en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李童(1997-),硕士,主要从事花卉物种质资源创新与育种研究,(E-mail)13051865858@163.com。

通讯作者:

赵惠恩,博士,教授,研究方向为花卉种质资源创新与育种,(E-mail)zhaohuien@bjfu.edu.cn。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2024)02-0257-10

DOI:10.11931/guihaia.gxzw202204002

参考文献
ALBERT VA, GUSTAFSSON MHG, LAURENZIO LD, 1998. Ontogenetic systematics, molecular developmental genetics, and the angiospermpetal [M]//Molecular Systematics of plants Ⅱ. Boston: Springer: 349-374.
参考文献
CHOU KC, SHEN HB, 2010. Cell-PLoc 2. 0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms [J]. Nat Sci, 2(10): 1090.
参考文献
COEN ES, MEYEROWITZ EM, 1991. The war of the whorls: genetic interactions controlling flower development [J]. Nature, 353(6339): 31-37.
参考文献
FAN D, LIU TT, LI CF, et al. , 2015. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation [J]. Sci Rep, 5(1): 1-7.
参考文献
GAN HC, LAI CC, PAN H, et al. , 2018. Plant expression vector construction and jasmine [Jasminum sambac (Linn. ) Aiton] callus transformation of DFR gene from spine grape (Vitis davidii Foëx. ) [J]. Chin J Trop Crop, 39(6): 1128-1136. [甘煌灿, 赖呈纯, 潘红, 等, 2018. 刺葡萄DFR基因植物表达载体构建及转化茉莉花愈伤组织的研究 [J]. 热带作物学报, 39(6): 1128-1136. ]
参考文献
HSU PD, SCOTT DA, WEINSTEIN JA, et al. , 2013. DNA targeting specificity of RNA-guided Cas9 nucleases [J]. Nat Biotechnol, 31(9): 827-832.
参考文献
HU XY, GUO CL, WANG L, et al. , 2021. Cloning and function analysis of VvMADS46 in red globe and thompson seedless for seedless regulation [J]. J Fruit Sci, 38(8): 1231-1239. [胡晓燕, 郭春磊, 王莉, 等, 2021. 无核白及红地球葡萄VvMADS46基因的克隆及其无核调控功能分析 [J]. 果树学报, 38(8): 1231-1239. ]
参考文献
JARAMILLO MA, KRAMER EM, 2004. APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae) [J]. Evol Dev, 6(6): 449-458.
参考文献
JIA DJ, FAN LM, SHEN JL, et al. , 2013. Genetic transformation and expressing of astaxanthin biosynthesis genes BKT into ‘Brookfield Gala’ apple tree [J]. Acta Hortic Sin, 40(1): 21-31. [贾东杰, 樊连梅, 沈俊岭, 等, 2013. 虾青素合成关键酶基因BKT在‘Brookfield Gala’苹果中的遗传转化及表达 [J]. 园艺学报, 40(1): 21-31. ]
参考文献
JINEK M, CHYLINSKI K, FONFARA I, et al. , 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 337(6096): 816-821.
参考文献
KAUR H, PANDEY DK, GOUTAM U, et al. , 2021. CRISPR/Cas9-mediated genome editing is revolutionizing the improvement of horticultural crops: recent advances and future prospects [J]. Sci Hort-Amsterdam, 289(110476): 1-13.
参考文献
KISHI-KABOSHI M, AIDA R, SASAKI K, 2017. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers [J]. Plant Cell Physiol, 58(2): 216-226.
参考文献
KISHI-KABOSHI M, AIDA R, SASAKI K, 2019. Parsley ubiquitin promoter displays higher activity than the CaMV 35S promoter and the chrysanthemum Actin 2 promoter for productive, constitutive, and durable expression of a transgene in Chrysanthemum morifolium [J]. Breed Sci, 69(3): 19036.
参考文献
KUI L, CHEN HT, ZHANG WX, et al. , 2017. Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale [J]. Front Plant Sci, 7(2036): 1-13.
参考文献
LIU YL, NAKAYAMA N, SCHIFF M, et al. , 2004. Virus induced gene silencing of a deficiens ortholog in Nicotiana benthamiana [J]. Plant Mol Biol, 54(5): 701-711.
参考文献
MARTINO GD, PAN I, EMMANUEL E, et al. , 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development [J]. Plant Cell, 18(8): 1833-1845.
参考文献
MELZER R, THEIßEN G, 2009. Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins [J]. Nucl Acids Res, 37(8): 2723-2736.
参考文献
MONDRAGÓN-PALOMINO M, THEIßEN G, 2009. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes [J]. Ann Bot, 104(3): 583-594.
参考文献
NISHIHARA M, HIGUCHI A, WATANABE A, et al. , 2018. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri [J]. Bmc Plant Biol, 18(1): 1-9.
参考文献
REN XJ, SUN J, HOUSDEN BE, et al. , 2013. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9 [J]. Proc Natl Acad Sci USA, 110(47): 19012-19017.
参考文献
SEMIARTI E, NOPITASARI S, SETIAWATI Y, et al. , 2020. Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids [J]. Indones J Biotechnol, 25(1): 61-68.
参考文献
SHIBUYA K, WATANABE K, ONO M, 2018. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory [J]. Plant Physiol Biochem, 131(36): 53-57.
参考文献
SUN LH, KAO TH, 2018. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self SRNases during cross-compatible pollination in self-incompatible Petunia inflata [J]. Plant Reprod, 31(2): 129-143.
参考文献
SUYAMA T, TANIGAWA T, YAMADA A, et al. , 2015. Inheritance of the double-flowered trait in decorative hydrangea flowers [J]. Hortic J, 84(3): 253-260.
参考文献
THEIßEN G, MELZER R, RÜMPLER F, 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution [J]. Development, 143(18): 3259-3271.
参考文献
TONG CG, WU FH, YUAN YH, et al. , 2020. High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes [J]. Plant Biotechnol J, 18(4): 889-891.
参考文献
VAN DER KROL, BRUNELLE A, TSUCHIMOT S, et al. , 1993. Functional analysis of petunia floral homeotic MADS box gene pMADS1 [J]. Gene Dev, 7(7a): 1214-1228.
参考文献
VIAENE T, VEKEMANS D, IRISH VF, et al. , 2009. Pistillata — duplications as a mode for floral diversification in (Basal) asterids [J]. Mol Biol Evol, 26(11): 2627-2645.
参考文献
WANG Y, MU YX, WANG J, 2021. Advances in the regulation of plant floral organ development by the MADS-box gene family [J]. Acta Agric Zhejiang, 33(6): 1149-1158. [王莹, 穆艳霞, 王锦, 2021. MADS-box基因家族调控植物花器官发育研究进展 [J]. 浙江农业学报, 33(6): 1149-1158. ]
参考文献
WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. , 2018. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4 [J]. Transgenic Res, 27(1): 25-38.
参考文献
WU XB, HULSE-KEMP AM, WADL PA, et al. , 2021. Genomic resource development for hydrangea [Hydrangea macrophylla (Thunb. ) Ser. ] — A transcriptome assembly and a high-density genetic linkage map [J]. Horticulturae, 7(25): 1-13.
参考文献
XU JP, KANG BC, NAING AH, et al. , 2020. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity [J]. Plant Biotechnol J, 18(1): 287-297.
参考文献
YAN R, WANG ZP, REN YM, et al. , 2019. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven [J]. Int J Mol Sci, 20(12): 2920
参考文献
YANG YZ, FANNING L, JACK T, 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA [J]. Plant J, 33(1): 47-59.
参考文献
YANG YZ, JACK T, 2004. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins [J]. Plantl Biol, 55(1): 45-59.
参考文献
YU J, TU LH, SUBBURAJ S, et al. , 2021. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins [J]. Plant Cell Rep, 40(6): 1037-1045.
参考文献
ZHANG B, YANG X, YANG CP, et al. , 2016. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia [J]. Sci Rep, 6(1): 1-8.
参考文献
ZHANG JJ, YANG ED, HE Q, et al. , 2019. Genome-wide analysis of the WRKY gene family in drumstick (Moringa oleifera Lam. ) [J]. PeerJ, 7(7093): 1-20.
参考文献
ZHANG R, GUO CC, ZHANG WE, et al. , 2013. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae) [J]. Proc Natl Acad Sci, 110(13): 5074-5079.
参考文献
ZHENG XW, OUYANG YW, PAN XL, et al. , 2022. Analysis on cloning of AcMADS14 gene and its expression during flower development of pine apple [J]. Guangdong Agric Sci, 49(1): 42-50. [郑雪文, 欧阳嫣惟, 潘晓璐, 等, 2022. 菠萝AcMADS14基因的克隆及其在花发育中的表达分析 [J]. 广东农业科学, 49(1): 42-50. ]
参考文献
ZHU LF, 2013. Cloning and preliminary function analysis of B class genes in Bambusa oldhamii [D]. Hangzhou: Zhejiang A & F University. [朱龙飞, 2013. 绿竹B类基因克隆与功能初步分析 [D]. 杭州: 浙江农林大学. ]
目录contents

    摘要

    绣球 (Hydrangea macrophylla) 是以花序为主要观赏部位的园林植物,多用作切花装饰和景观营造,在亚洲、美洲、欧洲广泛栽培。为探究AP3基因在绣球花萼形成过程中的功能,加快重瓣绣球新品种培育进程,该研究以绣球‘杜丽’为材料,克隆其MADS-box B类基因HmAP3,并结合生物信息学方法预测基因功能;根据HmAP3序列信息,筛选出高特异性编辑靶点并构建CRISPR/Cas9基因编辑载体,通过农杆菌转化法将载体整合到绣球基因组中。结果表明:(1) 克隆到1段HmAP3基因的cDNA序列,其序列全长546 bp,共编码181个氨基酸,测序结果表明其氨基酸序列与参考序列一致性为100%,与拟南芥AtAP3相似度为58.8%。(2)不同属植物AP3氨基酸序列差异较大,在同属不同物种中,AP3蛋白主要结构较为保守,仅在少数基序上存在差异。(3)在HmAP3中共鉴定到2个高特异性靶点,并成功构建2个单靶点CRISPR/Cas9基因编辑载体。(4)该研究共获得5株基因组内含有Cas9序列的抗性芽,但其靶点均未突变,在抗性芽中没有检测到Cas9表达。该研究探讨了AP3基因在重瓣绣球育种中的价值,对绣球的CRISPR/Cas9基因编辑技术进行了初探,为绣球优良品种繁育工作奠定了基础。

    Abstract

    Hydrangea macrophylla is a garden plant widely cultivated in Asia, America, and Europe with its inflorescence as main ornamental feature. It is commonly used in interior decoration and landscape creation. To investigate the role of AP3 gene in hydrangea during calyx formation, H. macrophylla ‘Dooley’ was used as the material. The MADS-box Class B gene HmAP3 was cloned, and its gene function was predicted by bioinformatics analysis. To explore methods for quicker breeding new varieties, highly-specific editing targets were screened and CRISPR/Cas9 gene-editing vectors were constructed. The vector sequence was integrated into the H. macrophylla genome by agrobacterium-mediated transformation. The results were as follows: (1) The cDNA sequence full length of HmAP3 was 546 bp, encoding 181 amino acids. Its amino acid sequence was 100% similar to the reference sequence and 58.8% similar to Arabidopsis thaliana. (2) AP3 differed greatly in different genera. Within the same genus, the main structure of AP3 protein was conserved and differed only in a few motifs. (3) There were two highly specific targets in HmAP3. Sequencing results indicated that two single-target CRISPR/Cas9 gene-editing vectors were constructed successfully. (4) There were five resistant buds with Cas9 sequences in their genomes. However, their target sequences did not change due to the absence of Cas9 expression. In this study, the potential of AP3 gene in the breeding work of double flower phenotype was investigated, and a preliminary exploration of CRISPR/Cas9 gene-editing technology for Hydrangea macrophylla was conducted. These results provide a basis for the breeding of H. macrophylla.

    关键词

    绣球MADS-box家族AP3CRISPR/Cas9载体构建

  • 绣球(Hydrangea macrophylla),虎耳草科绣球属,又名八仙花,在庭院景观中的应用历史悠久,是一种具有较高观赏价值的园林植物,作为世界流行的切花深受大众喜爱。目前绣球主要有蕾丝帽形和圆球形两类花序,其花序中的不育花具有大而艳丽的花瓣状萼片,是绣球的主要观赏组织。绣球不育花有单瓣和重瓣之分,其中单瓣类只有一轮观赏性萼片,重瓣类则具有多轮观赏性萼片。相比之下,重瓣绣球具有更高的观赏和经济价值,是绣球新品种培育的重要方向(Suyama et al.,2015)。目前,国内外的绣球育种方式以杂交育种为主,其育种效率低、周期长,难以适应日益增长的市场需求(Wu et al.,2021),需要探索更快捷、高效的育种方式。

  • CRISPR/Cas9技术是一种新兴的基因编辑技术,能够定向改变植物的观赏性状,如改造花型和花色,延长观赏周期等,在园林植物新品种繁育工作中具有极大的发展潜力和经济价值(Kaur et al.,2021)。CRISPR/Cas9基因编辑系统由Cas9核酸酶和单引导RNA(single guide RNA,sgRNA)构成(Jinek et al.,2012),二者在植物细胞内转录后形成复合体,识别植物基因组中的间区序列邻近基序(protospacer adjacent motif,PAM)前端约20 nt 核苷酸序列并结合,Cas9核酸酶切割该序列形成DNA双链缺口(DNA double-strand breaks,DSBs),引发植物自身损伤修复机制,产生随机的碱基缺失(Hsu et al.,2013)。与其他园艺作物相比,CRISPR/Cas9技术在园林植物中的应用较少,仅应用于毛白杨(Fan et al.,2015)、矮牵牛(Zhang et al.,2016; Sun &Kao,2018; Xu et al.,2020; Yu et al.,2021)、菊花(Kishi-Kaboshi et al.,2017)、铁皮石斛(Kui et al.,2017)、百合(Yan et al.,2019)、牵牛花(Shibuya et al.,2018; Watanabe et al.,2018)、蓝猪耳(Nishihara et al.,2018)与蝴蝶兰(Tong et al.,2020; Semiarti et al.,2020)。

  • 花器官由花瓣、花萼、雄蕊和心皮4个部分组成,其基因表达调控机制可以用ABCDE模型来解释。在ABCDE模型中,B类基因主要负责与A类基因共同调控花瓣的形成,以及与C类基因共同调控雄蕊的形成(Coen &Meyerowitz,1991);除A类基因中的AP2属于AP2/ERF家族外,该模型中的其余基因均属于MADS-box基因家族(王莹等,2021)。MADS-box B类基因亚家族成员广泛存在于现存植物的基因组中,在裸子植物小孢子叶球与被子植物花瓣和雄蕊中均有表达,在植物发育过程中具有重要地位(Albert et al.,1998)。B类基因包含APETALA3(AP3)和PITILLATA PI)两个谱系,其中AP3谱系主要调控花瓣和花萼的形成(Jaramillo &Kramer,2004)。AP3蛋白中含有保守的K-BOX结构域,该结构域能够引导AP3蛋白与PI、SEP3、AP1蛋白形成四聚体,诱导花瓣原基形成(Melzer &Theißen,2009; Theißen et al.,2016)。在观赏植物中,已经发现AP3基因沉默能够导致矮牵牛(van der Krol,1993)、兰花(Mondragón-Palomino &Theißen,2009)与耧斗菜(Zhang et al.,2013)等发生从花瓣向花萼的同源异型转变。

  • 因此,本研究对绣球‘杜丽’的MADS-box B 类基因HmAP3进行了克隆和生物信息学分析;同时结合组内前期绣球‘杜丽’再生体系建立基础,借助CRISPR/Cas9基因编辑系统,构建了2个HmAP3单靶点载体,转化获得抗性芽,拟探讨以下问题:(1)HmAP3氨基酸序列保守结构域特征与蛋白结构分析;(2)HmAP3系统进化关系及其生物学功能预测;(3)探究影响绣球CRISPR/Cas9基因编辑工作成功率的因素。以期为绣球的性状改良和新品种繁育工作提供实践参考和技术支撑。

  • 1 材料与方法

  • 1.1 试验材料和试剂

  • 绣球‘杜丽’种植于北京植物园(116° 28′ E、40°00′ N)。于4月选取翠绿、无病虫害的叶片作为试验材料,将叶片与叶柄一并剪下,放入干净的蒸馏水中转移至实验室。

  • 试验所用的试剂盒包括植物总RNA提取试剂盒 [天根生化科技(北京)有限公司,DP432],cDNA反转录试剂盒(TaKaRa,RR047A),DNA凝胶回收试剂盒(北京擎科生物科技股份有限公司,GE0101),One step ZTOPO-Blunt/TA零背景快速克隆试剂盒(北京庄盟生物科技有限公司,ZC206),SE无缝克隆和组装试剂盒(北京庄盟生物科技有限公司,ZC231),限制性内切酶Bsa I [纽英伦生物技术(北京)有限公司]。

  • 1.2 绣球‘杜丽’HmAP3基因克隆

  • 依据在NCBI 上查找到的绣球‘Blue Sky’(H. macrophylla ‘Blue Sky’)AP3基因(GenBank: AF230702.1)的CDS序列进行引物设计(表1)并合成高特异性引物。

  • 按照试剂盒说明书提取试验材料RNA,并将RNA反转录成cDNA。以cDNA为模板,用KOD One高保真DNA聚合酶(TOYOBO,KMM-101),以HmAP3-F1/R1为引物(表1)进行PCR扩增。扩增产物利用琼脂糖凝胶电泳进行纯化,将目的片段所处区域凝胶切割下来,按照DNA凝胶回收试剂盒说明书回收。纯化后的PCR产物连接T载体后转入DH5α大肠杆菌感受态涂布平板培养12 h,选取单菌落送至测序公司(北京擎科生物科技股份有限公司)进行质粒提取和测序工作,获得HmAP3基因的CDS序列。

  • 1.3 绣球‘杜丽’HmAP3基因生物信息学分析

  • 使用Cell-PLoc(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)对HmAP3进行亚细胞定位预测(Chou &Shen,2010)。利用NCBI-BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)比对HmAP3氨基酸序列相似性,下载比对结果中排名在前列的其他植物AP3氨基酸序列,同时下载拟南芥AtAP3氨基酸序列,通过MEGA-X软件的邻接法(neighbor-joining method,NJ)构建系统进化树(Zhang et al.,2019)。利用MEME(http://meme-suite.org/tools/meme/)预测HmAP3氨基酸序列保守基序。通过ProrParam(https://web.expasy.org/protparam/)分析HmAP3蛋白的理化性质(Li et al.,2020)。分别使用蛋白二级结构预测工具SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html/)和蛋白三级结构预测工具Swiss model(https://swissmodel.expasy.org/)对HmAP3氨基酸序列进行分析。

  • 1.4 CRISPR/Cas9基因编辑载体构建和转化

  • 使用CRISPR靶点设计网站CRISPRdirect(http://crispr.dbcls.jp/)根据HmAP3基因的CDS序列,选择PAM位点和GC含量在40%~60% 之间的高特异性靶点。以pCAMBIA1300-sgRNA/Cas9载体质粒为模板,以HmAP3-F2/R2、HmAP3-F3/R3为引物(表1),进行PCR扩增获得带有黏性末端的目的片段。使用内切酶Bsa Ⅰ酶切获得pCAMBIA1300-sgRNA/Cas9 线性载体,用无缝克隆试剂盒(北京庄盟生物科技有限公司,ZC231)连接载体和目的片段,获得重组质粒。构建好的质粒转入DH5α大肠杆菌感受态涂布平板培养12 h,选取单菌落送至测序公司(北京擎科生物科技股份有限公司)进行质粒提取和测序工作,回收构建成功的载体质粒。将构建好的载体pCAMBIA1300::HmAP3利用冻融法转入GV3101农杆菌感受态中,在2抗LB培养基(50 mg·L-1 卡那霉素+50 mg·L-1 利福平)中28℃培养2 d,挑取单菌落在LB液体培养基扩繁。离心收集扩繁的农杆菌菌体,加入适量侵染液(MS+30 g·L-1 蔗糖+200 μmol·L-1 乙酰丁香酮)调至OD600=0.4。

  • 将绣球‘杜丽’叶片剪切成1 cm × 1 cm的小块,在叶背划3~4刀,放入上述配制好的侵染液中浸泡侵染10 min,转接到共培养培养基(MS+2.0 mg·L-1 6-BA+0.1 mg·L-1 IBA)上暗培养2 d,再转移到筛选培养基(MS+2.0 mg·L-1 6-BA+0.1 mg·L-1 IBA+2 mg·L-1 潮霉素+200 mg·L-1 头孢霉素)中至获得抗性再生芽。

  • 1.5 抗性芽检测和鉴定

  • 取抗性芽叶片,使用基因组提取试剂盒获取叶片DNA,再依次使用总RNA提取试剂盒、cDNA反转录试剂盒获取叶片cDNA。分别以叶片DNA和cDNA为模板,以Cas9-F/R为引物扩增Cas9序列,扩增片段长度为764 bp。以叶片DNA为模板,以HmAP3-F1/R1为引物扩增抗性芽HmAP3序列,扩增产物送至测序公司(北京擎科生物科技股份有限公司)测序。使用DNAMAN比对测序结果与野生型序列差异。

  • 2 结果与分析

  • 2.1 绣球‘杜丽’AP3基因克隆与序列分析

  • 参考绣球‘Blue Sky’ AP3基因CDS序列,利用HmAP3-F1/HmAP3-R1引物(表1),在绣球‘杜丽’cDNA文库中克隆到了一段完全一致的核苷酸序列。克隆到的基因序列全长546 bp,共编码181个氨基酸,利用NCBI分析其氨基酸序列,发现在30~123 bp处包含1个K-BOX保守结构域(图1)。该氨基酸序列C端含有PI基序和euAP3基序,符合MADS-box家族特征,命名为HmAP3。将HmAP3与拟南芥AtAP3氨基酸序列比对,其相似度为58.8%;HmAP3与绣球‘Blue Sky’ AP3 的DNA序列相似度为100%。因此,推测该基因为绣球‘杜丽’AP3基因。亚细胞定位预测结果显示HmAP3在细胞核中表达。

  • 2.2 绣球‘杜丽’AP3蛋白理化性质与结构分析

  • 以拟南芥MADS-box类蛋白三级结构为模型,预测HmAP3蛋白三级结构,可见该结构中含有2条长α-螺旋,螺旋间纽结为90°;其预测结果GMQE(全球模型质量估计)值为0.32,QMEAN得分为0.74±0.05,模型可信度和质量较高(图2)。绣球‘杜丽’的HmAP3蛋白分子式为C927H1462N268O287S7,分子量为21 177.85 D。该蛋白共包含181个氨基酸,不稳定系数为38.79,属稳定蛋白。蛋白带负电荷残基总数(Asp+Glu)为28,带正电荷残基总数(Arg+Lys)为25,理论等电点为6.17。蛋白脂肪指数为79.12,亲水性(GRAVY)为-0.791,为亲水性蛋白。HmAP3蛋白二级结构中α-螺旋占比最高,为64.09%;其他结构占比由高到低依次为无规则卷曲(22.65%)、延伸链(8.84%)、β-折叠(4.42%)(图3)。

  • 2.3 绣球‘杜丽’AP3蛋白系统进化与motif分析

  • 将HmAP3氨基酸序列提交到NCBI进行BLAST比对,在比对结果中选取下载与该序列相似度较高的其他植物AP3氨基酸序列,在MEGA-X软件上用邻接法构建系统进化树(图4)。从整体上来看,绣球等蔷薇亚纲菊超目植物被聚为同一大支,说明AP3蛋白在系统进化过程中具有一定保守性。从各小分支来看,不同物种间的AP3序列存在一定差异,而同物种间的序列相似度则较高。相对而言,绣球与神秘果(Synsepalum dulcificum)、洒金桃叶珊瑚(Aucuba japonica var. borealis)和欧洲枸骨(Ilex aquifolium)亲缘关系最近。在模式植物中,绣球与烟草(Nicotiana tabacum)的亲缘关系比拟南芥(Arabidopsis thaliana)更近。因此,使用烟草基因组作为预测绣球基因编辑靶点的参考基因组更为适宜。

  • 在MEME-motif suite工具上对上述氨基酸序列进行分析后,获得了15个motif及其在序列中的相对位置(图4)。大部分植物AP3序列包含7个motif,其中有8个AP3序列包含8个motif,1个AP3序列包含9个motif。所有AP3序列C端较为保守,均含有motif 2、motif 4、motif 5、motif 6和motif 7,而N端多含motif 3。与其他植物相比,绣球AP3序列中含有特有的motif 12,此外仅洒金桃叶珊瑚AP3序列中含有这一基序,说明HmAP3相对其他植物AP3蛋白可能会有更多功能。对同源基因来说,其序列的motif大体相似,然而在不同物种间仍存在一定的差异,这些差异导致了不同物种间同源基因的功能差异。

  • 2.4 CRISPR/Cas9基因编辑载体构建

  • 利用CRISPRdirect在HmAP3上共选取到2个特异性强的靶点,分别命名为HmAP3-Taget1(5′-GATCTGTACCAGACGACAAT+GGG-3′)和HmAP3-Taget2(5′-TGAACGAAAGTATCGAGTAC+CGG-3′),其GC含量分别为45 %和40 %,其与PAM位点相邻的12 bp在参考基因组(烟草)中均仅比对到1个位点,证明该靶点具有较强特异性。用引物HmAP3-F2/R2、HmAP3-F3/R3在质粒上扩增含有黏性末端的目的片段,与线性载体连接,用大肠杆菌转化后挑取单菌落测序,测序结果表明目的片段已成功插入载体,插入片段与载体结构如图5所示。绣球对潮霉素敏感性很高,经2 mg·L-1潮霉素筛选后,在侵染约2 000枚叶片后仅培育出9株抗性芽(图6:A)。以抗性芽叶片DNA为模板,分别使用靶基因序列扩增引物HmAP3-F1/HmAP3-R1和Cas9序列扩增引物Cas9-F/Cas9-R对抗性芽进行鉴定。扩增和测序结果表明,9株抗性芽叶片基因组中有5株可克隆到Cas9序列,但其靶点序列均未发生突变(图6:B)。提取抗性芽叶片总RNA后反转录获得cDNA,再次克隆Cas9序列,发现所有样品均无法扩增出条带。该现象说明虽然载体序列已成功整合到载体基因组上,但是Cas9蛋白并未成功转录和表达,因此,编辑靶点的序列没有改变。

  • 表1 本研究中所使用的引物序列

  • Table1 Primer sequences used in this study

  • 图1 HmAP3的序列及其结构域分析

  • Fig.1 Sequence and structural domain analysis of HmAP3

  • 图2 HmAP3蛋白三级结构

  • Fig.2 Tertiary structure of HmAP3 protein

  • 3 讨论与结论

  • 本研究克隆了绣球‘杜丽’的HmAP3基因,并对其核苷酸序列与氨基酸序列进行了生物信息学分析。研究发现HmAP3与模式植物拟南芥(Yang et al.,2003)及园艺作物绿竹(朱龙飞,2013)、葡萄(胡晓燕等,2021)、菠萝(郑雪文等,2021)在特有的K-BOX结构域上长度相近、结构相似,表明此结构域在不同物种的AP3中高度保守。理化性质分析结果表明HmAP3是稳定的亲水性蛋白,与郑雪文等(2021)的研究结果一致。在HmAP3蛋白三级结构模型中,K-BOX形成长α-螺旋结构,与植物MADS-box家族中K-BOX结构域特征一致,该结构在AP3与其他蛋白结合形成四聚体的过程中发挥关键作用(Yang &Jack,2004)。

  • HmAP3蛋白系统进化树表明AP3基因在植物系统进化过程中的保守性,其中绣球与金鱼草、烟草和番茄AP3基因聚类在同一大分支,亲缘关系较近,与Viaene等(2009)研究结果相似。Martino等(2006)和Liu等(2004)研究发现,番茄SlAP3与烟草NtAP3基因沉默后代表现出花萼轮数增多、花瓣消失的性状。通过同源比对,推测绣球‘杜丽’HmAP3基因与其同源基因SlAP3、NtAP3功能相似,可能负责调控绣球花器官中花萼和花瓣的形成。

  • 本研究构建了2个绣球HmAP3单靶点载体,并在转化获得的抗性芽基因组中检测到载体序列,但在抗性芽中未检测到Cas9序列的表达和编辑位点序列突变。本研究与Ren等(2013)的研究结果相似,他推测基因编辑效率与启动子活性有关,当CRISPR/Cas9基因编辑载体中的启动子从nos-mini变为U6b启动子时,遗传突变率可从0提高至3.2%。在观赏植物中,Kishi-Kaboshi等(2019)的研究也佐证了这一观点,系统性比较了Ubiqutin、CaMV 35S和CmActin2启动子的表达活性差异后,发现 CaMV 35S和Ubiqutin启动子在菊花愈伤组织中活性均低于菊花CmActin2启动子。本研究使用的Cas9序列启动子为Ubiqutin启动子,猜想其在绣球组织中的表达活性极低,导致Cas9序列在抗性芽中未表达。在下一步绣球基因编辑工作中,可将载体中启动子更换为绣球本源启动子,进一步探究启动子活性对基因编辑成功率的影响。

  • 本研究发现绣球对潮霉素的高敏感性也是影响CRISPR/Cas9基因编辑效率的重要因素。本研究使用2 mg·L-1潮霉素浓度对绣球抗性芽进行筛选,再生率仅为0.45%,与苹果(贾东杰等,2013)等在潮霉素筛选下的再生情况相符,推测绣球野生型基因组内不含有潮霉素抗性基因。甘煌灿等(2018)提出可通过在再生筛选过程中逐渐增加潮霉素浓度的方法,提高抗性芽的成活率。后续的绣球抗性芽的筛选条件可通过调整不同再生阶段潮霉素浓度的方式来进一步优化,以提高基因编辑效率。

  • 图3 HmAP3蛋白二级结构

  • Fig.3 Secondary structure of HmAP3 protein

  • 图4 HmAP3蛋白系统进化和motif分析

  • Fig.4 Phylogenetic and motif analysis of HmAP3 protein

  • 图5 pCAMBIA1300::HmAP3载体图谱及目的片段插入情况

  • Fig.5 pCAMBIA1300::HmAP3 vector mapping and target fragment insertion

  • 图6 绣球‘杜丽’抗性芽检测

  • Fig.6 Detection of resistant buds of Hydrangea macrophylla ‘Dooley’

  • 本研究在绣球‘杜丽’中克隆到1个HmAP3基因,cDNA序列全长546 bp,共编码181个氨基酸,为稳定的亲水性蛋白,氨基酸序列结构分析证明其具有MADS-box B 类基因亚家族特征,系统进化分析表明HmAP3与烟草、番茄、金鱼草亲缘关系较近,基序组成结构保守;以HmAP3为靶点,成功构建2个以Cas9基因、sgRNA、潮霉素抗性基因为骨架的CRISPR/Cas9基因编辑载体,并将载体序列整合到绣球基因组中。上述研究结果为进一步研究HmAP3基因功能奠定了理论基础,为重瓣绣球基因编辑辅助育种工作提供技术支撑。

  • 参考文献

    • ALBERT VA, GUSTAFSSON MHG, LAURENZIO LD, 1998. Ontogenetic systematics, molecular developmental genetics, and the angiospermpetal [M]//Molecular Systematics of plants Ⅱ. Boston: Springer: 349-374.

    • CHOU KC, SHEN HB, 2010. Cell-PLoc 2. 0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms [J]. Nat Sci, 2(10): 1090.

    • COEN ES, MEYEROWITZ EM, 1991. The war of the whorls: genetic interactions controlling flower development [J]. Nature, 353(6339): 31-37.

    • FAN D, LIU TT, LI CF, et al. , 2015. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation [J]. Sci Rep, 5(1): 1-7.

    • GAN HC, LAI CC, PAN H, et al. , 2018. Plant expression vector construction and jasmine [Jasminum sambac (Linn. ) Aiton] callus transformation of DFR gene from spine grape (Vitis davidii Foëx. ) [J]. Chin J Trop Crop, 39(6): 1128-1136. [甘煌灿, 赖呈纯, 潘红, 等, 2018. 刺葡萄DFR基因植物表达载体构建及转化茉莉花愈伤组织的研究 [J]. 热带作物学报, 39(6): 1128-1136. ]

    • HSU PD, SCOTT DA, WEINSTEIN JA, et al. , 2013. DNA targeting specificity of RNA-guided Cas9 nucleases [J]. Nat Biotechnol, 31(9): 827-832.

    • HU XY, GUO CL, WANG L, et al. , 2021. Cloning and function analysis of VvMADS46 in red globe and thompson seedless for seedless regulation [J]. J Fruit Sci, 38(8): 1231-1239. [胡晓燕, 郭春磊, 王莉, 等, 2021. 无核白及红地球葡萄VvMADS46基因的克隆及其无核调控功能分析 [J]. 果树学报, 38(8): 1231-1239. ]

    • JARAMILLO MA, KRAMER EM, 2004. APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae) [J]. Evol Dev, 6(6): 449-458.

    • JIA DJ, FAN LM, SHEN JL, et al. , 2013. Genetic transformation and expressing of astaxanthin biosynthesis genes BKT into ‘Brookfield Gala’ apple tree [J]. Acta Hortic Sin, 40(1): 21-31. [贾东杰, 樊连梅, 沈俊岭, 等, 2013. 虾青素合成关键酶基因BKT在‘Brookfield Gala’苹果中的遗传转化及表达 [J]. 园艺学报, 40(1): 21-31. ]

    • JINEK M, CHYLINSKI K, FONFARA I, et al. , 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 337(6096): 816-821.

    • KAUR H, PANDEY DK, GOUTAM U, et al. , 2021. CRISPR/Cas9-mediated genome editing is revolutionizing the improvement of horticultural crops: recent advances and future prospects [J]. Sci Hort-Amsterdam, 289(110476): 1-13.

    • KISHI-KABOSHI M, AIDA R, SASAKI K, 2017. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers [J]. Plant Cell Physiol, 58(2): 216-226.

    • KISHI-KABOSHI M, AIDA R, SASAKI K, 2019. Parsley ubiquitin promoter displays higher activity than the CaMV 35S promoter and the chrysanthemum Actin 2 promoter for productive, constitutive, and durable expression of a transgene in Chrysanthemum morifolium [J]. Breed Sci, 69(3): 19036.

    • KUI L, CHEN HT, ZHANG WX, et al. , 2017. Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale [J]. Front Plant Sci, 7(2036): 1-13.

    • LIU YL, NAKAYAMA N, SCHIFF M, et al. , 2004. Virus induced gene silencing of a deficiens ortholog in Nicotiana benthamiana [J]. Plant Mol Biol, 54(5): 701-711.

    • MARTINO GD, PAN I, EMMANUEL E, et al. , 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development [J]. Plant Cell, 18(8): 1833-1845.

    • MELZER R, THEIßEN G, 2009. Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins [J]. Nucl Acids Res, 37(8): 2723-2736.

    • MONDRAGÓN-PALOMINO M, THEIßEN G, 2009. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes [J]. Ann Bot, 104(3): 583-594.

    • NISHIHARA M, HIGUCHI A, WATANABE A, et al. , 2018. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri [J]. Bmc Plant Biol, 18(1): 1-9.

    • REN XJ, SUN J, HOUSDEN BE, et al. , 2013. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9 [J]. Proc Natl Acad Sci USA, 110(47): 19012-19017.

    • SEMIARTI E, NOPITASARI S, SETIAWATI Y, et al. , 2020. Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids [J]. Indones J Biotechnol, 25(1): 61-68.

    • SHIBUYA K, WATANABE K, ONO M, 2018. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory [J]. Plant Physiol Biochem, 131(36): 53-57.

    • SUN LH, KAO TH, 2018. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self SRNases during cross-compatible pollination in self-incompatible Petunia inflata [J]. Plant Reprod, 31(2): 129-143.

    • SUYAMA T, TANIGAWA T, YAMADA A, et al. , 2015. Inheritance of the double-flowered trait in decorative hydrangea flowers [J]. Hortic J, 84(3): 253-260.

    • THEIßEN G, MELZER R, RÜMPLER F, 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution [J]. Development, 143(18): 3259-3271.

    • TONG CG, WU FH, YUAN YH, et al. , 2020. High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes [J]. Plant Biotechnol J, 18(4): 889-891.

    • VAN DER KROL, BRUNELLE A, TSUCHIMOT S, et al. , 1993. Functional analysis of petunia floral homeotic MADS box gene pMADS1 [J]. Gene Dev, 7(7a): 1214-1228.

    • VIAENE T, VEKEMANS D, IRISH VF, et al. , 2009. Pistillata — duplications as a mode for floral diversification in (Basal) asterids [J]. Mol Biol Evol, 26(11): 2627-2645.

    • WANG Y, MU YX, WANG J, 2021. Advances in the regulation of plant floral organ development by the MADS-box gene family [J]. Acta Agric Zhejiang, 33(6): 1149-1158. [王莹, 穆艳霞, 王锦, 2021. MADS-box基因家族调控植物花器官发育研究进展 [J]. 浙江农业学报, 33(6): 1149-1158. ]

    • WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. , 2018. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4 [J]. Transgenic Res, 27(1): 25-38.

    • WU XB, HULSE-KEMP AM, WADL PA, et al. , 2021. Genomic resource development for hydrangea [Hydrangea macrophylla (Thunb. ) Ser. ] — A transcriptome assembly and a high-density genetic linkage map [J]. Horticulturae, 7(25): 1-13.

    • XU JP, KANG BC, NAING AH, et al. , 2020. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity [J]. Plant Biotechnol J, 18(1): 287-297.

    • YAN R, WANG ZP, REN YM, et al. , 2019. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven [J]. Int J Mol Sci, 20(12): 2920

    • YANG YZ, FANNING L, JACK T, 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA [J]. Plant J, 33(1): 47-59.

    • YANG YZ, JACK T, 2004. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins [J]. Plantl Biol, 55(1): 45-59.

    • YU J, TU LH, SUBBURAJ S, et al. , 2021. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins [J]. Plant Cell Rep, 40(6): 1037-1045.

    • ZHANG B, YANG X, YANG CP, et al. , 2016. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia [J]. Sci Rep, 6(1): 1-8.

    • ZHANG JJ, YANG ED, HE Q, et al. , 2019. Genome-wide analysis of the WRKY gene family in drumstick (Moringa oleifera Lam. ) [J]. PeerJ, 7(7093): 1-20.

    • ZHANG R, GUO CC, ZHANG WE, et al. , 2013. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae) [J]. Proc Natl Acad Sci, 110(13): 5074-5079.

    • ZHENG XW, OUYANG YW, PAN XL, et al. , 2022. Analysis on cloning of AcMADS14 gene and its expression during flower development of pine apple [J]. Guangdong Agric Sci, 49(1): 42-50. [郑雪文, 欧阳嫣惟, 潘晓璐, 等, 2022. 菠萝AcMADS14基因的克隆及其在花发育中的表达分析 [J]. 广东农业科学, 49(1): 42-50. ]

    • ZHU LF, 2013. Cloning and preliminary function analysis of B class genes in Bambusa oldhamii [D]. Hangzhou: Zhejiang A & F University. [朱龙飞, 2013. 绿竹B类基因克隆与功能初步分析 [D]. 杭州: 浙江农林大学. ]

  • 参考文献

    • ALBERT VA, GUSTAFSSON MHG, LAURENZIO LD, 1998. Ontogenetic systematics, molecular developmental genetics, and the angiospermpetal [M]//Molecular Systematics of plants Ⅱ. Boston: Springer: 349-374.

    • CHOU KC, SHEN HB, 2010. Cell-PLoc 2. 0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms [J]. Nat Sci, 2(10): 1090.

    • COEN ES, MEYEROWITZ EM, 1991. The war of the whorls: genetic interactions controlling flower development [J]. Nature, 353(6339): 31-37.

    • FAN D, LIU TT, LI CF, et al. , 2015. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation [J]. Sci Rep, 5(1): 1-7.

    • GAN HC, LAI CC, PAN H, et al. , 2018. Plant expression vector construction and jasmine [Jasminum sambac (Linn. ) Aiton] callus transformation of DFR gene from spine grape (Vitis davidii Foëx. ) [J]. Chin J Trop Crop, 39(6): 1128-1136. [甘煌灿, 赖呈纯, 潘红, 等, 2018. 刺葡萄DFR基因植物表达载体构建及转化茉莉花愈伤组织的研究 [J]. 热带作物学报, 39(6): 1128-1136. ]

    • HSU PD, SCOTT DA, WEINSTEIN JA, et al. , 2013. DNA targeting specificity of RNA-guided Cas9 nucleases [J]. Nat Biotechnol, 31(9): 827-832.

    • HU XY, GUO CL, WANG L, et al. , 2021. Cloning and function analysis of VvMADS46 in red globe and thompson seedless for seedless regulation [J]. J Fruit Sci, 38(8): 1231-1239. [胡晓燕, 郭春磊, 王莉, 等, 2021. 无核白及红地球葡萄VvMADS46基因的克隆及其无核调控功能分析 [J]. 果树学报, 38(8): 1231-1239. ]

    • JARAMILLO MA, KRAMER EM, 2004. APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae) [J]. Evol Dev, 6(6): 449-458.

    • JIA DJ, FAN LM, SHEN JL, et al. , 2013. Genetic transformation and expressing of astaxanthin biosynthesis genes BKT into ‘Brookfield Gala’ apple tree [J]. Acta Hortic Sin, 40(1): 21-31. [贾东杰, 樊连梅, 沈俊岭, 等, 2013. 虾青素合成关键酶基因BKT在‘Brookfield Gala’苹果中的遗传转化及表达 [J]. 园艺学报, 40(1): 21-31. ]

    • JINEK M, CHYLINSKI K, FONFARA I, et al. , 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 337(6096): 816-821.

    • KAUR H, PANDEY DK, GOUTAM U, et al. , 2021. CRISPR/Cas9-mediated genome editing is revolutionizing the improvement of horticultural crops: recent advances and future prospects [J]. Sci Hort-Amsterdam, 289(110476): 1-13.

    • KISHI-KABOSHI M, AIDA R, SASAKI K, 2017. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers [J]. Plant Cell Physiol, 58(2): 216-226.

    • KISHI-KABOSHI M, AIDA R, SASAKI K, 2019. Parsley ubiquitin promoter displays higher activity than the CaMV 35S promoter and the chrysanthemum Actin 2 promoter for productive, constitutive, and durable expression of a transgene in Chrysanthemum morifolium [J]. Breed Sci, 69(3): 19036.

    • KUI L, CHEN HT, ZHANG WX, et al. , 2017. Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale [J]. Front Plant Sci, 7(2036): 1-13.

    • LIU YL, NAKAYAMA N, SCHIFF M, et al. , 2004. Virus induced gene silencing of a deficiens ortholog in Nicotiana benthamiana [J]. Plant Mol Biol, 54(5): 701-711.

    • MARTINO GD, PAN I, EMMANUEL E, et al. , 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development [J]. Plant Cell, 18(8): 1833-1845.

    • MELZER R, THEIßEN G, 2009. Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins [J]. Nucl Acids Res, 37(8): 2723-2736.

    • MONDRAGÓN-PALOMINO M, THEIßEN G, 2009. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes [J]. Ann Bot, 104(3): 583-594.

    • NISHIHARA M, HIGUCHI A, WATANABE A, et al. , 2018. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri [J]. Bmc Plant Biol, 18(1): 1-9.

    • REN XJ, SUN J, HOUSDEN BE, et al. , 2013. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9 [J]. Proc Natl Acad Sci USA, 110(47): 19012-19017.

    • SEMIARTI E, NOPITASARI S, SETIAWATI Y, et al. , 2020. Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids [J]. Indones J Biotechnol, 25(1): 61-68.

    • SHIBUYA K, WATANABE K, ONO M, 2018. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory [J]. Plant Physiol Biochem, 131(36): 53-57.

    • SUN LH, KAO TH, 2018. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self SRNases during cross-compatible pollination in self-incompatible Petunia inflata [J]. Plant Reprod, 31(2): 129-143.

    • SUYAMA T, TANIGAWA T, YAMADA A, et al. , 2015. Inheritance of the double-flowered trait in decorative hydrangea flowers [J]. Hortic J, 84(3): 253-260.

    • THEIßEN G, MELZER R, RÜMPLER F, 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution [J]. Development, 143(18): 3259-3271.

    • TONG CG, WU FH, YUAN YH, et al. , 2020. High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes [J]. Plant Biotechnol J, 18(4): 889-891.

    • VAN DER KROL, BRUNELLE A, TSUCHIMOT S, et al. , 1993. Functional analysis of petunia floral homeotic MADS box gene pMADS1 [J]. Gene Dev, 7(7a): 1214-1228.

    • VIAENE T, VEKEMANS D, IRISH VF, et al. , 2009. Pistillata — duplications as a mode for floral diversification in (Basal) asterids [J]. Mol Biol Evol, 26(11): 2627-2645.

    • WANG Y, MU YX, WANG J, 2021. Advances in the regulation of plant floral organ development by the MADS-box gene family [J]. Acta Agric Zhejiang, 33(6): 1149-1158. [王莹, 穆艳霞, 王锦, 2021. MADS-box基因家族调控植物花器官发育研究进展 [J]. 浙江农业学报, 33(6): 1149-1158. ]

    • WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. , 2018. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4 [J]. Transgenic Res, 27(1): 25-38.

    • WU XB, HULSE-KEMP AM, WADL PA, et al. , 2021. Genomic resource development for hydrangea [Hydrangea macrophylla (Thunb. ) Ser. ] — A transcriptome assembly and a high-density genetic linkage map [J]. Horticulturae, 7(25): 1-13.

    • XU JP, KANG BC, NAING AH, et al. , 2020. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity [J]. Plant Biotechnol J, 18(1): 287-297.

    • YAN R, WANG ZP, REN YM, et al. , 2019. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven [J]. Int J Mol Sci, 20(12): 2920

    • YANG YZ, FANNING L, JACK T, 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA [J]. Plant J, 33(1): 47-59.

    • YANG YZ, JACK T, 2004. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins [J]. Plantl Biol, 55(1): 45-59.

    • YU J, TU LH, SUBBURAJ S, et al. , 2021. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins [J]. Plant Cell Rep, 40(6): 1037-1045.

    • ZHANG B, YANG X, YANG CP, et al. , 2016. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia [J]. Sci Rep, 6(1): 1-8.

    • ZHANG JJ, YANG ED, HE Q, et al. , 2019. Genome-wide analysis of the WRKY gene family in drumstick (Moringa oleifera Lam. ) [J]. PeerJ, 7(7093): 1-20.

    • ZHANG R, GUO CC, ZHANG WE, et al. , 2013. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae) [J]. Proc Natl Acad Sci, 110(13): 5074-5079.

    • ZHENG XW, OUYANG YW, PAN XL, et al. , 2022. Analysis on cloning of AcMADS14 gene and its expression during flower development of pine apple [J]. Guangdong Agric Sci, 49(1): 42-50. [郑雪文, 欧阳嫣惟, 潘晓璐, 等, 2022. 菠萝AcMADS14基因的克隆及其在花发育中的表达分析 [J]. 广东农业科学, 49(1): 42-50. ]

    • ZHU LF, 2013. Cloning and preliminary function analysis of B class genes in Bambusa oldhamii [D]. Hangzhou: Zhejiang A & F University. [朱龙飞, 2013. 绿竹B类基因克隆与功能初步分析 [D]. 杭州: 浙江农林大学. ]