en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨钰洁(1995-),硕士研究生,主要从事植物铁营养代谢研究,(E-mail)870417073@qq.com。

通讯作者:

梁岗,博士,研究员,主要从事植物矿质营养研究,(E-mail)lianggang@xtbg.ac.cn。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2023)02-0399-06

DOI:10.11931/guihaia.gxzw202103013

参考文献
BALK J, SCHAEDLER TA, 2014. Iron cofactor assembly in plants [J]. Ann Rev Plant Biol, 65: 125-153.
参考文献
BUCKHOUT TJ, YANG TJW, SCHMIDT W, 2009. Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses [J]. BMC Genomics, 10: 147.
参考文献
CAI YR, LI Y, LIANG G, 2021. FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis [J]. Plant Cell Environ, 44(5): 1679-1691.
参考文献
COLANGELO EP, GUERINOT ML, 2004. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response [J]. Plant Cell, 16(12): 3400-3412.
参考文献
CUI Y, CHEN CL, CUI M, et al. , 2018. Four IVa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis [J]. Mol Plant, 11(9): 1166-1183.
参考文献
FOURCROY P, SISO-TERRAZA P, SUDRE D, et al. , 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency [J]. New Phytol, 201(1): 155-167.
参考文献
GARCIA MJ, LUCENA C, ROMERA FJ, et al. , 2010. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis [J]. J Exp Bot, 61(14): 3885-3899.
参考文献
GRATZ R, MANISHANKAR P, IVANOV R, et al. , 2019. CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling [J]. Dev Cell, 48(5): 726-740.
参考文献
GRATZ R, BRUMBAROVA T, IVANOV R, et al. , 2020. Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR [J]. New Phytol, 225(1): 250-267.
参考文献
GRILLET L, SCHMIDT W, 2019. Iron acquisition strategies in land plants: not so different after all [J]. New Phytol, 224(1): 11-18.
参考文献
GUERINOT ML, YI Y, 1994. Iron: Nutritious, noxious, and not readily available [J]. Plant Physiol, 104(3): 815-820.
参考文献
JAKOBY M, WANG HY, REIDT W, et al. , 2004. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana [J]. FEBS Lett, 577(3): 528-534.
参考文献
LINGAM S, MOHRBACHER J, BRUMBAROVA T, et al. , 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis [J]. Plant Cell, 23(5): 1815-1829.
参考文献
LEI RH, LI Y, CAI YR, et al. , 2020. bHLH121 functions as a direct link that facilitates the activation of FIT by bHLH IVc transcription factors for maintaining Fe homeostasis in Arabidopsis [J]. Mol Plant, 13(4): 634-649.
参考文献
MATSUOKA K, FURUKAWA J, BIDADDI H, et al. , 2014. Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis [J]. Plant Cell Physiol, 55(1): 87-98.
参考文献
MAURER F, NARANJO ARCOS MA, BAUER P, 2014. Responses of a triple mutant defective in three iron deficiency-induced BASIC HELIX-LOOP-HELIX genes of the subgroup Ib(2) to iron deficiency and salicylic acid [J]. PLoS ONE, 9(6): e99234.
参考文献
MEISER J, LINGAM S, BAUER P, et al. , 2011. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide [J]. Plant Physiol, 157(4): 2154-2166.
参考文献
MORRISSEY J, GUERINOT ML, 2009. Iron uptake and transport in plants: The good, the bad, and the ionome [J]. Chem Rev, 109(10): 4553-4567.
参考文献
NARANJO-ARCOS MA, MAURER F, MEISER J, et al. , 2017. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein [J]. Sci Rep, 7: 10911.
参考文献
ROBINSON NJ, PROCTER CM, CONNOLLY EL, et al. , 1999. A ferric-chelate reductase for iron uptake from soils [J]. Nature, 397(6721): 694-697.
参考文献
RODRIGUEZ-CELMA J, SCHMIDT W, 2013. Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds [J]. Plant Signal Behav, 8(11): e26116.
参考文献
ROMHELD V, MARSCHNER H, 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses [J]. Plant Physiol, 80(1): 175-180.
参考文献
SANTI S, SCHMIDT W, 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots [J]. New Phytol, 183(4): 1072-1084.
参考文献
SCHMID NB, GIEHL RFH, DOLL S, et al. , 2014. Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis [J]. Plant Physiol, 164(1): 160-172.
参考文献
SCHWARZ B, BAUER P, 2020. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and-independent gene signatures [J]. J Exp Bot, 71(5): 1694-1705.
参考文献
SIVITZ A, GRINVALDS C, BARBERON M, et al. , 2011. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses [J]. Plant J, 66(6): 1044-1052.
参考文献
SIVITZ AB, HERMAND V, CURIE C, et al. , 2012. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway [J]. PLoS ONE, 7(9): e44843.
参考文献
SIWINSKA J, SIATKOWSKA K, OIRY A, et al. , 2018. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis [J]. J Exp Bot, 69(7): 1735-1748.
参考文献
TSAI HH, RODRÍGUEZ-CELMA J, LAN P, et al. , 2018. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization [J]. Plant Physiol, 177(1): 194-207.
参考文献
VAROTTO C, MAIWALD D, PESARESI P, et al. , 2002. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana [J]. Plant J, 31(5): 589-599.
参考文献
VERT G, GROTZ N, DEALDECHAMP F, et al. , 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth [J]. Plant Cell, 14(6): 1223-1233.
参考文献
WALKER EL, CONNOLLY EL, 2008. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants [J]. Curr Opin Plant Biol, 11(5): 530-535.
参考文献
WANG HY , KLATTE M, JAKOBY M, et al. , 2007. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana [J]. Planta, 226(4): 897-908.
参考文献
WANG N, CUI Y, LIU Y, et al. , 2013. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana [J]. Mol Plant, 6(2): 503-513.
参考文献
WILD M, DAVIERE JM, REGNAULT T, et al. , 2016. Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses [J]. Dev Cell, 37(2): 190-200.
参考文献
YANG JL, CHEN WW, CHEN LQ, et al. , 2013. The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana [J]. New Phytol, 197(3): 815-824.
参考文献
YUAN YX, WU HL, WANG N, et al. , 2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis [J]. Cell Res, 18(3): 385-397.
参考文献
YUAN YX, ZHANG J, WANG DW, et al. , 2005. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants [J]. Cell Res, 15(8): 613-621.
目录contents

    摘要

    FIT是调控拟南芥铁稳态的一个关键调控因子,它在转录水平上受到缺铁诱导,但其背后的调控机制还不甚清楚。该研究以拟南芥bHLH38和FIT的单、双过表达植物及bHLH Ib四突变体植物为材料,采用缺铁(-Fe)处理实验和定量RT-PCR的方法从RNA角度分析了FIT转录水平的变化。结果表明:(1)在铁充足时,bHLH38过表达植物中FIT的转录水平显著高于其在野生型中的水平。(2)在bHLH Ib四突变体植物中FIT的转录水平不受缺铁诱导。(3)FIT单过表达不能激活内源FIT的转录,而在加铁(+Fe)条件下bHLH38和FIT的双过表达则可以激活内源FIT的转录。(4)在缺铁条件下,所有植物中FIT的转录水平均与野生型中的FIT水平无明显差异。基于以上结果认为,bHLH Ib转录因子是缺铁诱导FIT转录的必要条件,而非充分条件。该研究结果为深入了解植物通过多种途径共同维持铁稳态提供了新的见解。

    Abstract

    FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is a key regulator of Fe homeostasis in Arabidopsis, which is upregulated under Fe deficiency condition, however, the underlying regulatory mechanism is still unclear. In this study, the single and dual overexpression plants of A. thaliana bHLH38 and FIT, as well as the bHLH Ib quadruple mutant plants, were used as research materials, and Fe deficiency test and quantitative RT-PCR were used to analyze the change of FIT transcription level from the perspective of RT-RNA. The results were as follows: (1) Under Fe sufficient condition, the transcription level of FIT significantly increased in the bHLH38 overexpression plants compared with in the wild type plants. (2) The transcription of FIT did not respond to Fe deficiency in the bHLH Ib quadruple mutant plant. (3) The overexpression of FIT could not activate the transcription of native FIT, and the dual overexpression of FIT and bHLH38 promoted the transcription of native FIT under Fe sufficient conditions. (4) There was no significant difference for the expression of FIT between the transgenic or mutant plants and wild type plants under Fe deficiency condition. Taken together, these data suggest that bHLH Ib transcription factors are necessary, but not sufficient, for the upregulation of FIT by Fe deficiency. The results of this study provide new insights into the various ways that plants work together to maintain Fe homeostasis.

    关键词

    转录调控缺铁响应铁稳态拟南芥

  • 铁是植物生长发育的重要微量元素之一,它作为多种酶的辅助因子参与植物的光合作用、呼吸作用、叶绿素的生物合成、植物固氮以及植物激素合成等重要生命过程(Balk &Schaedler,2014)。铁是地壳中的第四大元素,易氧化形成沉淀,不易被植物利用,在pH较高的土壤中,铁的利用率更低(Guerinot &Yi,1994)。植物缺铁常常导致缺铁症状,如叶片脉间失绿黄化,而植物是人类获取铁的重要膳食来源,植物缺铁会影响人类健康。植物为了从土壤中获取足够的铁,已经进化出两种不同的吸收策略,即非禾本科植物的策略I和禾本科植物的策略Ⅱ(Romheld &Marschner,1986; Grillet &Schmidt,2019)。模式植物拟南芥采用的策略I包括土壤酸化、Fe3+还原为Fe2+和铁吸收3个步骤。拟南芥的根际土壤酸化主要由AHA2完成(Santi &Schmidt,2009),之后Fe3+被铁还原氧化酶2(ferric reduction oxidase2,FRO2)还原为Fe2+(Robinson et al.,1999),最后由铁调节转运体1(iron-regulated transporter 1,IRT1)转运进根细胞(Varotto et al.,2002; Vert et al.,2002)。禾本科植物如大麦(Hordeum vulgare)、玉米(Zea mays)和水稻(Oryza sativa)可以分泌高亲和力的麦根酸(被称为植物铁载体)来直接螯合Fe3+(Walker &Connolly,2008; Morrissey &Guerinot,2009)。近年来的研究表明,拟南芥也能分泌铁螯合物(Rodriguez-Celma &Schmidt,2013; Fourcroy et al.,2014; Schmid et al.,2014; Siwinska et al.,2018; Tsai et al.,2018)。

  • FIT是策略I机制中的一个关键调控因子,其功能丧失会导致IRT1和FRO2表达水平的降低和严重的缺铁症状(Vert et al.,2002; Colangelo &Guerinot,2004; Jakoby et al.,2004; Yuan et al.,2005)。FIT与bHLH Ib亚家族的四个成员(bHLH38、bHLH39、bHLH100和bHLH101)相互作用调控缺铁响应(Yuan et al.,2008; Wang et al.,2013)。这四个基因都受到缺铁条件的诱导且它们的蛋白功能冗余(Wang et al.,2013)。FIT也是多种植物激素信号和细胞内信号与缺铁信号联系的中心枢纽。例如,FIT蛋白的稳定性受到乙烯和一氧化氮(NO)的调节(Garcia et al.,2010; Lingam et al.,2011; Meiser et al.,2011)。乙烯信号通路中的转录因子EIN3(ETHYLENE INSENSITIVE 3)和EIL1(ETHYLENE INSENSITIVE 3-LIKE1)与FIT互作,并增强其稳定性(Lingam et al.,2011)。NO能抑制FIT蛋白降解,促进其在缺铁条件下的稳定(Meiser et al.,2011)。此外,NO通过GRF11(GENERAL REGULATORY FACTOR 11)调节FIT转录(Yang et al.,2013)。赤霉素是缺铁反应的另一个正调控因子。DELLA蛋白作为赤霉素信号通路的负调控因子,与FIT蛋白相互作用并抑制FIT蛋白功能(Wild et al.,2016)。另外,茉莉酸通过诱导bHLH IVa亚家族基因(bHLH18、bHLH19、bHLH20和bHLH25)的表达负调控缺铁反应,其产物与FIT相互作用并促进FIT的降解(Matsuoka et al.,2014; Cui et al.,2018)。FIT作为缺铁响应信号中的关键调控因子,其转录也受到缺铁诱导。Lei等(2020)的研究表明,bHLH121直接靶向FIT的启动子,并正调控后者转录。

  • FIT作为铁稳态信号中的一个关键调控因子,其自身的转录也受到缺铁条件的诱导。已有的研究表明,FIT和bHLH Ib可以影响FIT的转录(Wang et al.,2007; Naranjo-Arcos et al.,2017),但它们是如何调控FIT表达的还不甚清楚。本研究重点关注bHLH Ib成员bHLH38及FIT转录因子对FIT转录水平的调控,探讨bHLH38过表达是否可以激活FIT的转录,在bHLH Ib的四突变体植物中FIT转录是否再受缺铁诱导,FIT过表达能否激活内源FIT的转录,以及bHLH38和FIT的双过表达如何影响FIT的表达。

  • 1 材料与方法

  • 1.1 植物材料和生长条件

  • 所用的拟南芥材料为Columbia-0生态型。播种前将种子用70%酒精浸泡15 min,之后用蒸馏水清洗至少3次。将种子铺在培养基上,4℃冷藏2 d后移到温室进行培养(22℃,光照16 h/黑暗8 h)。+Fe培养基,即1/2MS培养基(1%蔗糖、0.7%琼脂A、0.1 mmol·L-1 Fe(Ⅱ)-EDTA、pH 5.8); -Fe培养基,即其培养基成分除了不加Fe(Ⅱ)-EDTA以外,与上面提及的+Fe培养基一样。论文中所用的FIT过表达植物来自中国科学院遗传发育研究所凌宏清研究组(Cui et al.,2018)。

  • 1.2 载体构建及转基因

  • 提取野生型拟南芥根部的RNA,反转录成cDNA,通过PCR获得了bHLH38的全长编码区序列,并将其克隆到pOCA30双元表达载体上。用载体来转化农杆菌EHA105,并利用浸花法转化野生型拟南芥。将T1代转基因种子置于1/2MS+50 mg·L-1卡那霉素的平板上进行阳性苗筛选。

  • 1.3 定量RT-PCR分析

  • 将在+Fe(0.1 mmol·L-1 Fe(Ⅱ)-EDTA)垂直板上生长7 d的幼苗,分别移到+Fe和-Fe垂直板上生长3 d,之后分离根用液氮冻存。利用Trizol试剂盒提取根部的总RNA,用反转录试剂盒(TaKaRa)的oligo(dT)18引物反转成cDNA。使用 SYBR Premix Ex TaqTM kit(TaKaRa)定量RT-PCR试剂盒在Roche Light Cycler 480 real-time PCR仪器上进行定量检测,其中ACT2用作内参基因。

  • 2 结果与分析

  • 2.1 bHLH38过表达促进了FIT在加铁(+Fe)条件下的表达

  • 选择bHLH38作为bHLH Ib转录因子的代表开展研究。IRT1和FRO2是FIT和bHLH Ib转录因子的靶基因,受到缺铁条件的诱导。在我们的实验里,IRT1和FRO2被用作阳性Marker基因。我们用定量RT-PCR检测了缺铁响应基因IRT1、FRO2和FIT的表达。图1结果表明,在+Fe情况下IRT1、FRO2和FITbHLH38过表达植物中的表达水平均显著高于它们在WT中的水平; 而在-Fe情况下,它们在bHLH38过表达植物中的表达则类似于或略低于其在WT中的水平。

  • 图1 IRT1、FRO2和FITbHLH38过表达植物中的表达情况

  • Fig.1 Expression of IRT1, FRO2 and FIT in the bHLH38 overexpression plants

  • 2.2 四突变体植物的FIT转录水平不受缺铁(-Fe)诱导

  • 对bHLH Ib的四突变体bhlh4x-1和bhlh4x-2进行缺铁处理(Cai et al.,2021),并通过定量RT-PCR检测IRT1、FRO2和FIT的表达。图2结果表明,在+Fe情况下,IRT1和FRO2在bhlh4x-1和bhlh4x-2中的表达水平均显著低于它们在WT中的水平,而FIT的表达水平则无明显变化。相比较而言,在-Fe情况下,IRT1、FRO2和FITbhlh4x-1和bhlh4x-2中的表达水平均显著低于它们在WT中的水平。

  • 2.3 外源FIT过表达不能激活内源FIT的转录

  • FIT过表达植物进行缺铁处理并利用定量RT-PCR检测IRT1、FRO2和内源FIT的表达(图3)。我们用跨FIT基因最后一个外显子与3’UTR的一个片段来定量内源FIT的表达。图3结果表明,无论是在+Fe还是-Fe的情况下,IRT1和FRO2的表达水平在FIT过表达植物中均轻微上调,而内源FIT的表达水平在FIT过表达植物和WT植物中则均无显著差异。

  • 2.4 在+Fe条件下bHLH38和FIT的双过表达促进了内源FIT的增加

  • 先分别对bHLH38和FIT的双过表达植物进行缺铁处理,再通过定量RT-PCR检测IRT1、FRO2以及内源FIT的转录变化。图4结果表明,在+Fe和-Fe的情况下,双过表达植物中IRT1和FRO2的表达水平均高于WT中的表达水平。相比较而言,双过表达植物的内源FIT水平只有在+Fe时才高于WT,而在-Fe时与WT的水平相近。

  • 图2 IRT1、FRO2和FIT在四突变体植物中的表达情况

  • Fig.2 Expression of IRT1, FRO2 and FIT in the bhlh4x mutant plants

  • 图3 IRT1、FRO2和FITFIT过表达植物中的表达情况

  • Fig.3 Expression of IRT1, FRO2 and native FIT in the FIT overexpression plants

  • 图4 IRT1、FRO2和FIT在双过表达植物中的表达情况

  • Fig.4 Expression of IRT1, FRO2 and native FIT in the dual overexpression plants

  • 3 讨论与结论

  • 铁是植物生长发育所必需的一种矿质元素,而铁的可利用性主要依赖于土壤的pH值。在酸性土壤中部分铁以离子形式存在被植物利用,但在碱性土壤中铁主要以不溶的氧化状态存在。由于植物固着生长无法移动,因此在碱性土壤中生长的植物不得不面对缺铁胁迫。经过长期的进化,植物已经进化了一些特殊的机制来适应缺铁环境。植物能感知铁浓度的变化,并通过一套严密的铁信号转导系统来激活下游铁吸收相关基因的表达以促进铁的吸收。在拟南芥的缺铁响应系统中,FIT是一个处于核心位置的调控因子,它直接控制了铁吸收基因IRT1和FRO2的表达(Schwarz &Bauer,2020)。但是,FIT自身的转录也受到缺铁的诱导(Colangelo &Guerinot,2004)。探究FIT在缺铁条件下如何被激活已成为铁信号研究领域的一个热点。

  • 过表达bHLH Ib亚家族的成员bHLH39可以在+Fe情况下激活FIT表达(Naranjo-Arcos et al.,2017),表明bHLH39在+Fe条件下正调控FIT的表达。我们分析了bHLH Ib中另一个成员bHLH38的过表达植物,发现FIT的表达趋势类似于其在bHLH39过表达植物的情况,这证明bHLH Ib家族成员之间的功能冗余。由于较强的功能冗余性,因此bHLH Ib四个成员的单、双突变体无明显的缺铁表型,三突变体表现出轻微的缺铁表型(Sivitz et al.,2012; Wang et al.,2013; Maurer et al.,2014),而四突变体则表现出强烈的缺铁症状(Cai et al.,2021)。本研究发现,四突变体中FIT的表达水平在+Fe时没有显著变化,但在-Fe时显著低于其WT中的水平,这表明bHLH Ib对于-Fe时FIT的上调是必需的。

  • fit突变体中FIT的启动子活性显著低于WT中的水平(Wang et al.,2007),表明FIT对于其自身的转录是必需的。本研究结果表明,在FIT过表达植物里,内源FIT的表达与WT无显著差异,这表明外源FIT过表达不足以促进内源FIT的转录。因此,FIT对于FIT自身转录虽是必要条件,但不是充分条件。在铁稳态信号转导途径中,FIT通过与bHLH Ib成员形成异源二聚体共同激活下游基因IRT1和FRO2的表达(Yuan et al.,2018; Wang et al.,2013)。在WT背景下过表达bHLH39可以促进IRT1和FRO2的表达,而在fit突变体背景下bHLH39却不能激活靶基因IRT1和FRO2(Naranjo-Arcos et al.,2017),这说明bHLH39激活IRT1和FRO2的转录需要FIT的参与。在+Fe情况下,bHLH38过表达及bHLH38和FIT双过表达都可以促进IRT1、FRO2和内源FIT的转录。相比较而言,在-Fe情况下,双过表达虽然促进了IRT1和FRO2的表达,但没有促进FIT的表达,而bHLH38单过表达对IRT1、FRO2和FIT的表达影响不大。因此,我们得出结论:bHLH Ib是缺铁诱导FIT的必要条件,而不是充分条件。

  • 当外源FIT蛋白过量表达时,拟南芥会启动体内的26S蛋白酶降解系统来促进FIT的降解,最终维持FIT的蛋白相对稳定(Meiser et al.,2011; Sivitz et al.,2011)。Sivitz等(2011)研究认为,在-Fe情况下,拟南芥植物需要维持稳定水平的、有活性的FIT蛋白,既可以保证植物吸收足够的铁,又可以保证植物不会因吸入过多铁而对其产生毒害。本研究结果表明,FIT转录水平在缺铁条件下已经达到最高值,即使额外增加正调控它的转录因子的水平也不能提高FIT的转录水平,这暗示植物不需要或不能维持太高的内源FIT转录本。这种内源FIT转录本的阈值现象与FIT蛋白的阈值现象非常类似。我们猜测,植物可能已经进化出了不同的方式来维持铁稳态。从RNA和蛋白两方面控制FIT的水平可能是植物维持铁稳态的关键一环。除了这两方面以外,拟南芥还能根据铁浓度的变化调整FIT蛋白在细胞核与细胞质的比例以及调整FIT的磷酸化状态(Gratz et al.,2019,2020),最终维持植物的铁稳态。本研究从RNA角度研究了FIT的转录变化,这为今后深入了解植物通过多种途径共同维持铁稳态提供了新的见解。

  • 参考文献

    • BALK J, SCHAEDLER TA, 2014. Iron cofactor assembly in plants [J]. Ann Rev Plant Biol, 65: 125-153.

    • BUCKHOUT TJ, YANG TJW, SCHMIDT W, 2009. Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses [J]. BMC Genomics, 10: 147.

    • CAI YR, LI Y, LIANG G, 2021. FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis [J]. Plant Cell Environ, 44(5): 1679-1691.

    • COLANGELO EP, GUERINOT ML, 2004. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response [J]. Plant Cell, 16(12): 3400-3412.

    • CUI Y, CHEN CL, CUI M, et al. , 2018. Four IVa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis [J]. Mol Plant, 11(9): 1166-1183.

    • FOURCROY P, SISO-TERRAZA P, SUDRE D, et al. , 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency [J]. New Phytol, 201(1): 155-167.

    • GARCIA MJ, LUCENA C, ROMERA FJ, et al. , 2010. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis [J]. J Exp Bot, 61(14): 3885-3899.

    • GRATZ R, MANISHANKAR P, IVANOV R, et al. , 2019. CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling [J]. Dev Cell, 48(5): 726-740.

    • GRATZ R, BRUMBAROVA T, IVANOV R, et al. , 2020. Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR [J]. New Phytol, 225(1): 250-267.

    • GRILLET L, SCHMIDT W, 2019. Iron acquisition strategies in land plants: not so different after all [J]. New Phytol, 224(1): 11-18.

    • GUERINOT ML, YI Y, 1994. Iron: Nutritious, noxious, and not readily available [J]. Plant Physiol, 104(3): 815-820.

    • JAKOBY M, WANG HY, REIDT W, et al. , 2004. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana [J]. FEBS Lett, 577(3): 528-534.

    • LINGAM S, MOHRBACHER J, BRUMBAROVA T, et al. , 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis [J]. Plant Cell, 23(5): 1815-1829.

    • LEI RH, LI Y, CAI YR, et al. , 2020. bHLH121 functions as a direct link that facilitates the activation of FIT by bHLH IVc transcription factors for maintaining Fe homeostasis in Arabidopsis [J]. Mol Plant, 13(4): 634-649.

    • MATSUOKA K, FURUKAWA J, BIDADDI H, et al. , 2014. Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis [J]. Plant Cell Physiol, 55(1): 87-98.

    • MAURER F, NARANJO ARCOS MA, BAUER P, 2014. Responses of a triple mutant defective in three iron deficiency-induced BASIC HELIX-LOOP-HELIX genes of the subgroup Ib(2) to iron deficiency and salicylic acid [J]. PLoS ONE, 9(6): e99234.

    • MEISER J, LINGAM S, BAUER P, et al. , 2011. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide [J]. Plant Physiol, 157(4): 2154-2166.

    • MORRISSEY J, GUERINOT ML, 2009. Iron uptake and transport in plants: The good, the bad, and the ionome [J]. Chem Rev, 109(10): 4553-4567.

    • NARANJO-ARCOS MA, MAURER F, MEISER J, et al. , 2017. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein [J]. Sci Rep, 7: 10911.

    • ROBINSON NJ, PROCTER CM, CONNOLLY EL, et al. , 1999. A ferric-chelate reductase for iron uptake from soils [J]. Nature, 397(6721): 694-697.

    • RODRIGUEZ-CELMA J, SCHMIDT W, 2013. Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds [J]. Plant Signal Behav, 8(11): e26116.

    • ROMHELD V, MARSCHNER H, 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses [J]. Plant Physiol, 80(1): 175-180.

    • SANTI S, SCHMIDT W, 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots [J]. New Phytol, 183(4): 1072-1084.

    • SCHMID NB, GIEHL RFH, DOLL S, et al. , 2014. Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis [J]. Plant Physiol, 164(1): 160-172.

    • SCHWARZ B, BAUER P, 2020. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and-independent gene signatures [J]. J Exp Bot, 71(5): 1694-1705.

    • SIVITZ A, GRINVALDS C, BARBERON M, et al. , 2011. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses [J]. Plant J, 66(6): 1044-1052.

    • SIVITZ AB, HERMAND V, CURIE C, et al. , 2012. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway [J]. PLoS ONE, 7(9): e44843.

    • SIWINSKA J, SIATKOWSKA K, OIRY A, et al. , 2018. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis [J]. J Exp Bot, 69(7): 1735-1748.

    • TSAI HH, RODRÍGUEZ-CELMA J, LAN P, et al. , 2018. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization [J]. Plant Physiol, 177(1): 194-207.

    • VAROTTO C, MAIWALD D, PESARESI P, et al. , 2002. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana [J]. Plant J, 31(5): 589-599.

    • VERT G, GROTZ N, DEALDECHAMP F, et al. , 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth [J]. Plant Cell, 14(6): 1223-1233.

    • WALKER EL, CONNOLLY EL, 2008. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants [J]. Curr Opin Plant Biol, 11(5): 530-535.

    • WANG HY , KLATTE M, JAKOBY M, et al. , 2007. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana [J]. Planta, 226(4): 897-908.

    • WANG N, CUI Y, LIU Y, et al. , 2013. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana [J]. Mol Plant, 6(2): 503-513.

    • WILD M, DAVIERE JM, REGNAULT T, et al. , 2016. Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses [J]. Dev Cell, 37(2): 190-200.

    • YANG JL, CHEN WW, CHEN LQ, et al. , 2013. The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana [J]. New Phytol, 197(3): 815-824.

    • YUAN YX, WU HL, WANG N, et al. , 2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis [J]. Cell Res, 18(3): 385-397.

    • YUAN YX, ZHANG J, WANG DW, et al. , 2005. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants [J]. Cell Res, 15(8): 613-621.

  • 参考文献

    • BALK J, SCHAEDLER TA, 2014. Iron cofactor assembly in plants [J]. Ann Rev Plant Biol, 65: 125-153.

    • BUCKHOUT TJ, YANG TJW, SCHMIDT W, 2009. Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses [J]. BMC Genomics, 10: 147.

    • CAI YR, LI Y, LIANG G, 2021. FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis [J]. Plant Cell Environ, 44(5): 1679-1691.

    • COLANGELO EP, GUERINOT ML, 2004. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response [J]. Plant Cell, 16(12): 3400-3412.

    • CUI Y, CHEN CL, CUI M, et al. , 2018. Four IVa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis [J]. Mol Plant, 11(9): 1166-1183.

    • FOURCROY P, SISO-TERRAZA P, SUDRE D, et al. , 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency [J]. New Phytol, 201(1): 155-167.

    • GARCIA MJ, LUCENA C, ROMERA FJ, et al. , 2010. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis [J]. J Exp Bot, 61(14): 3885-3899.

    • GRATZ R, MANISHANKAR P, IVANOV R, et al. , 2019. CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling [J]. Dev Cell, 48(5): 726-740.

    • GRATZ R, BRUMBAROVA T, IVANOV R, et al. , 2020. Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR [J]. New Phytol, 225(1): 250-267.

    • GRILLET L, SCHMIDT W, 2019. Iron acquisition strategies in land plants: not so different after all [J]. New Phytol, 224(1): 11-18.

    • GUERINOT ML, YI Y, 1994. Iron: Nutritious, noxious, and not readily available [J]. Plant Physiol, 104(3): 815-820.

    • JAKOBY M, WANG HY, REIDT W, et al. , 2004. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana [J]. FEBS Lett, 577(3): 528-534.

    • LINGAM S, MOHRBACHER J, BRUMBAROVA T, et al. , 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis [J]. Plant Cell, 23(5): 1815-1829.

    • LEI RH, LI Y, CAI YR, et al. , 2020. bHLH121 functions as a direct link that facilitates the activation of FIT by bHLH IVc transcription factors for maintaining Fe homeostasis in Arabidopsis [J]. Mol Plant, 13(4): 634-649.

    • MATSUOKA K, FURUKAWA J, BIDADDI H, et al. , 2014. Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis [J]. Plant Cell Physiol, 55(1): 87-98.

    • MAURER F, NARANJO ARCOS MA, BAUER P, 2014. Responses of a triple mutant defective in three iron deficiency-induced BASIC HELIX-LOOP-HELIX genes of the subgroup Ib(2) to iron deficiency and salicylic acid [J]. PLoS ONE, 9(6): e99234.

    • MEISER J, LINGAM S, BAUER P, et al. , 2011. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide [J]. Plant Physiol, 157(4): 2154-2166.

    • MORRISSEY J, GUERINOT ML, 2009. Iron uptake and transport in plants: The good, the bad, and the ionome [J]. Chem Rev, 109(10): 4553-4567.

    • NARANJO-ARCOS MA, MAURER F, MEISER J, et al. , 2017. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein [J]. Sci Rep, 7: 10911.

    • ROBINSON NJ, PROCTER CM, CONNOLLY EL, et al. , 1999. A ferric-chelate reductase for iron uptake from soils [J]. Nature, 397(6721): 694-697.

    • RODRIGUEZ-CELMA J, SCHMIDT W, 2013. Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds [J]. Plant Signal Behav, 8(11): e26116.

    • ROMHELD V, MARSCHNER H, 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses [J]. Plant Physiol, 80(1): 175-180.

    • SANTI S, SCHMIDT W, 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots [J]. New Phytol, 183(4): 1072-1084.

    • SCHMID NB, GIEHL RFH, DOLL S, et al. , 2014. Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis [J]. Plant Physiol, 164(1): 160-172.

    • SCHWARZ B, BAUER P, 2020. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and-independent gene signatures [J]. J Exp Bot, 71(5): 1694-1705.

    • SIVITZ A, GRINVALDS C, BARBERON M, et al. , 2011. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses [J]. Plant J, 66(6): 1044-1052.

    • SIVITZ AB, HERMAND V, CURIE C, et al. , 2012. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway [J]. PLoS ONE, 7(9): e44843.

    • SIWINSKA J, SIATKOWSKA K, OIRY A, et al. , 2018. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis [J]. J Exp Bot, 69(7): 1735-1748.

    • TSAI HH, RODRÍGUEZ-CELMA J, LAN P, et al. , 2018. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization [J]. Plant Physiol, 177(1): 194-207.

    • VAROTTO C, MAIWALD D, PESARESI P, et al. , 2002. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana [J]. Plant J, 31(5): 589-599.

    • VERT G, GROTZ N, DEALDECHAMP F, et al. , 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth [J]. Plant Cell, 14(6): 1223-1233.

    • WALKER EL, CONNOLLY EL, 2008. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants [J]. Curr Opin Plant Biol, 11(5): 530-535.

    • WANG HY , KLATTE M, JAKOBY M, et al. , 2007. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana [J]. Planta, 226(4): 897-908.

    • WANG N, CUI Y, LIU Y, et al. , 2013. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana [J]. Mol Plant, 6(2): 503-513.

    • WILD M, DAVIERE JM, REGNAULT T, et al. , 2016. Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses [J]. Dev Cell, 37(2): 190-200.

    • YANG JL, CHEN WW, CHEN LQ, et al. , 2013. The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana [J]. New Phytol, 197(3): 815-824.

    • YUAN YX, WU HL, WANG N, et al. , 2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis [J]. Cell Res, 18(3): 385-397.

    • YUAN YX, ZHANG J, WANG DW, et al. , 2005. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants [J]. Cell Res, 15(8): 613-621.