en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

叶家桐(1994-),硕士研究生,主要从事生态学与传粉生物学研究,(E-mail)cate_yejt@163.com。

通讯作者:

胡兴华,博士,研究员,硕士研究生导师,研究方向为植物繁殖生态学与保护生物学,(E-mail)huxh773@163.com。

中图分类号:Q945.53

文献标识码:A

文章编号:1000-3142(2023)02-0379-11

DOI:10.11931/guihaia.gxzw202104043

参考文献
BARRIONUEVO CN, BENITEZ-VIEYRA S, SAZATOMIL F, 2021, Floral biology of Salvia stachydifolia, a species visited by bees and birds: connecting sexual phases, nectar dynamics and breeding system to visitors’ behavior [J]. J Plant Ecol, 14(4): 580-590.
参考文献
BAWA KS, 1990. Plant-pollinator interactions in tropical rainforests [J]. Annu Rev Ecol Syst, 21(1): 399-422.
参考文献
CARDOSO JCF, VIANA ML, MATIAS R, et al. , 2018. Towards a unified terminology for angiosperm reproductive systems [J]. Acta Bot Basil, 32(3): 329-348.
参考文献
CHAI SF, CHEN ZY, TANG JM, et al. , 2019, Breeding system and bird pollination of Camellia pubipetala, a narrowly endemic plant from karst regions of south China [J]. Plant Species Biol, 34(4): 141-151.
参考文献
CHEN J, 1979. Flora of China: Vol. 58 [M]. Beijing: Science Press: 48. [陈介, 1979. 中国植物志: 第58卷 [M]. 北京: 科学出版社: 48. ]
参考文献
CHEN XY, LI N, SHEN L, 2001. The mating system of Ardisia crenata var. bicolor (Myrsinaceae), a subtropical understory shrub in Tiantong National Forest Park, Zhejiang Province [J]. Chin J Plant Ecol, 25(2): 161-165. [陈小勇, 厉宁, 沈浪, 2001. 浙江天童国家森林公园红凉伞交配系统研究 [J]. 植物生态学报, 25(2): 161-165. ]
参考文献
CORTÉS-FLORES J, HERNÁNDEZ-ESQUIVEL KB, GONZÁLEZ-RODRÍGUEZ A, et al. , 2017. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: influence of phylogeny and abiotic factors [J]. Am J Bot, 104(1): 39-49.
参考文献
CRUDEN RW, 1976. Intraspecific variation in pollen-ovule ratios and nectar secretion-preliminary evidence of ecotypic variation [J]. Ann Mo Bot Gard, 63(2): 277-289.
参考文献
DAFNI A, 1992. Pollination ecology: a practical approach [J]. New York: Oxford University Press, 46(2): 1-5.
参考文献
DANIELI-SILVA A, VARASSIN IG, 2013, Breeding system and thrips (Thysanoptera) pollination in the endangered tree Ocotea porosa (Lauraceae): implications for conservation [J]. Plant Species Biol, 28(1): 31-40.
参考文献
DARWIN C, 1876. The effects of cross and self-fertilization in the vegetable kingdom [M]. London: John Murray.
参考文献
FAN J, ZHANG W, ZHANG D, et al. , 2019, Flowering stage and daytime affect scent emission of Malus ioensis “Prairie Rose” [J]. Molecules, 24(13): 2356.
参考文献
Flora of China Editorial Committee, 2006. Flora of China: Vol. 22 [M]. Beijing: Science Press and Missouri Botanical Garden Press: 7.
参考文献
GONG YB, HUANG SQ, 2007. On methodology of foraging behavior of pollinating insects [J]. Biodivers Sci, 15(6): 576-583. [龚燕兵, 黄双全, 2007. 传粉昆虫行为的研究方法探讨 [J]. 生物多样性, 15(6): 576-583. ]
参考文献
HARDER LD, BARRETT SCH, 1995. Mating cost of large floral display in hermaphrodite plant [J]. Nature, 372(6514): 512-515.
参考文献
HE YP, LIU JQ, 2003. A review on recent advances in the studies of plant breeding system [J]. Chin J Plant Ecol, 27(2): 151-163. [何亚平, 刘建全, 2003. 植物繁育系统研究的最新进展和评述 [J]. 植物生态学报, 27(2): 151-163. ]
参考文献
HEGLAND SJ, GRYTNES JA, TOTLAND O, 2009. The relative importance of positive and negative interactions for pollinator attraction in a plant community [J]. Ecol Res, 24(4): 929-936.
参考文献
HOLSINGER KE, 1996. Pollination biology and the evolution of mating systems in flowering plants [J]. Evol Biol, 29(5): 107-149.
参考文献
HUANG LC, JIN L, LI J, et al. , 2014. Floral morphology and its relationship with pollination systems in Papilionoideae [J]. Acta Ecol Sin, 34(19): 5360-5368. [黄利春, 金樑, 李晶, 等, 2014. 蝶形花亚科植物花部适应机制与传粉系统 [J]. 生态学报, 34(19): 5360-5368. ]
参考文献
JEFFREY TH, KENNETH AL, MICHAEL M, 2011. Field trials for herbicide control of coral ardisia (Ardisia crenata) in natural areas of north-central Florida [J]. Invasive Plant Sci Manag, 4(2): 234-238.
参考文献
LARSON BMH, BARRETT SCH, 1999. The pollination ecology of buzz-pollinated Rhexia virginica (Melastomataceae) [J]. Am J Bot, 86(4): 502-511.
参考文献
LES DH, 1988. Breeding systems, population structure, and evolution in hydrophilous angiosperms [J]. Ann Mo Bot Gard, 75(3): 819-835.
参考文献
LI TQ, LIU XF, LI ZH, et al. , 2018. Study on reproductive biology of Rhododendron longgipedicellatum: A newly discovered and special threatened plant surviving in limestone habitat in southeast Yunnan, China [J]. Front Plant Sci, 9: 33.
参考文献
LI XJ, SHENG YJ, ZHANG T, et al. , 2021, The pollen germination and pollination biology of Polygonatum cyrtonema [J]. Acta Sci Nat Univ Sunyatseni, 60(6): 110-120. [李绪杰, 盛雅娟, 张彤, 等, 2021. 多花黄精花粉萌发与传粉生物学特征 [J]. 中山大学学报(自然科学版), 60(6): 110-120. ]
参考文献
LLOYD DG, 1979. Some reproductive factors affecting the selection of self-fertilization in plants [J]. Am Nat, 113(1): 67-79.
参考文献
LUO CW, CHEN Y, ZHANG T, 2019. Breeding system and pollination biology of Paeonia ostii [J]. J Nanjing For Univ (Nat Sci Ed), 43(3): 37-44. [罗长维, 陈友, 张涛, 2019. 凤丹繁育系统与传粉生物学研究 [J]. 南京林业大学学报(自然科学版), 43(3): 37-44. ]
参考文献
LUO CW, HUANG ZY, CHEN X, et al. , 2011. Contribution of diurnal and nocturnal insects to the pollination of Jatropha curcas ( Euphorbiaceae) in southwestern China [J]. J Econ Entomol, 104(1): 149-154.
参考文献
MAO SZ, DENG T, TANG WX, et al. , 2012. Comprehensive evaluation of the wild ornamental plants of Ardisia in Guangxi [J]. Guihaia, 32(4): 501-506. [毛世忠, 邓涛, 唐文秀, 等, 2012. 广西紫金牛属野生观赏植物的综合评价 [J]. 广西植物, 32(4): 501-506. ]
参考文献
MU JP, WANG Q, GAI WF, et al. , 2018. Comparison of fitness between protogyny and protandry flowers in Gentiana squarrosa (Gentianaceae) [J]. J Mianyang Teach Coll, 37(2): 1-15. [慕军鹏, 王勤, 代文霏, 等, 2018. 鳞叶龙胆雌蕊先熟和雄蕊先熟适合度比较 [J]. 绵阳师范学院学报, 37(2): 1-15. ]
参考文献
PASCAERLLA JB, 1997. Breeding systems of Ardisia Sw. (Myrsinaceae) [J]. Brittonia, 49(1): 45-53.
参考文献
SATO H, 2002. The role of autonomous self-pollination in floral longevity in varieties of Impatiens hypophylla (Balsaminaceae) [J]. Am J Bot, 89(2): 263-269.
参考文献
SCHOEN DJ, JOHNSON MTJ, WRIGHT SI, 2019, The ecology, evolution, and genetics of plant reproductive systems [J]. New Phytol, 224(3): 999-1004.
参考文献
TRAVERS SE, ANDERSON K, VITT P, et al. , 2018. Breeding system and inbreeding depression in the rare orchid, Platanthera praeclara, in a fragmented grassland landscape [J]. Botany, 96(3): 151-159.
参考文献
WAN HX, DENG HP, HE P, et al. , 2018. Breeding system and pollination biology of endangered Plantago fengdouensis [J]. Acta Ecol Sin, 38 (11): 4018-4026. [万海霞, 邓洪平, 何平, 等, 2018. 濒危植物丰都车前的繁育系统与传粉生物学研究 [J]. 生态学报, 38(11): 4018-4026. ]
参考文献
WANG J, 2012. Breeding system of Magnolia officinalis subsp. biloba and its ending cause analysis of reproductive biology [D]. Beijing: Chinese Academy of Forestry Sciences: 1-96. [王洁, 2012. 凹叶厚朴繁育系统研究及其濒危的生殖生物学原因分析 [D]. 北京: 中国林业科学研究院: 1-96. ]
参考文献
WANG QL, YE CH, YAN XX, et al. , 2015. Preliminary study on cutting techniques of Ardisia humilis [J]. J Trop Agric Sci, 35(7): 30-35. [王清隆, 叶才华, 晏小霞, 等, 2015. 矮紫金牛播种技术初探 [J]. 热带农业科学, 35(7): 30-35. ]
参考文献
WANG X, DENG HP, DING B, et al. , 2012. Comparison of floral morphology and pollination characteristics between the sexes in Eurya obtusifolia [J]. Acta Ecol Sin, 32 (12): 3921-3930. [王茜, 邓洪平, 丁博, 等, 2012. 钝叶柃不同性别花的花部形态与传粉特征比较 [J]. 生态学报, 32(12): 3921-3930. ]
参考文献
WEI HL, GAO C, QIU J, et al. , 2021. Flowering biological characteristics of Camellia weiningensis Y. K. Li [J]. Hortic Sci, 56(11): 1331-1339.
参考文献
WEN X, ZHANG YS, SHANG YH, et al. , 2021. Flowering phenology and pollinating insect of Clematis patens [J]. Guihaia, 41(8) : 1315-1323. [温馨, 张永胜, 尚禹含, 等, 2021. 大花铁线莲开花物候与传粉昆虫的研究[J]. 广西植物, 41(8): 1315-1323. ]
参考文献
YU VA, 2013. Geographic distribution of halictid bees of the subfamilies Rophitinae and Nomiinae (Hymenoptera, Halictidae) in the Palaearctic [J] Entomol Rev, 93(4): 437-451.
参考文献
ZHANG XY, WANG ZK, LI GF, et al. , 2019. A study on breeding characteristics and ecological adaptability of the Ferula ferulaeoides [J]. Bull Bot Res, 39(3): 321-328. [赵晓依, 王仲科, 李桂芳, 等, 2019. 多伞阿魏的繁育系统及其生态适应性 [J]. 植物研究, 39(3): 321-328. ]
参考文献
ZHANG ZQ, ZHANG YH, SUN H, 2011. The reproductive biology of Stellera chamaejasme(Thymelaeaceae): A self-incompatible weed with specialized flowers [J]. Flora, 206(6): 567-574.
目录contents

    摘要

    矮紫金牛(Ardisia humilis)是优良的野生观赏植物。为探究该植物开花生物学与繁育系统特征,促进其杂交选育与园林应用,该研究以同质园引种的矮紫金牛为对象,对其开花物候、访花昆虫种类及访花行为进行观测,采用花粉离体萌发法和联苯胺-过氧化氢法,对花粉活力与柱头可授性进行检测,结合配子显微观测法和控制性授粉实验,对其繁育系统进行分析。结果表明:(1)花期为5月中下旬至6月中上旬,盛花期在5月底,单花、单株和群体水平的花期分别为1、17~20、25 d。(2)开两性花,雌蕊先熟,与雄蕊成熟期部分重叠,柱头可授性滞至雄蕊凋谢后1 d。(3)杂交指数(OCI)值为4,花粉/胚珠比(P/O)值为5.61×103,显示其繁育系统以异交为主,部分自交亲和,需要传粉者。(4)自然授粉的结实率最高(平均52.96%),其次是自花授粉(52.29%)和人工异株授粉(50.33%),三者差异不显著(P > 0.05),但均显著高于人工同株授粉的结实率(28.67%)(P < 0.05),显示矮紫金牛不仅异交亲和性强,还具有很强的自动自花授粉能力。(5)主要传粉昆虫包括隧蜂科的淡脉隧蜂属的Lasioglossum sp.1、Lasioglossum sp.2和隧蜂属的Halictus sp.,具有泛化传粉昆虫资源特征。该研究结果为矮紫金牛的资源利用与种质创新提供了重要的生物学理论参考。

    Abstract

    Ardisia humilis is an excellent wild ornamental plant. For the purpose of fully utilization of this elite germplasm, the flowering biology and breeding system of this plant were explored in this study. We conducted field investigation in the flowering phenology, flower-visiting insect and their visiting behaviors on A. humilis individuals introduced in homogeneous garden. Furthermore, pollen viability and stigma receptivity were detected by pollen germination in vitro and benzidine-hydrogen peroxide method, respectively. Combined with artificial pollination,the self-compatibility and the self-pollination of A. humilis were also analyzed in this study. The results were as follows: (1) The florescence of A. humilis was from mid-late May to early June, and the full flowering period was at the end of May. The flowering period of the population, single plant and single flower were approximately 25 d, 17-20 d and 1 d, respectively. (2) A. humilis developed protogynic bisexual flowers, the pistil ripened first with partial overlaps on mature stage of pistil and that of stamen, while stigma remained receptivity until 1 d after stamens fall. (3) With the out-crossing index (OCI) value of 4 and pollen / ovule value of 5.61×103, the breeding system of A. humilis was considered to be outcrossing with partial self-compatibility, and the pollinator insects were essential. (4) The seed set of natural pollination ranked the highest level (average 52.96%), followed by that of autogamy (52.29%) and of artificial-cross pollination (50.33%), with no significant differences among the three (P>0.05), but significantly higher than that of artificial geitonogamy (28.67%) (P<0.05). This study indicated that, beside of being excellent flowering plant, A. humilis not only had a strong outcrossing affinity, but also had a strong autogamy ability. (5) Lasioglossum sp. 1, Lasioglossum sp. 2 and Halictus sp. were the most observed floral visitors on Ardisia humilis. This study provides an important theoretical reference for the resource utilization and germplasm innovation of A. humilis.

  • 开花生物学反映了植物的开花物候、开花进程以及雌雄配子发育特征(Fan et al.,2019; Wei et al.,2021),而繁育系统则从花部开放式样、花部活力与寿命、传粉方式与交配习性等多个方面影响子代的遗传组成,均是植物长期适应环境而进化的产物( Danieli-Silva &Varassin,2013; Chai et al.,2019; Barrionuevo et al.,2021)。此外,植物的繁育系统与开花生物学对子代的表征变异及其生殖成功与否起着决定性作用(Hegland et al.,2009; Cortés et al.,2017; Schoen et al.,2019)。例如,结实率的高低是衡量植物有性繁殖成功与否的一个重要标准(罗长维等,2019); 有效的传粉又是以大量有活性的花粉、处于可授期的柱头以及有效的传粉媒介为前提,来揭示植物的传粉机制与其开花生物学特征相互适应的过程(Les,1988; Traver et al.,2018)。因此,深入了解植物的花期物候和配子发育等开花生物学特征以及准确判别植物的繁育系统,是植物杂交选育的重要前提,直接关系到授粉育种的成功率,在植物资源保育与利用中具有十分重要的意义(Li et al.,2018; 里绪杰等,2021)。

  • 紫金牛属(Ardisia Sw.)植物主要分布于亚洲东部至东南部、热带美洲、澳大利亚和太平洋岛屿等地,全世界分布有400多种,我国产65种(Flora of China,2006)。本属植物多数物种具有良好的观赏价值,并逐渐受到园艺界重视,国内外已对其中部分种类开展了资源调查与种质筛选等研究(Jeffrey et al.,2011; 毛世忠等,2012)。然而,本属植物的开花生物学以及繁育系统研究尚未受到应有的重视,仅有极少数种类得到关注(Pascarella,1997; 陈小勇等,2001)。矮紫金牛(Ardisia humilis)为紫金牛属常绿灌木,为中国特有种,20世纪70年代在雷州半岛南部和海南岛被发现(陈介,1979)。矮紫金牛植株高1~2 m,夏季开粉色花且开花量较大,秋季结鲜红色果实,具有良好的观花和观果的园林观赏价值,是选育优良观赏新品种的理想种质资源(王清隆等,2015)。矮紫金牛的开花生物学和繁育系统未曾被系统性研究过,其有性生殖的基本特征尚不清楚,不利于其种质资源的挖掘利用。因此,本研究以矮紫金牛为对象,探究其开花进程与繁育系统特性,为其栽培育种和种质创新提供理论依据,同时促进矮紫金牛属植物在园林景观中的推广应用。本研究拟探究以下科学问题:(1)矮紫金牛开花物候的开花进程及花部特征;(2)矮紫金牛在引种地的访花昆虫以及访花效率;(3)矮紫金牛的繁育系统及繁殖保障策略。

  • 1 材料与方法

  • 1.1 研究地概况

  • 研究地位于桂林植物园,地处桂林市雁山区雁山镇(110° 17′ E、25° 01′ N),海拔180 m,属亚热带季风气候,年平均气温18.9℃,年平均相对湿度73%~79%,年平均降水量1 949.5 mm。研究材料为矮紫金牛(40株,树龄7 a)的实生树,株高1.0 m左右,种源为采自海南岛的野生植株,2012年采种沙藏,2013年幼苗萌发后移栽,至2019年已连续开花3 a。观测期为2019年5—10月。

  • 1.2 开花动态与花器官形态特征观察

  • 观测记录矮紫金牛群体的开花动态,从现蕾期开始隔日观察,从第1株植株开花起每日10:00定点进行观测,记录群体花朵始开与种群花期时间以及每天每植株的当日开花数量。按照Dafni(1992)的方法,5%以上个体开花时为群体始花期,50%及以上个体开花为群体盛花期,95%个体开花结束时为群体末花期。

  • 为统计单株花期与单花开放进程,选取6株刚现花蕾的健壮矮紫金牛,挂牌标记,每日9:00观察花蕾直至开放,之后每隔1 h观察1次,记录单花开放进程。单株上第1朵花开放日期为单株首花日,最后1朵花开放日期为单株终花日。参照张永胜等(2019)的方法,观察并记录矮紫金牛花的柱头状态、花药状态和散粉时间,并随机选择10朵完全开放的花,记录花瓣和雌雄蕊的数量,用数显游标卡尺(精度为0.01 mm)测量花瓣、花丝、柱头的长度及柱头花药间距。

  • 1.3 花粉/胚珠比(P/O)值与杂交指数(OCI)估算

  • 参考王茜等(2012)的方法估算P/O值。对挂牌标记的植株,每株取花3朵,剪取即将散粉的花药,置于洁净离心管内,每朵花分别制成2 mL花粉粒悬浮液。用微量移液枪吸取1 μL于载玻片上,在生物显微镜(Olympus cx31)下统计花粉量,每个观察视野的花粉数不少于40粒,每朵花重复3次,观察花粉数乘以2 000,取均值计算单花花粉总量。在体式显微镜(Olympus szx7)下用解剖针划开心皮,观察并统计胚珠数。以单花的花粉总量除以胚珠数,得到P/O值。按照Cruden(1976)的标准评判矮紫金牛的繁育系统类型,按照Dafni(1992)的标准,通过OCI评判繁育系统类型。

  • 1.4 花粉活力与柱头可授性检测

  • 分别在花朵的柱头伸出期、初开期、盛开期、衰落期、凋谢期采集花粉,以离体萌发法检测花粉活力。参照王洁(2012)的方法,将8.000 g蔗糖、0.016 g氯化钙、0.005 g硝酸钾、0.005 g硼酸和0.011 g硫酸镁加入100 mL蒸馏水制成培养液,取2滴置于洁净载玻片上,移取少量花粉放入培养液中,吹打混合后盖好盖玻片,将其放于湿润的培养皿中央,放入25℃恒温箱培养5 h后,置于生物显微镜(Olympus cx31)下观察花粉萌发情况。每个花期重复5朵花,每朵做1个装片,每个装片观察3个视野,以可见花粉粒大于50个的为1个有效视野,以花粉管长度大于花粉直径视为花粉萌发。

  • 花粉活力=(萌发花粉数/花粉总数)×100%。

  • 参照Dafni(1992)的方法,分别在花朵的柱头伸出期、初开期、盛开期、衰落期、凋谢期以及凋谢后1、2、3 d的9:00—10:00,将柱头剪下放入联苯胺-过氧化氢反应液(1% 联苯胺∶3%过氧化氢∶水 = 4∶11∶22,体积比),并于体式显微镜(Olympus szx7)下观察,根据柱头周围气泡数量和柱头颜色来判断柱头可授性的强弱。每个花期重复5朵花。

  • 1.5 控制性授粉实验

  • 在长势健壮的3株矮紫金牛上各随机选择4个花序,并分别作以下处理:(1)不授粉,不套袋,检测自然传粉条件下的结实率;(2)不授粉,不去雄,套袋,检测自动自花授粉能力;(3)去雄,人工异株授粉,套袋,检测异交结实率;(4)去雄,人工同株授粉,套袋,检测自交结实率。

  • 1.6 访花昆虫观察

  • 参考龚燕兵和黄双全(2007)的方法,以直接观察法调查矮紫金牛访花昆虫的种类和频率。在盛花期,随机选取株距为5~10 m的3株矮紫金牛,每株标记花序5个,连续观察3 d,从7:00至19:00,每隔1 h统计标记花序上开放花朵的数量,并不间断观察和记录访花昆虫的种类、数量、访花次数、单花访问时长及访花行为。拍摄昆虫访花照片,捕集访花昆虫制作凭证标本。

  • 1.7 数据统计分析

  • 以Excel 2010软件进行数据分析和图表绘制,用SPSS 13.0软件进行单因素方差分析,并采用Duncan’s(α=0.05)检验差异显著性。

  • 2 结果与分析

  • 2.1 开花动态与花器官形态特征

  • 矮紫金牛的花期为5月中下旬至6月中上旬。5月17日为首花日,5月20日为群体始花期,5月29日进入群体盛花期,6月7日为群体末花期,6月10日为终花日,单株花期平均18 d,群体花期持续25 d(表1)。花序为总状伞形花序,单株发育花序1~10个,单株花序着生小花16~420朵。小花开放具有顺序性,位于总状伞形花序形态学下方的先开,逐步往上,位于形态学顶端的最后开放。花梗淡紫色(图1:C)。花冠紫红色或粉色,直径约15 mm,花瓣多为5片,极少数为4、6片或7片(图1:A)。花瓣倒卵状矩圆形,先端钝尖,长约6 mm(图1:A)。雄蕊黄色,5枚,与花瓣近等长。柱头距离花药端部约2 mm,花丝长为花药的1/2(图1:B)。子房球形,无毛,具腺点,胚珠20~30粒。

  • 晴天,矮紫金牛花朵在9:00—10:00开放,至当天18:00前后,花瓣和雄蕊凋谢,有少数花朵的花瓣和雄蕊可延续至次日脱落,单花的花期持续(9±1.3)h。开花进程可分为6个时期。花蕾期(开花前2 d):花蕾膨大,花蕾粉色加深(图2:A)。柱头伸出期(约9:00): 花朵即将绽放时,花序上外轮小花的柱头先伸出花冠,外露于总苞片之外约0.5 mm(图2:B),这种开花特性与Pascarella(1997)对紫金牛科植物的描述一致。初开期(9:30—10:30):花苞逐渐变蓬松,花被片开裂,花朵初绽开,从花筒口可看到黄色花药,部分花药开始纵裂,微张的花瓣与花柱呈45°夹角(图2:C)。盛开期(约10:30—16:00):花瓣呈水平展开,与花柱呈90°夹角,紧紧抱住花柱的5个黄色花药完全暴露,花药开始散粉(图2:D)。衰落期(16:00—18:00):花瓣开始向后反卷,花药颜色逐渐变浅并显得干枯(图2:E)。凋谢期(约18:00以后):花瓣连同雄蕊一起凋落,宿存的柱头与花萼距离约0.7 cm(图2:F),花瓣凋落后的花柱仍鲜活直立,之后花萼包住子房,约3 d后花柱干枯掉落(图2:G-I)。

  • 表1 矮紫金牛开花物候期

  • Table1 Flowering phenophase of Ardisia humilis

  • 2.2 花粉/胚珠比(P/O)值

  • 观测样本中,矮紫金牛单花的花粉量最大值为220 000,最小值为68 000,平均值为132 148±44 780(标准差); 胚珠数最大值为30,最小值为20; 其P/O最大值为6 560,最小值为4 267,平均值为5 609±699(标准差)(表3)。

  • 2.3 花粉活力与柱头可授性

  • 柱头可授性结果(表2)表明,矮紫金牛花朵的柱头在各开放阶段均具有一定的可授性。其中,在柱头伸出期和初开期,柱头可授性较弱,一旦进入盛开期,柱头可授性就快速上升,到凋谢期时达到顶峰,可授性最强(图3:E)。在花瓣和雄蕊群凋谢后的2 d内,宿存柱头的可授性快速减弱,但仍然保持着一定可授性。直至花瓣及雄蕊凋谢3 d后,柱头周围几乎观察不到气泡产生,柱头不再具有可授性(图3:H)。

  • 矮紫金牛的花粉萌发过程经历了约5 h(图4),花粉活力最强出现在花朵盛开期,活力值达到27.42%,而在第一阶段(柱头伸出期)和最后阶段(凋谢期)分别仅为4.62%和5.52%(表2)。在柱头伸出期,柱头已具有较弱可授性,花朵盛开期可授性较强,雄蕊连同花冠一起刚脱落时达到最强。从花朵脱落后第1天,柱头可授性急剧下降,脱落后第3天仍具有微弱可授性(表2)。由于矮紫金牛在柱头伸出期就已具有可授性,而此阶段雄蕊尚未开始散粉,因此认为矮紫金牛具有雌蕊先熟的特征,随后雌雄蕊在成熟期上存在较长的重叠。

  • 2.4 杂交指数(OCI)估算

  • 矮紫金牛单花直径为(15.45±1.00)mm,大于6 mm,参照Dafni(1992)的标准记为3; 花粉活力和柱头可授性检测结果显示,雌雄蕊的成熟时间同步,记为0; 开花时,柱头与花药的空间距离(2.06±0.24)mm,位置明显分离,记为1。总计其杂交指数(OCI)为4(表3)。据此初步推测,矮紫金牛的繁育系统为部分自交亲和,异交需要传粉者。

  • 2.5 控制性授粉结实率

  • 控制性授粉实验结果(表4)显示,矮紫金牛花序在4种处理下均能结实,自然授粉(不授粉,不套袋,自由传粉)的结实率最高,平均达52.96%,显著高于人工同株授粉(平均结实率为28.67%),与自花授粉(平均结实率为52.29%)和人工异株授粉(平均结实率50.33%)的差异不显著。有趣的是,在套袋与人工授粉中发现,矮紫金牛具有很强的自动自花授粉(autogamy)能力,在花序与外界隔离开的情况下,自发授粉的结实率仍极高(为52.29%)。

  • 2.6 访花者的种类、行为和访花频率

  • 图5结果显示,访花昆虫的访花活动主要出现在8:00—17:00。观察记录到访花昆虫4种,包括隧蜂科(Halictidae)3种、食蚜蝇科(Syrphidae)1种。访花频率最高的是隧蜂科淡脉隧蜂属昆虫Lasioglossum sp.1,远高于其他3种访花昆虫,该蜂腹部橙红色、体型较小(图5:A); 访花频率居第二位的是隧蜂科隧蜂属昆虫Halictus sp.,该蜂体型长约8 mm,黑褐色(图5:B); 访花频率居第三位的是隧蜂科淡脉隧蜂属昆虫Lasioglossum sp.2,该蜂腰腹部有黄色和黑色交替条纹(图5:C); 访花频率最低的是食蚜蝇科狭口食蚜蝇属昆虫Asarkina sp.,偶见访花(图5:D)。

  • 晴天里,Lasioglossum sp.1在7:00开始访花,初现时频率较低,8:00后随着气温升高及大量花朵相继开放,Lasioglossum sp.1访花频率逐渐上升,访花高峰期出现在9:00—13:00之间,此后访花频率逐渐下降(图6)。访花时,Lasioglossum sp.1直接落到雄蕊群上,环绕雄蕊群打转寻找成熟花药,并以后足抱握花药,前足收集花粉置于花粉筐中形成花粉块。Lasioglossum sp.1访花过程中身体特别是腹部经常触碰到与雄蕊异位的柱头,访完1朵花后会迅速爬过其他花苞(有的柱头已伸出)或飞行至另一朵花上。在同一株上连续访花3~6朵,平均每花每小时被访次数为0.19~2.24次,单花停留时间为15~30 s。

  • 图1 矮紫金牛花部与果实的形态特征

  • Fig.1 Morphological characteristics of flowers and fruits of Ardisia humilis

  • Halictus sp.的访花行为与Lasioglossum sp.1类似,但访花频率较后者低。主要访花时间段为9:00—13:00,从8:00开始,随着温度升高,活动量逐渐增大,访花高峰期出现在9:00—10:00和12:00—14:00,下午访问频率相对较低(图6)。Halictus sp.访花时,在同一株上连续访问1~3朵花,平均每花每小时被访次数为0.02~0.07次,每朵花的平均停留时间为3~23 s。

  • Lasioglossum sp.2访花时间主要在12:00—14:00,访花高峰期出现在13:00—14:00(图6)。访花时,该蜂首先围绕花朵呈十字交叉旋转,然后落停在花朵上,用前足抓住雄蕊,整个腹部环抱雄蕊和柱头,最后通过震动把花粉从成熟花药中抖出。Larson和Barrett(1999)把传粉昆虫的这种行为叫“声震传粉”(buzz pollination)。此时,Lasioglossum sp.2前足、头部及前胸部粘上大量花粉,其一边以前足抓住花蕊,一边以中足和后足不停交叉刮刷,将粘附在周身的花粉收集到花粉篮内。在此过程中常使带有花粉的中足、后足或腹部接触到雌蕊柱头,从而实现传粉。Lasioglossum sp.2在同一植株上连续访问3~7朵花,每花每小时被访次数为0.01~0.03次,单花停留时间较长,平均为3~20 s。

  • Asarkina sp.的访花偶见于晴朗的上午,出现频率极低(图6)。通常1次访花1~2朵,平均单花每小时访问次数为0.01~0.07次,单花停留时间为1~5 s。Asarkina sp.行动灵活,常翱翔空中,或振动双翅在空中悬停,或突然作直线高速飞行。访花时直接落到花瓣或雄蕊群,用中足与后足支撑身体,同时用两前足来回搓碰花粉,有时把头部伸入雄蕊群中以喙舐食花粉,使其体毛粘附上花粉。

  • 图2 矮紫金牛的开花动态

  • Fig.2 Flowering dynamics of Ardisia humilis

  • 3 讨论

  • 3.1 花部综合特征对传粉的影响

  • 植物花部综合特征包括花部构成与开放式样,二者共同作用综合影响植物对传粉昆虫的吸引和花粉传播以及植物的交配机遇与繁殖适合度(罗长维等,2019)。从矮紫金牛的花部特征来看,其花白天开放、伞形花序、雌雄蕊暴露、花瓣与花药颜色艳丽、开花数量极多且花粉量极大等花部构成吸引了各种短喙昆虫前来访花(Luo et al.,2011)。其中,矮紫金牛的雌雄蕊露出花冠外的花部特征增大传粉昆虫与柱头的接触几率,同时提高授粉机遇,是植物为适应虫媒传粉的一种表现。植物靠花和花序的外部特征等吸引昆虫,同时提供花粉或花蜜作为“奖励”,而这些“奖励”的多少不但会影响昆虫的传粉效率,而且可能影响花粉的萌发(赵晓依等,2019)。本研究中,矮紫金牛提供给访花昆虫的唯一报酬物为花粉,但其花粉/胚珠比(P/O)值高达5 609; 黄利春等(2014)研究表明植物的P/O值与报酬类型有关,以花粉为报酬物则P/O值也高,这可能与植物需产生额外的花粉来补充传粉昆虫消耗的花粉有关。

  • 图3 矮紫金牛的柱头可授性

  • Fig.3 Stigma acceptability of Ardisia humilis

  • 此外,对植物开花物候的研究显示,花期呈现“集中开花模式”,是虫媒传粉植物提高生态适应性、保障生殖成功的表现(Harder &Barrett,1995; 万海霞等,2018; 温馨等,2021)。矮紫金牛群体花期时间持续25~30 d,开花同步性较强,呈现“集中开花模式”,这种“集中性”开花有利于吸引更多昆虫前来访花传粉以提高结实率。除群体花期外,矮紫金牛的单花开放进程也影响着昆虫传粉。例如,本研究发现矮紫金牛访花昆虫的访花频率呈现上午访花频率高、早晨与下午访花频率低的趋势,早晨一般是9:00之前访花昆虫少、访花频率低,这可能因为早晨植株上有露珠,昆虫一般会等露珠干了后才访花,温馨等(2021)的相关研究也得到类似结论。而下午的访花频率明显低于上午,这可能与矮紫金牛花朵单花开放进程相关,10:00—12:00正是花朵开放旺盛以及花药散粉的时间段,更容易吸引昆虫,下午大部分花药已散粉结束甚至花冠即将凋落。另外,矮紫金牛的柱头和花粉失去活力时,花冠仍可宿存于子房基部且保持新鲜,直至傍晚无昆虫访花时花冠才整个凋落,可能是为了增加整个植株的花展示面积,从而继续发挥其吸引传粉昆虫的作用,这种现象是植物适应传粉的一种保障(Zhang et al.,2011)。

  • 图4 矮紫金牛的花粉萌发动态

  • Fig.4 Dynamics of pollen germination in Ardisia humilis

  • 图5 矮紫金牛的访花昆虫

  • Fig.5 Floral visitors of Ardisia humilis

  • 图6 矮紫金牛4种访花昆虫的访花频率

  • Fig.6 Visiting frequencies of four visitors on floral of Ardisia humilis

  • 表2 花粉活力与柱头可授性

  • Table2 Pollen viability and stigma receptivity

  • 注:-表示柱头不具可授性; + 表示柱头具可授性; ++ 表示柱头可授性较强; +++ 表示柱头可授性最强。— 表示未检测,D1表示花瓣及雄蕊凋谢后的第1天,D2表示花瓣及雄蕊凋谢后的第2天,D3表示花瓣及雄蕊凋谢后的第3天。

  • Note:-indicates no stigma receptivity; + indicates stigmas have receptivity; ++ indicates stigmas have higher receptivity; +++ indicates stigmas have the highest receptivity. — indicates no detection, D1 represents the1st day after the petals and stamens fall, D2 represents the2nd day after the petals and stamens fall, D3 represents the3rd day after the petals and stamens fall.

  • 矮紫金牛的“集中开花模式”、开花进程、花色艳丽、花量极多以及较高花粉/胚珠比等花部综合征可能是其传粉环境不稳定、访花报酬物单一情况下通过完善传粉系统以提高结实率的主要原因。

  • 3.2 繁殖保障策略

  • 本研究结果表明,矮紫金牛的繁育系统以专性异交为主,部分自交亲和,需要传粉者。但是,从控制性授粉结果来看,矮紫金牛具有较强的自交亲和力,就算是在隔绝昆虫传粉的情况下,仍可自发自交授粉。Pascarella(1997)对热带美洲5种紫金牛属植物繁育系统的研究发现这些植物均自交亲和,其中4种可自花授粉的结论与本研究结果相一致。结合本次在矮紫金牛上的发现推测,自发传粉行为在紫金牛属植物中可能普遍存在,是该属植物适应有效传粉昆虫缺失的一种机制。Darwin(1876)研究认为,繁殖保障是自交进化最重要的因子。相比异交而言,在种群密度低或缺少传粉者时,自交可以提高植物的结实率并赋予自动选择优势(Holsinger,1996)。因此,植物的混合交配系统在自然界十分常见(Lloyd,1979; 何亚平和刘建全,2003)。从本研究结果来看,矮紫金牛的花部结构具有多个自交与异交特征。例如,花冠倒挂、柱头在水平位置上低于雄蕊群以及花粉量多等结构特性,使得无论是在重力或风力的作用下,还是昆虫触碰的影响,都增大了花粉散落到柱头上的几率,同时有利于可授期柱头接受有活力的花粉,是自花授粉(自交)得以完成的重要基础(万海霞等,2018)。此外,虽然矮紫金牛花表现出雌蕊先熟的特征,但其柱头可授期与花粉活力高峰期存在较长重叠,是一种不完全的雌蕊先熟。相关研究表明,雌蕊先熟的特征有利于促进异花授粉,尤其是在传粉昆虫资源丰富的生境中,雌蕊先熟的个体进行异花授粉的几率很大(Cardoso et al.,2018),在传粉昆虫稀缺的生境,雌蕊先熟个体还可通过自体授粉维持一定的繁殖成效(Sato,2002),相对不完全的雄蕊先熟,不完全的雌蕊先熟能更有效地避免自交行为(慕军鹏等,2018)。同时,矮紫金牛雌蕊先熟的特征暗示,其交配系统很可能以异交为主。

  • 表3 杂交指数与花粉/胚珠比

  • Table3 Out-crossing index and pollen/ovule ratio

  • 表4 控制性授粉实验结果(n=3)

  • Table4 Results of controlled pollination experiment (n=3)

  • 注: 不同字母表示差异显著(P<0.05)。

  • Note: Different letters indicate significant differences (P<0.05) .

  • 传粉昆虫在开花植物传粉过程中起着关键性作用(万海霞等,2018)。本研究结果显示,矮紫金牛的主要访花昆虫为隧蜂科昆虫,这与Bawa(1990)对紫金牛科植物的调查得出其传粉者主要为体型较小的隧蜂科昆虫的结果相一致。此外,相关研究认为这类昆虫具有泛化传粉者的特征,地理分布范围广(Yu,2013),结合本研究的结果可推断,矮紫金牛引种栽培到原产地以外的地区后,仍可从自然界获得充足的昆虫授粉服务,不会因传粉者的匮乏而导致结实率降得太低。

  • 总体而言,一方面,矮紫金牛花形美丽,开花量极大,观花价值突出; 另一方面,在泛化传粉昆虫提供授粉服务和自动自交机制的双重保障下,矮紫金牛在原产地以外的地理区域,仍可正常完成有性生殖过程且开花结实率依然很高,能维持着良好的观果价值。此外,矮紫金牛具有很强的自动自交能力,适用于室内装饰,即使室内缺少传粉昆虫,也能维持很高的结实率。因此,鉴于矮紫金牛具有较强的自动自交能力,在未来进行矮紫金牛杂交育种时,需考虑避免自交发生的措施,如提前去雄等,以减少自交产生的不利影响。

  • 参考文献

    • BARRIONUEVO CN, BENITEZ-VIEYRA S, SAZATOMIL F, 2021, Floral biology of Salvia stachydifolia, a species visited by bees and birds: connecting sexual phases, nectar dynamics and breeding system to visitors’ behavior [J]. J Plant Ecol, 14(4): 580-590.

    • BAWA KS, 1990. Plant-pollinator interactions in tropical rainforests [J]. Annu Rev Ecol Syst, 21(1): 399-422.

    • CARDOSO JCF, VIANA ML, MATIAS R, et al. , 2018. Towards a unified terminology for angiosperm reproductive systems [J]. Acta Bot Basil, 32(3): 329-348.

    • CHAI SF, CHEN ZY, TANG JM, et al. , 2019, Breeding system and bird pollination of Camellia pubipetala, a narrowly endemic plant from karst regions of south China [J]. Plant Species Biol, 34(4): 141-151.

    • CHEN J, 1979. Flora of China: Vol. 58 [M]. Beijing: Science Press: 48. [陈介, 1979. 中国植物志: 第58卷 [M]. 北京: 科学出版社: 48. ]

    • CHEN XY, LI N, SHEN L, 2001. The mating system of Ardisia crenata var. bicolor (Myrsinaceae), a subtropical understory shrub in Tiantong National Forest Park, Zhejiang Province [J]. Chin J Plant Ecol, 25(2): 161-165. [陈小勇, 厉宁, 沈浪, 2001. 浙江天童国家森林公园红凉伞交配系统研究 [J]. 植物生态学报, 25(2): 161-165. ]

    • CORTÉS-FLORES J, HERNÁNDEZ-ESQUIVEL KB, GONZÁLEZ-RODRÍGUEZ A, et al. , 2017. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: influence of phylogeny and abiotic factors [J]. Am J Bot, 104(1): 39-49.

    • CRUDEN RW, 1976. Intraspecific variation in pollen-ovule ratios and nectar secretion-preliminary evidence of ecotypic variation [J]. Ann Mo Bot Gard, 63(2): 277-289.

    • DAFNI A, 1992. Pollination ecology: a practical approach [J]. New York: Oxford University Press, 46(2): 1-5.

    • DANIELI-SILVA A, VARASSIN IG, 2013, Breeding system and thrips (Thysanoptera) pollination in the endangered tree Ocotea porosa (Lauraceae): implications for conservation [J]. Plant Species Biol, 28(1): 31-40.

    • DARWIN C, 1876. The effects of cross and self-fertilization in the vegetable kingdom [M]. London: John Murray.

    • FAN J, ZHANG W, ZHANG D, et al. , 2019, Flowering stage and daytime affect scent emission of Malus ioensis “Prairie Rose” [J]. Molecules, 24(13): 2356.

    • Flora of China Editorial Committee, 2006. Flora of China: Vol. 22 [M]. Beijing: Science Press and Missouri Botanical Garden Press: 7.

    • GONG YB, HUANG SQ, 2007. On methodology of foraging behavior of pollinating insects [J]. Biodivers Sci, 15(6): 576-583. [龚燕兵, 黄双全, 2007. 传粉昆虫行为的研究方法探讨 [J]. 生物多样性, 15(6): 576-583. ]

    • HARDER LD, BARRETT SCH, 1995. Mating cost of large floral display in hermaphrodite plant [J]. Nature, 372(6514): 512-515.

    • HE YP, LIU JQ, 2003. A review on recent advances in the studies of plant breeding system [J]. Chin J Plant Ecol, 27(2): 151-163. [何亚平, 刘建全, 2003. 植物繁育系统研究的最新进展和评述 [J]. 植物生态学报, 27(2): 151-163. ]

    • HEGLAND SJ, GRYTNES JA, TOTLAND O, 2009. The relative importance of positive and negative interactions for pollinator attraction in a plant community [J]. Ecol Res, 24(4): 929-936.

    • HOLSINGER KE, 1996. Pollination biology and the evolution of mating systems in flowering plants [J]. Evol Biol, 29(5): 107-149.

    • HUANG LC, JIN L, LI J, et al. , 2014. Floral morphology and its relationship with pollination systems in Papilionoideae [J]. Acta Ecol Sin, 34(19): 5360-5368. [黄利春, 金樑, 李晶, 等, 2014. 蝶形花亚科植物花部适应机制与传粉系统 [J]. 生态学报, 34(19): 5360-5368. ]

    • JEFFREY TH, KENNETH AL, MICHAEL M, 2011. Field trials for herbicide control of coral ardisia (Ardisia crenata) in natural areas of north-central Florida [J]. Invasive Plant Sci Manag, 4(2): 234-238.

    • LARSON BMH, BARRETT SCH, 1999. The pollination ecology of buzz-pollinated Rhexia virginica (Melastomataceae) [J]. Am J Bot, 86(4): 502-511.

    • LES DH, 1988. Breeding systems, population structure, and evolution in hydrophilous angiosperms [J]. Ann Mo Bot Gard, 75(3): 819-835.

    • LI TQ, LIU XF, LI ZH, et al. , 2018. Study on reproductive biology of Rhododendron longgipedicellatum: A newly discovered and special threatened plant surviving in limestone habitat in southeast Yunnan, China [J]. Front Plant Sci, 9: 33.

    • LI XJ, SHENG YJ, ZHANG T, et al. , 2021, The pollen germination and pollination biology of Polygonatum cyrtonema [J]. Acta Sci Nat Univ Sunyatseni, 60(6): 110-120. [李绪杰, 盛雅娟, 张彤, 等, 2021. 多花黄精花粉萌发与传粉生物学特征 [J]. 中山大学学报(自然科学版), 60(6): 110-120. ]

    • LLOYD DG, 1979. Some reproductive factors affecting the selection of self-fertilization in plants [J]. Am Nat, 113(1): 67-79.

    • LUO CW, CHEN Y, ZHANG T, 2019. Breeding system and pollination biology of Paeonia ostii [J]. J Nanjing For Univ (Nat Sci Ed), 43(3): 37-44. [罗长维, 陈友, 张涛, 2019. 凤丹繁育系统与传粉生物学研究 [J]. 南京林业大学学报(自然科学版), 43(3): 37-44. ]

    • LUO CW, HUANG ZY, CHEN X, et al. , 2011. Contribution of diurnal and nocturnal insects to the pollination of Jatropha curcas ( Euphorbiaceae) in southwestern China [J]. J Econ Entomol, 104(1): 149-154.

    • MAO SZ, DENG T, TANG WX, et al. , 2012. Comprehensive evaluation of the wild ornamental plants of Ardisia in Guangxi [J]. Guihaia, 32(4): 501-506. [毛世忠, 邓涛, 唐文秀, 等, 2012. 广西紫金牛属野生观赏植物的综合评价 [J]. 广西植物, 32(4): 501-506. ]

    • MU JP, WANG Q, GAI WF, et al. , 2018. Comparison of fitness between protogyny and protandry flowers in Gentiana squarrosa (Gentianaceae) [J]. J Mianyang Teach Coll, 37(2): 1-15. [慕军鹏, 王勤, 代文霏, 等, 2018. 鳞叶龙胆雌蕊先熟和雄蕊先熟适合度比较 [J]. 绵阳师范学院学报, 37(2): 1-15. ]

    • PASCAERLLA JB, 1997. Breeding systems of Ardisia Sw. (Myrsinaceae) [J]. Brittonia, 49(1): 45-53.

    • SATO H, 2002. The role of autonomous self-pollination in floral longevity in varieties of Impatiens hypophylla (Balsaminaceae) [J]. Am J Bot, 89(2): 263-269.

    • SCHOEN DJ, JOHNSON MTJ, WRIGHT SI, 2019, The ecology, evolution, and genetics of plant reproductive systems [J]. New Phytol, 224(3): 999-1004.

    • TRAVERS SE, ANDERSON K, VITT P, et al. , 2018. Breeding system and inbreeding depression in the rare orchid, Platanthera praeclara, in a fragmented grassland landscape [J]. Botany, 96(3): 151-159.

    • WAN HX, DENG HP, HE P, et al. , 2018. Breeding system and pollination biology of endangered Plantago fengdouensis [J]. Acta Ecol Sin, 38 (11): 4018-4026. [万海霞, 邓洪平, 何平, 等, 2018. 濒危植物丰都车前的繁育系统与传粉生物学研究 [J]. 生态学报, 38(11): 4018-4026. ]

    • WANG J, 2012. Breeding system of Magnolia officinalis subsp. biloba and its ending cause analysis of reproductive biology [D]. Beijing: Chinese Academy of Forestry Sciences: 1-96. [王洁, 2012. 凹叶厚朴繁育系统研究及其濒危的生殖生物学原因分析 [D]. 北京: 中国林业科学研究院: 1-96. ]

    • WANG QL, YE CH, YAN XX, et al. , 2015. Preliminary study on cutting techniques of Ardisia humilis [J]. J Trop Agric Sci, 35(7): 30-35. [王清隆, 叶才华, 晏小霞, 等, 2015. 矮紫金牛播种技术初探 [J]. 热带农业科学, 35(7): 30-35. ]

    • WANG X, DENG HP, DING B, et al. , 2012. Comparison of floral morphology and pollination characteristics between the sexes in Eurya obtusifolia [J]. Acta Ecol Sin, 32 (12): 3921-3930. [王茜, 邓洪平, 丁博, 等, 2012. 钝叶柃不同性别花的花部形态与传粉特征比较 [J]. 生态学报, 32(12): 3921-3930. ]

    • WEI HL, GAO C, QIU J, et al. , 2021. Flowering biological characteristics of Camellia weiningensis Y. K. Li [J]. Hortic Sci, 56(11): 1331-1339.

    • WEN X, ZHANG YS, SHANG YH, et al. , 2021. Flowering phenology and pollinating insect of Clematis patens [J]. Guihaia, 41(8) : 1315-1323. [温馨, 张永胜, 尚禹含, 等, 2021. 大花铁线莲开花物候与传粉昆虫的研究[J]. 广西植物, 41(8): 1315-1323. ]

    • YU VA, 2013. Geographic distribution of halictid bees of the subfamilies Rophitinae and Nomiinae (Hymenoptera, Halictidae) in the Palaearctic [J] Entomol Rev, 93(4): 437-451.

    • ZHANG XY, WANG ZK, LI GF, et al. , 2019. A study on breeding characteristics and ecological adaptability of the Ferula ferulaeoides [J]. Bull Bot Res, 39(3): 321-328. [赵晓依, 王仲科, 李桂芳, 等, 2019. 多伞阿魏的繁育系统及其生态适应性 [J]. 植物研究, 39(3): 321-328. ]

    • ZHANG ZQ, ZHANG YH, SUN H, 2011. The reproductive biology of Stellera chamaejasme(Thymelaeaceae): A self-incompatible weed with specialized flowers [J]. Flora, 206(6): 567-574.

  • 参考文献

    • BARRIONUEVO CN, BENITEZ-VIEYRA S, SAZATOMIL F, 2021, Floral biology of Salvia stachydifolia, a species visited by bees and birds: connecting sexual phases, nectar dynamics and breeding system to visitors’ behavior [J]. J Plant Ecol, 14(4): 580-590.

    • BAWA KS, 1990. Plant-pollinator interactions in tropical rainforests [J]. Annu Rev Ecol Syst, 21(1): 399-422.

    • CARDOSO JCF, VIANA ML, MATIAS R, et al. , 2018. Towards a unified terminology for angiosperm reproductive systems [J]. Acta Bot Basil, 32(3): 329-348.

    • CHAI SF, CHEN ZY, TANG JM, et al. , 2019, Breeding system and bird pollination of Camellia pubipetala, a narrowly endemic plant from karst regions of south China [J]. Plant Species Biol, 34(4): 141-151.

    • CHEN J, 1979. Flora of China: Vol. 58 [M]. Beijing: Science Press: 48. [陈介, 1979. 中国植物志: 第58卷 [M]. 北京: 科学出版社: 48. ]

    • CHEN XY, LI N, SHEN L, 2001. The mating system of Ardisia crenata var. bicolor (Myrsinaceae), a subtropical understory shrub in Tiantong National Forest Park, Zhejiang Province [J]. Chin J Plant Ecol, 25(2): 161-165. [陈小勇, 厉宁, 沈浪, 2001. 浙江天童国家森林公园红凉伞交配系统研究 [J]. 植物生态学报, 25(2): 161-165. ]

    • CORTÉS-FLORES J, HERNÁNDEZ-ESQUIVEL KB, GONZÁLEZ-RODRÍGUEZ A, et al. , 2017. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: influence of phylogeny and abiotic factors [J]. Am J Bot, 104(1): 39-49.

    • CRUDEN RW, 1976. Intraspecific variation in pollen-ovule ratios and nectar secretion-preliminary evidence of ecotypic variation [J]. Ann Mo Bot Gard, 63(2): 277-289.

    • DAFNI A, 1992. Pollination ecology: a practical approach [J]. New York: Oxford University Press, 46(2): 1-5.

    • DANIELI-SILVA A, VARASSIN IG, 2013, Breeding system and thrips (Thysanoptera) pollination in the endangered tree Ocotea porosa (Lauraceae): implications for conservation [J]. Plant Species Biol, 28(1): 31-40.

    • DARWIN C, 1876. The effects of cross and self-fertilization in the vegetable kingdom [M]. London: John Murray.

    • FAN J, ZHANG W, ZHANG D, et al. , 2019, Flowering stage and daytime affect scent emission of Malus ioensis “Prairie Rose” [J]. Molecules, 24(13): 2356.

    • Flora of China Editorial Committee, 2006. Flora of China: Vol. 22 [M]. Beijing: Science Press and Missouri Botanical Garden Press: 7.

    • GONG YB, HUANG SQ, 2007. On methodology of foraging behavior of pollinating insects [J]. Biodivers Sci, 15(6): 576-583. [龚燕兵, 黄双全, 2007. 传粉昆虫行为的研究方法探讨 [J]. 生物多样性, 15(6): 576-583. ]

    • HARDER LD, BARRETT SCH, 1995. Mating cost of large floral display in hermaphrodite plant [J]. Nature, 372(6514): 512-515.

    • HE YP, LIU JQ, 2003. A review on recent advances in the studies of plant breeding system [J]. Chin J Plant Ecol, 27(2): 151-163. [何亚平, 刘建全, 2003. 植物繁育系统研究的最新进展和评述 [J]. 植物生态学报, 27(2): 151-163. ]

    • HEGLAND SJ, GRYTNES JA, TOTLAND O, 2009. The relative importance of positive and negative interactions for pollinator attraction in a plant community [J]. Ecol Res, 24(4): 929-936.

    • HOLSINGER KE, 1996. Pollination biology and the evolution of mating systems in flowering plants [J]. Evol Biol, 29(5): 107-149.

    • HUANG LC, JIN L, LI J, et al. , 2014. Floral morphology and its relationship with pollination systems in Papilionoideae [J]. Acta Ecol Sin, 34(19): 5360-5368. [黄利春, 金樑, 李晶, 等, 2014. 蝶形花亚科植物花部适应机制与传粉系统 [J]. 生态学报, 34(19): 5360-5368. ]

    • JEFFREY TH, KENNETH AL, MICHAEL M, 2011. Field trials for herbicide control of coral ardisia (Ardisia crenata) in natural areas of north-central Florida [J]. Invasive Plant Sci Manag, 4(2): 234-238.

    • LARSON BMH, BARRETT SCH, 1999. The pollination ecology of buzz-pollinated Rhexia virginica (Melastomataceae) [J]. Am J Bot, 86(4): 502-511.

    • LES DH, 1988. Breeding systems, population structure, and evolution in hydrophilous angiosperms [J]. Ann Mo Bot Gard, 75(3): 819-835.

    • LI TQ, LIU XF, LI ZH, et al. , 2018. Study on reproductive biology of Rhododendron longgipedicellatum: A newly discovered and special threatened plant surviving in limestone habitat in southeast Yunnan, China [J]. Front Plant Sci, 9: 33.

    • LI XJ, SHENG YJ, ZHANG T, et al. , 2021, The pollen germination and pollination biology of Polygonatum cyrtonema [J]. Acta Sci Nat Univ Sunyatseni, 60(6): 110-120. [李绪杰, 盛雅娟, 张彤, 等, 2021. 多花黄精花粉萌发与传粉生物学特征 [J]. 中山大学学报(自然科学版), 60(6): 110-120. ]

    • LLOYD DG, 1979. Some reproductive factors affecting the selection of self-fertilization in plants [J]. Am Nat, 113(1): 67-79.

    • LUO CW, CHEN Y, ZHANG T, 2019. Breeding system and pollination biology of Paeonia ostii [J]. J Nanjing For Univ (Nat Sci Ed), 43(3): 37-44. [罗长维, 陈友, 张涛, 2019. 凤丹繁育系统与传粉生物学研究 [J]. 南京林业大学学报(自然科学版), 43(3): 37-44. ]

    • LUO CW, HUANG ZY, CHEN X, et al. , 2011. Contribution of diurnal and nocturnal insects to the pollination of Jatropha curcas ( Euphorbiaceae) in southwestern China [J]. J Econ Entomol, 104(1): 149-154.

    • MAO SZ, DENG T, TANG WX, et al. , 2012. Comprehensive evaluation of the wild ornamental plants of Ardisia in Guangxi [J]. Guihaia, 32(4): 501-506. [毛世忠, 邓涛, 唐文秀, 等, 2012. 广西紫金牛属野生观赏植物的综合评价 [J]. 广西植物, 32(4): 501-506. ]

    • MU JP, WANG Q, GAI WF, et al. , 2018. Comparison of fitness between protogyny and protandry flowers in Gentiana squarrosa (Gentianaceae) [J]. J Mianyang Teach Coll, 37(2): 1-15. [慕军鹏, 王勤, 代文霏, 等, 2018. 鳞叶龙胆雌蕊先熟和雄蕊先熟适合度比较 [J]. 绵阳师范学院学报, 37(2): 1-15. ]

    • PASCAERLLA JB, 1997. Breeding systems of Ardisia Sw. (Myrsinaceae) [J]. Brittonia, 49(1): 45-53.

    • SATO H, 2002. The role of autonomous self-pollination in floral longevity in varieties of Impatiens hypophylla (Balsaminaceae) [J]. Am J Bot, 89(2): 263-269.

    • SCHOEN DJ, JOHNSON MTJ, WRIGHT SI, 2019, The ecology, evolution, and genetics of plant reproductive systems [J]. New Phytol, 224(3): 999-1004.

    • TRAVERS SE, ANDERSON K, VITT P, et al. , 2018. Breeding system and inbreeding depression in the rare orchid, Platanthera praeclara, in a fragmented grassland landscape [J]. Botany, 96(3): 151-159.

    • WAN HX, DENG HP, HE P, et al. , 2018. Breeding system and pollination biology of endangered Plantago fengdouensis [J]. Acta Ecol Sin, 38 (11): 4018-4026. [万海霞, 邓洪平, 何平, 等, 2018. 濒危植物丰都车前的繁育系统与传粉生物学研究 [J]. 生态学报, 38(11): 4018-4026. ]

    • WANG J, 2012. Breeding system of Magnolia officinalis subsp. biloba and its ending cause analysis of reproductive biology [D]. Beijing: Chinese Academy of Forestry Sciences: 1-96. [王洁, 2012. 凹叶厚朴繁育系统研究及其濒危的生殖生物学原因分析 [D]. 北京: 中国林业科学研究院: 1-96. ]

    • WANG QL, YE CH, YAN XX, et al. , 2015. Preliminary study on cutting techniques of Ardisia humilis [J]. J Trop Agric Sci, 35(7): 30-35. [王清隆, 叶才华, 晏小霞, 等, 2015. 矮紫金牛播种技术初探 [J]. 热带农业科学, 35(7): 30-35. ]

    • WANG X, DENG HP, DING B, et al. , 2012. Comparison of floral morphology and pollination characteristics between the sexes in Eurya obtusifolia [J]. Acta Ecol Sin, 32 (12): 3921-3930. [王茜, 邓洪平, 丁博, 等, 2012. 钝叶柃不同性别花的花部形态与传粉特征比较 [J]. 生态学报, 32(12): 3921-3930. ]

    • WEI HL, GAO C, QIU J, et al. , 2021. Flowering biological characteristics of Camellia weiningensis Y. K. Li [J]. Hortic Sci, 56(11): 1331-1339.

    • WEN X, ZHANG YS, SHANG YH, et al. , 2021. Flowering phenology and pollinating insect of Clematis patens [J]. Guihaia, 41(8) : 1315-1323. [温馨, 张永胜, 尚禹含, 等, 2021. 大花铁线莲开花物候与传粉昆虫的研究[J]. 广西植物, 41(8): 1315-1323. ]

    • YU VA, 2013. Geographic distribution of halictid bees of the subfamilies Rophitinae and Nomiinae (Hymenoptera, Halictidae) in the Palaearctic [J] Entomol Rev, 93(4): 437-451.

    • ZHANG XY, WANG ZK, LI GF, et al. , 2019. A study on breeding characteristics and ecological adaptability of the Ferula ferulaeoides [J]. Bull Bot Res, 39(3): 321-328. [赵晓依, 王仲科, 李桂芳, 等, 2019. 多伞阿魏的繁育系统及其生态适应性 [J]. 植物研究, 39(3): 321-328. ]

    • ZHANG ZQ, ZHANG YH, SUN H, 2011. The reproductive biology of Stellera chamaejasme(Thymelaeaceae): A self-incompatible weed with specialized flowers [J]. Flora, 206(6): 567-574.