • MAJEWSKA-SAWKA A, NAKASHIMA H, 2004. Endophyte transmission via seeds of Lolium perenne L. : immunodetection of fungal antigens [J]. Fungal Genet Biol, 41(5): 534-541.

    • MENDES R, GARBEVA P, RAAIJMAKERS JM, 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiol Rev, 37(5): 634-663.

    • MILIUTE I, BUZAITE O, BANIULIS D, et al. , 2015. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review [J]. Zemdirbyste, 102(4): 465-478.

    • PAL KK, GARDENER BBM, 2006. Biological control of plant pathogens [J]. Plant Health Inst. DOI: 10. 1094/PHI-A-2006-1117-02.

    • PHILIPPOT L, RAAIJMAKERS JM, LEMANCEAU P, et al. , 2013. Going back to the roots: the microbial ecology of the rhizosphere [J]. Nat Rev Microbiol, 11: 789-799.

    • PORRAS-ALFARO A, BAYMAN P, 2011. Hidden fungi, emergent properties: endophytes and microbiomes [J]. Ann Rev Phytopathol, 49: 291-315.

    • QI X, LI XQ, ZHAO JY, et al. , 2019. GKK1032C, a new alkaloid compound from the endophytic fungus Penicillium sp. CPCC 400817 with activity against methicillin-resistant S. aureus [J]. J Antibiot, 72(4): 237-240.

    • RENUKA S, RAMANUJAM B, 2016. Fungal endophytes from maize (Zea mays L. ): isolation, identification and screening against maize stem borer, Chilo partellus (Swinhoe) [J]. J Pur Appl Microbiol, 10(1): 523-529.

    • REINHOLD-HUREK B, HUREK T, 1998. Life in grasses: diazotrophic endophytes [J]. Trends Microbiol, 6(4): 139-144.

    • RHO H, HSIEH M, KANDEL SL, et al. , 2018. Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes [J]. Microbial Ecol, 75(2): 407-418.

    • RODRIGUES KF, 1994. The foliar fungal endophytes of the Amazonian palm Euterpe oleracea [J]. Mycologia, 86(3): 376-385.

    • RODRIGUEZ R, REDMAN R, 2008. More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis [J]. J Exp Bot, 59(5): 1109-1114.

    • SAIKKONEN K, FAETH SH, HELANDER M, et al. , 1998. Fungal endophytes: a continuum of interactions with host plants [J]. Ann Rev Ecol Syst, 29(1): 319-343.

    • SANTOYO G, MORENO-HAGELSIEB G, OROZCO-MOSQUEDA MDC, et al. , 2016. Plant growth-promoting bacterial endophytes [J]. Microbiol Res, 183: 92-99.

    • SAIKIA K, BORA L, 2021. Exploring actinomycetes and endophytes of rice ecosystem for induction of disease resistance against bacterial blight of rice [J]. Eur J Plant Pathol, 159(1): 67-79.

    • SELIM HMM, GOMAA NM, MESSA AMM, 2017. Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: Ceratobasidiaceae) damping-off disease in cotton seedlings [J]. Biocontrol Sci Technol, 27(1): 81-95.

    • SIDDIQUI IA, SHAUKAT SS, 2003. Endophytic bacteria: prospects and opportunities for the biological control of plant-parasitic nematodes [J]. Nematol Mediterr, 31(1): 111-120.

    • SINGH S, PANDEY SS, SHANKER K, et al. , 2020. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots [J]. J Appl Microbiol, 128(4): 1128-1142.

    • SPADARO D, DROBY S, 2016. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists [J]. Trends Food Sci Technol, 47: 39-49.

    • TAO G, LIU Z, HYDE K, et al. , 2008. Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae) [J]. Fungal Divers, 33(1): 101-112.

    • TAN SY, GU Y, YANG CL, et al. , 2016. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion [J]. Biol Fert Soils, 52(3): 341-351.

    • VAN LOON LC, 2000. Helping plants to defend themselves: biocontrol by disease-suppressing rhizobacteria [M]//developments in plant genetics and breeding. Amsterdam: Elsevier, 6: 203-213.

    • VAN LOON LC, BAKKER PAHM, 2003. Signalling in rhizobacteria-plant interactions [J]. Root Ecol, 168: 297-330.

    • VAN WEES SCM, VAN DERENT S, PIETERSE CMJ, 2008. Plant immune responses triggered by beneficial microbes [J]. Curr Opin Plant Biol, 11(4): 443-448.

    • VERMA VC, GOND SK, KUMAR A, et al. , 2009. Endophytic actinomycetes from Azadirachta indica A. Juss. : isolation, diversity, and anti-microbial activity [J]. Microbial Ecol, 57(4): 749-756.

    • VILJOEN JJF, LABUSCHAGNE N, FOURIE H, et al. , 2019. Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria [J]. Trop Plant Pathol, 44(3): 284-291.

    • WANI ZA, ASHRAF N, MOHIUDDIN T, et al. , 2015. Plant-endophyte symbiosis, an ecological perspective [J]. Appl Microbiol Biotechnol, 99(7): 2955-2965.

    • WANG WF, ZHAI YY, CAO LX, et al. , 2016. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L. ) [J]. Microbiol Res, 188: 1-8.

    • WANG SS, LIU JM, SUN J, et al. , 2019. Diversity of culture-independent bacteria and antimicrobial activity of culturable endophytic bacteria isolated from different Dendrobium stems [J]. Sci Rep, 9(1): 1-12.

    • WALLER F, ACHATZ B, BALTRUSCHAT H, et al. , 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield [J]. Proc Nat Acad Sci, 102(38): 13386-13391.

    • WEARN JA, SUTTON BC, MORLEY NJ, et al. , 2012. Species and organ specificity of fungal endophytes in herbaceous grassland plants [J]. J Ecol, 100(5): 1085-1092.

    • WIRATNO W, SYAKIR M, SUCIPTO I, et al. , 2019. Isolation and characterization of endophytic bacteria from roots of Piper nigrum and their activities against Fusarium oxysporum and Meloidogyne incognita [J]. Biodivers J Biol Divers, 20(3): 682-687.

    • WILSON D, 1995. Endophyte: the evolution of a term, and clarification of its use and definition [J]. Oikos, 73(2): 274-276.

    • XING HQ, MA JC, XU BL, et al. , 2018. Mycobiota of maize seeds revealed by rDNA-ITS sequence analysis of samples with varying storage times [J]. Microbiol Open, 7(6): e00609.

    • YANG Z, CAO J, 2016. Research progress of endophytic fungi and their secondary metabolites [J]. J Microbiol, 36(4): 1-6. [杨镇, 曹君, 2016. 植物内生菌及其次级代谢产物的研究进展 [J]. 微生物学杂志, 36(4): 1-6. ]

    • YANTI Y, WARNITA, REFLIN, 2019. Involvement of jasmonic acid in the induced systemic resistance of tomato against Ralstonia syzigiisub sp. indonesiensis by indigenous endophyte bacteria [C]. IOP Conference Series: Earth and Environmental Science: 347(1): 012024.

    • ZENG JR, XU T, CAO LD, et al. , 2018. The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae [J]. Microbial Ecol, 76(4): 1021-1029.

    • ZHAO LF, XU YJ, LAI XH, 2018. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L. ) and plant growth-promoting properties [J]. Braz J Microbiol, 49: 269-278.

  • 参考文献

    • ABDALLAH RAB, MOKNI-TLILI S, NEFZI A, et al. , 2016. Biocontrol of fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs [J]. Biol Control, 97: 80-88.

    • ABDEL RAZEK MM, MOUSSA AY, EL-SHANAWANY MA, et al. , 2020. A new phenolic alkaloid from Halocnemum strobilaceum endophytes: antimicrobial, antioxidant and biofilm inhibitory activities [J]. Chem Biodivers, 17(10): e2000496.

    • AFZAL I, SHINWARI ZK, SIKANDAR S, et al. , 2019. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants [J]. Microbiol Res, 221: 36-49.

    • AHEMAD M, KIBRET M, 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective [J]. J King Saud Univ Sci, 26(1): 1-20.

    • AHMAD T, BASHIR A, FAROOQ S, et al. , 2021. Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn. , induces host resistance against corm-rot caused by Fusarium oxysporum [J]. J Appl Microbiol, 132(1): 495-508.

    • AKSHATHA V, NALINI M, D'SOUZA C, et al. , 2014. Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake [J]. Lett Appl Microbiol, 58(5): 433-439.

    • AMEEN F, ALMANSOB A, AL TAMI M, et al. , 2021. Epigenetic modifiers affect the bioactive compounds secreted by an endophyte of the tropical plant Piper longum [J]. Molecules, 26(1): 29-32.

    • ANANDAN K, VITTAL RR, 2019. Quorum quenching activity of AiiA lactonase KMMI17 from endophytic Bacillus thuringiensis KMCL07 on AHL-mediated pathogenic phenotype in Pseudomonas aeruginosa [J]. Microb Pathog, 132: 230-242.

    • ASYIAH IN, PRIHATIN J, HASTUTI AD, et al. , 2021. Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants [J]. Biodivers J Biol Diver, 22(6): 3256-3264.

    • AYDI-BEN-ABDALLAH R, JABNOUN-KHIAREDDINE H, DAAMI-REMADI M, 2020. Fusarium wilt biocontrol and tomato growth stimulation, using endophytic bacteria naturally associated with Solanum sodomaeum and S. bonariense plants [J]. Egypt J Biol Pest Control, 30(1): 1-13.

    • BALDOTTO LEB, OLIVARES FL, BRESSAN-SMITH R, 2011. Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets ‘Vitória’ [J]. Braz J Microbiol, 42: 114-125.

    • BODENHAUSEN N, HORTON M, BERGELSON J, et al. , 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana [J]. PLoS ONE, 8(2): e56329.

    • BRIGHT M, BULGHERESI S, 2010. A complex journey: transmission of microbial symbionts [J]. Nat Rev Microbiol, 8(3): 218-230.

    • CARRIóN VJ, PEREZ-JARAMILLO J, CORDOVEZ V, et al. , 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome [J]. Science, 366(6465): 606-612.

    • CHATURVEDI H, SINGH V, GUPTA G, 2016. Potential of bacterial endophytes as plant growth promoting factors [J]. J Plant Pathol Microbiol, 7(9): 1-6.

    • CHEN L, SHI H, HENG JY, et al. , 2019. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2 [J]. Microbiol Res, 218: 41-48.

    • COMPANT S, REITER B, SESSITSCH A, et al. , 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN [J]. Appl Environ Microbiol, 71(4): 1685-1693.

    • DAS G, PARK S, BAEK KH, 2017. Diversity of endophytic bacteria in a fern species Dryopteris uniformis (Makino) Makino and evaluation of their antibacterial potential against five foodborne pathogenic bacteria [J]. Foodborne Pathog Dis, 14(5): 260-268.

    • DING T, MELCHER U, 2016. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants [J]. PLoS ONE, 11(3): e0150895.

    • DING T, SU B, CHEN XJ, et al. , 2017. An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight [J]. Front Microbiol, 8: 903.

    • ETESAMI H, ALIKHANI H, AMIRSEYED HOSSEINI H, 2019. Root bacterial endophytes as potential biological control agents against fungal rice pathogens [J]. Archiv Phytopathol Plant Protect, 52(7/8): 560-581.

    • FUKAMI J, NOGUEIRA MA, ARAUJO RS, et al. , 2016. Accessing inoculation methods of maize and wheat with Azospirillum brasilense [J]. Amb Express, 6(1): 1-13.

    • FOSTER KR, WENSELEERS T, 2006. A general model for the evolution of mutualisms [J]. J Evol Biol, 19(4): 1283-1293.

    • GANGWAR M, DOGRA S, GUPTA UP, et al. , 2014. Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India [J]. Afr J Microbiol Res, 8(2): 184-191.

    • HA NT, MINH TQ, HOI PX, et al. , 2018. Biological control of potato tuber soft rot using N-acyl-L-homoserine lactone-degrading endophytic bacteria [J]. Curr Sci, 115(10): 1921-1927.

    • HAYAT R, ALI S, AMARA U, et al. , 2010. Soil beneficial bacteria and their role in plant growth promotion: a review [J]. Ann Microbiol, 60(4): 579-598.

    • HERRE EA, KNOWLTON N, MUELLER UG, et al. , 1999. The evolution of mutualisms: exploring the paths between conflict and cooperation [J]. Trend Ecol Evol, 14(2): 49-53.

    • HEWITT KG, MACE WJ, MCKENZIE CM, et al. , 2020. Fungal alkaloid occurrence in endophyte-infected perennial ryegrass during seedling establishment [J]. J Chem Ecol, 46(4): 410-421.

    • HUANG JF, WEI Z, HU J, et al. , 2017. Chryseobacterium nankingense sp. nov. WR21 effectively suppresses Ralstonia solanacearum growth via intensive root exudates competition [J]. Biol Control, 62(4): 567-577.

    • HUANG JY, ZHANG CJ, YAO YL, et al. , 2017. Progress in antimicrobial substances of endophytes [J]. Chin J Biotechnol, 33(2): 178-186. [黄敬瑜, 张楚军, 姚瑜龙, 等, 2017. 植物内生菌生物抗菌活性物质研究进展 [J]. 生物工程学报, 33(2): 178-186. ]

    • ISLAM MN, CHOI J, BAEK KH, 2019. Control of foodborne pathogenic bacteria by endophytic bacteria isolated from Ginkgo biloba L. [J]. Foodborne Pathog Dis, 16(10): 661-670.

    • ISLAM N, CHOI J, BAEK KH, 2018. Antibacterial activities of endophytic bacteria isolated from Taxus brevifolia against foodborne pathogenic bacteria [J]. Foodborne Pathog Dis, 15(5): 269-276.

    • JIA M, CHEN L, XIN HL, et al. , 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review [J]. Front Microbiol, 7: 906-912.

    • JOOSTE M, ROETS F, MIDGLEY GF, et al. , 2019. Nitrogen-fixing bacteria and Oxalis — evidence for a vertically inherited bacterial symbiosis [J]. BMC Plant Biol, 19(1): 1-10.

    • KIAROOD SLA, RAHNAMA K, GOLMOHAMMADI M, et al. , 2020. Quorum-quenching endophytic bacteria inhibit disease caused by Pseudomonas syringae pv. syringae in Citrus cultivars [J]. J Basic Microbiol, 60(9): 746-757.

    • KHAN B, YAN W, WEI S, et al. , 2019. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5 [J]. FEMS Microbiol Lett, 366(14): fnz169.

    • LATHA P, KARTHIKEYAN M, RAJESWARI E, 2019. Endophytic bacteria: Prospects and applications for the plant disease management [M]. Springer: Plant Health Under Biotic Stress: 1-50.

    • LARRAN S, PERELLÓ A, SIMÓ MR, et al. , 2007. The endophytic fungi from wheat (Triticum aestivum L. ) [J]. World J Microbiol Biot, 23(4): 565-572.

    • LASTOCHKINA O, PUSENKOVA L, GARSHINA D, et al. , 2020. The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with fusarium dry rot [J]. Plants, 9(6): 738-743.

    • LIU F, YUAN ZS, ZHANG XT, et al. , 2017. Characteristics and diversity of endophytic bacteria in moso bamboo (Phyllostachys edulis) based on 16S rDNA sequencing [J]. Arch Microbiol, 199(9): 1259-1266.

    • LIU GY, LIN X, XU SY, et al. , 2020. Screening, identification and application of soil bacteria with nematicidal activity against root-knot nematode (Meloidogyne incognita) on tomato [J]. Pest Manag Sci, 76(6): 2217-2224.

    • LI Q, CHAI S, FENG QX, et al. , 2021. Analysis of the application of endophytic bacteria in crops [J]. Seeds Sci Technol, 33 (12) 6: 8-9. [李晴, 柴霜, 冯千禧, 等, 2021. 植物内生菌在农作物方面的应用探析 [J]. 种子科技, 39(12): 8-9. ]

    • MARDHIANA M, PRADANA AP, ADIWENA M, et al. , 2017. Use of endophytic bacteria from roots of Cyperus rotundus for biocontrol of Meloidogyne incognita [J]. Biodiversitas J Biol Diver, 18(4): 1308-1315.

    • MAJEWSKA-SAWKA A, NAKASHIMA H, 2004. Endophyte transmission via seeds of Lolium perenne L. : immunodetection of fungal antigens [J]. Fungal Genet Biol, 41(5): 534-541.

    • MENDES R, GARBEVA P, RAAIJMAKERS JM, 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiol Rev, 37(5): 634-663.

    • MILIUTE I, BUZAITE O, BANIULIS D, et al. , 2015. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review [J]. Zemdirbyste, 102(4): 465-478.

    • PAL KK, GARDENER BBM, 2006. Biological control of plant pathogens [J]. Plant Health Inst. DOI: 10. 1094/PHI-A-2006-1117-02.

    • PHILIPPOT L, RAAIJMAKERS JM, LEMANCEAU P, et al. , 2013. Going back to the roots: the microbial ecology of the rhizosphere [J]. Nat Rev Microbiol, 11: 789-799.

    • PORRAS-ALFARO A, BAYMAN P, 2011. Hidden fungi, emergent properties: endophytes and microbiomes [J]. Ann Rev Phytopathol, 49: 291-315.

    • QI X, LI XQ, ZHAO JY, et al. , 2019. GKK1032C, a new alkaloid compound from the endophytic fungus Penicillium sp. CPCC 400817 with activity against methicillin-resistant S. aureus [J]. J Antibiot, 72(4): 237-240.

    • RENUKA S, RAMANUJAM B, 2016. Fungal endophytes from maize (Zea mays L. ): isolation, identification and screening against maize stem borer, Chilo partellus (Swinhoe) [J]. J Pur Appl Microbiol, 10(1): 523-529.

    • REINHOLD-HUREK B, HUREK T, 1998. Life in grasses: diazotrophic endophytes [J]. Trends Microbiol, 6(4): 139-144.

    • RHO H, HSIEH M, KANDEL SL, et al. , 2018. Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes [J]. Microbial Ecol, 75(2): 407-418.

    • RODRIGUES KF, 1994. The foliar fungal endophytes of the Amazonian palm Euterpe oleracea [J]. Mycologia, 86(3): 376-385.

    • RODRIGUEZ R, REDMAN R, 2008. More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis [J]. J Exp Bot, 59(5): 1109-1114.

    • SAIKKONEN K, FAETH SH, HELANDER M, et al. , 1998. Fungal endophytes: a continuum of interactions with host plants [J]. Ann Rev Ecol Syst, 29(1): 319-343.

    • SANTOYO G, MORENO-HAGELSIEB G, OROZCO-MOSQUEDA MDC, et al. , 2016. Plant growth-promoting bacterial endophytes [J]. Microbiol Res, 183: 92-99.

    • SAIKIA K, BORA L, 2021. Exploring actinomycetes and endophytes of rice ecosystem for induction of disease resistance against bacterial blight of rice [J]. Eur J Plant Pathol, 159(1): 67-79.

    • SELIM HMM, GOMAA NM, MESSA AMM, 2017. Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: Ceratobasidiaceae) damping-off disease in cotton seedlings [J]. Biocontrol Sci Technol, 27(1): 81-95.

    • SIDDIQUI IA, SHAUKAT SS, 2003. Endophytic bacteria: prospects and opportunities for the biological control of plant-parasitic nematodes [J]. Nematol Mediterr, 31(1): 111-120.

    • SINGH S, PANDEY SS, SHANKER K, et al. , 2020. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots [J]. J Appl Microbiol, 128(4): 1128-1142.

    • SPADARO D, DROBY S, 2016. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists [J]. Trends Food Sci Technol, 47: 39-49.

    • TAO G, LIU Z, HYDE K, et al. , 2008. Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae) [J]. Fungal Divers, 33(1): 101-112.

    • TAN SY, GU Y, YANG CL, et al. , 2016. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion [J]. Biol Fert Soils, 52(3): 341-351.

    • VAN LOON LC, 2000. Helping plants to defend themselves: biocontrol by disease-suppressing rhizobacteria [M]//developments in plant genetics and breeding. Amsterdam: Elsevier, 6: 203-213.

    • VAN LOON LC, BAKKER PAHM, 2003. Signalling in rhizobacteria-plant interactions [J]. Root Ecol, 168: 297-330.

    • VAN WEES SCM, VAN DERENT S, PIETERSE CMJ, 2008. Plant immune responses triggered by beneficial microbes [J]. Curr Opin Plant Biol, 11(4): 443-448.

    • VERMA VC, GOND SK, KUMAR A, et al. , 2009. Endophytic actinomycetes from Azadirachta indica A. Juss. : isolation, diversity, and anti-microbial activity [J]. Microbial Ecol, 57(4): 749-756.

    • VILJOEN JJF, LABUSCHAGNE N, FOURIE H, et al. , 2019. Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria [J]. Trop Plant Pathol, 44(3): 284-291.

    • WANI ZA, ASHRAF N, MOHIUDDIN T, et al. , 2015. Plant-endophyte symbiosis, an ecological perspective [J]. Appl Microbiol Biotechnol, 99(7): 2955-2965.

    • WANG WF, ZHAI YY, CAO LX, et al. , 2016. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L. ) [J]. Microbiol Res, 188: 1-8.

    • WANG SS, LIU JM, SUN J, et al. , 2019. Diversity of culture-independent bacteria and antimicrobial activity of culturable endophytic bacteria isolated from different Dendrobium stems [J]. Sci Rep, 9(1): 1-12.

    • WALLER F, ACHATZ B, BALTRUSCHAT H, et al. , 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield [J]. Proc Nat Acad Sci, 102(38): 13386-13391.

    • WEARN JA, SUTTON BC, MORLEY NJ, et al. , 2012. Species and organ specificity of fungal endophytes in herbaceous grassland plants [J]. J Ecol, 100(5): 1085-1092.

    • WIRATNO W, SYAKIR M, SUCIPTO I, et al. , 2019. Isolation and characterization of endophytic bacteria from roots of Piper nigrum and their activities against Fusarium oxysporum and Meloidogyne incognita [J]. Biodivers J Biol Divers, 20(3): 682-687.

    • WILSON D, 1995. Endophyte: the evolution of a term, and clarification of its use and definition [J]. Oikos, 73(2): 274-276.

    • XING HQ, MA JC, XU BL, et al. , 2018. Mycobiota of maize seeds revealed by rDNA-ITS sequence analysis of samples with varying storage times [J]. Microbiol Open, 7(6): e00609.

    • YANG Z, CAO J, 2016. Research progress of endophytic fungi and their secondary metabolites [J]. J Microbiol, 36(4): 1-6. [杨镇, 曹君, 2016. 植物内生菌及其次级代谢产物的研究进展 [J]. 微生物学杂志, 36(4): 1-6. ]

    • YANTI Y, WARNITA, REFLIN, 2019. Involvement of jasmonic acid in the induced systemic resistance of tomato against Ralstonia syzigiisub sp. indonesiensis by indigenous endophyte bacteria [C]. IOP Conference Series: Earth and Environmental Science: 347(1): 012024.

    • ZENG JR, XU T, CAO LD, et al. , 2018. The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae [J]. Microbial Ecol, 76(4): 1021-1029.

    • ZHAO LF, XU YJ, LAI XH, 2018. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L. ) and plant growth-promoting properties [J]. Braz J Microbiol, 49: 269-278.