en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李慧敏(1997-),硕士,研究方向为植物遗传,(E-mail)2004283157@stu.htu.edu.cn。

通讯作者:

周延清,博士,教授,研究方向为植物遗传,(E-mail)yqzhou@htu.edu.cn。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2024)02-0303-10

DOI:10.11931/guihaia.gxzw202304008

参考文献
AN TT, HUANG D, WANG H, et al. , 2021. Research advances in plant physiological and biochemical mechanisms in response to cadmium stress [J]. Chin Bull Bot, 56(3): 347-362. [安婷婷, 黄帝, 王浩, 等, 2021. 植物响应镉胁迫的生理生化机制研究进展 [J]. 植物学报, 56(3): 347-362. ]
参考文献
CHEN SS, XIE MH, CUI MK, et al. , 2022. Identification of Broussonetia papyrifera transcription factor BpbZIP1 and analysis of its response to cadmium stress [J]. Bull Bot Res, 42(3): 394-402. [陈思思, 谢牧洪, 崔茂凯, 等, 2022. 构树转录因子BpbZIP1的鉴定及镉胁迫响应分析 [J]. 植物研究, 42(3): 394-402. ]
参考文献
JIANG N, SHI Y, ZHAO Z, et al. , 2023. Expression and functional analysis of OsPT1 gene in rice under cadmium stress [J]. Biotechnol Bull, 39(1): 166-174. [姜南, 石杨, 赵志, 等, 2023. 镉胁迫下水稻OsPT1的表达及功能分析 [J]. 生物技术通报, 39(1): 166-174. ]
参考文献
KUNST L, SAMUELS L, 2009. Plant cuticles shine: advances in wax biosynthesis and export [J]. Curr Opin Plant Biol, 12(б): 721-727.
参考文献
LI JJ, ZHU JL, LI HM, et al. , 2022. The effects of NAA on the tuberous root yield and quality of Rehmannia glutinosa and its regulatory mechanism by transcriptome and metabolome profiling [J]. Curr Issues Mol Biol, 44(8): 3291-3311.
参考文献
LUO YF, WANG CH, ZHANG Z, et al. , 2022. Genome-wide identification of peanut NAS family and their expression response to iron deficiency and cadmium stress [J]. Plant Physiol J, 58(6): 1119-1132. [罗艳芳, 王朝慧, 张铮, 等, 2022. 花生NAS家族全基因组鉴定及其基因表达对缺铁和镉胁迫的响应 [J]. 植物生理学报, 58(6): 1119-1132. ]
参考文献
NICOLAS D, RICCO T, WONG DCJ, et al. , 2020. Drought stress modulates cuticular wax composition of the grape berry [J]. J Exp Bot, 71(10): 3126-3141.
参考文献
PATWARI P, SALEWSKI V, GUTBROD K, et al. , 2019. Surface wax esters contribute to drought tolerance in Arabidopsis [J]. Plant J, 98(4): 727-744.
参考文献
SEO PJ, LEE SB, MI CS, et al. , 2011. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis [J]. Plant Cell, 23(3): 1138-1152.
参考文献
SHALINI T, MARTIN A, 2020. Identification, isolation, and heterologous expression of sunflower wax synthase for the synthesis of tailored wax esters [J]. J Food Biochem, 44(10): e13433.
参考文献
WANG CY, LI ZJ, WANG P, et al. , 2023. Physiological and biochemical analysis of drought resistance in sorghum cuticular wax-deficient mutant sb1 [J]. Biotechnol Bull, 39(5): 46-53. [王春语, 李政君, 王平, 等, 2023. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析 [J]. 生物技术通报, 39(5): 46-53. ]
参考文献
WANG DY, 2016. The clone of MdCER4, MdWSD1, MdMAH1 and their response to ethylene regulation [D]. Zibo: Shandong University of Technology: 16-25. [王东阳, 2016. 苹果MdCER4、MdWSD1、MdMAH1基因的克隆及对乙烯调控的响应 [D]. 淄博: 山东理工大学: 16-25. ]
参考文献
WANG HB, LV XY, LI YY, et al. , 2022. Identification and expression analysis of WSD (wax ester synthase/ diacylglycerol acyltransferase) gene family in apple [J]. Erwerbs-Obstbau, 6: 1-12.
参考文献
WANG JC, QIU WM, JIN KM, et al. , 2023. Comprehensive analysis of WRKY transcription factor in Sedum plumbizincicola responding to cadmium stress [J]. J Nanjing For Univ (Nat Sci Ed), 47(2): 49-60. [王剑超, 邱文敏, 金康鸣, 等, 2023. 伴矿景天WRKY基因家族鉴定及镉胁迫响应分析 [J]. 南京林业大学学报(自然科学版), 47(2): 49-60. ]
参考文献
WEN HW, DANG YF, DONG FF, et al. , 2021. Analysis on differentially expressed genes of flag leaf epidermis wax based on transcriptome sequencing in wheat [J]. Shanxi Agric Sci, 49(12): 1462-1466. [温宏伟, 党一飞, 董凡凡, 等, 2021. 基于转录组测序的小麦旗叶表皮蜡质差异表达基因分析 [J]. 山西农业科学, 49(12): 1462-1466. ]
参考文献
WEI X, 2023. Function and molecular mechanism of GhRCD1 gene in cotton under Cd stress [D]. Xinxiang: Henan Normal University: 16-25. [魏喜, 2023. 棉花GhRCD1基因在Cd胁迫中的功能及分子机制研究 [D]. 新乡: 河南师范大学: 16-25. ]
参考文献
XIAO YF, PENG J, ZHANG Y, et al. , 2020. Research progress and applications of wax ester synthase [J]. J Beijing Univ Chem Technol (Nat Sci Ed), 47(6): 1-11. [肖一凡, 彭杰, 张扬, 等, 2020. 蜡酯合成酶的研究进展及其应用 [J]. 北京化工大学学报(自然科学版), 47(6): 1-11. ]
参考文献
XU J, FU ZT, 2017. Discussion on the historical evolution and efficacy of processed products of Rehmannia glutinosa [J]. J Tradit Chin Med, 39(9): 1913-1916. [徐军, 傅喆暾, 2017. 地黄炮制品名历史沿革及功效考辨探讨 [J]. 中成药, 39(9): 1913-1916. ]
参考文献
YANG YH, WANG CJ, LI RF, et al. , 2021. Transcriptome-based identification and expression characterization of RgABCC transporters in Rehmannia glutinosa [J]. PLoS ONE, 16(6): e0253188.
参考文献
YANG YQ, PU YN, YIN X, et al. , 2019. A splice variant of BrrWSD1 in turnip (Brassica rapa var. rapa) and its possible role in wax ester synthesis under drought stress [J]. J Agric Food Chem, 67(40): 11077-11088.
参考文献
YANG YQ, ZHOU ZL, LI Y, et al. , 2020. Uncovering the role of positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress [J]. J Exp Bot, 71(14): 4159-4170.
参考文献
YU YA, ZHANG XB, ZHANG L, et al. , 2022. Cloning of TaAlaAT gene in wheat (Triticum aestivum L. ) and its expression analysis under cadmium stress [J]. Jiangsu Agric Sci, 50(18): 48-53. [于永昂, 张夏冰, 张蕾, 等, 2022. 小麦TaAlaAT基因的克隆及镉胁迫下表达分析 [J]. 江苏农业科学, 50(18): 48-53. ]
参考文献
YUAN P, 2023. Study on the tolerance of Rehmannia glutinosa to heavy metal cadmium stress [D]. Xinxiang: Henan Normal University: 50-51. [袁萍, 2023. 地黄对重金属镉胁迫的耐性研究 [D]. 新乡: 河南师范大学: 50-51. ]
参考文献
ZENG AS, XU YY, SONG LX, et al. , 2020. Validation of suitable reference genes for qRT-PCR in cabbage (Brassica oleracea L. ) under different abiotic stress experimental conditions [J]. J Plant Biochem Biotechnol, 30(1): 184-195.
参考文献
ZHAO CJ, BAI L, OU YF, et al. , 2009. Decontamination of organochlorine pesticides residue and heavy metal in Rehmannia glutinosa Libosch by SFE [J]. J Chromatogr Sci, 47(10): 919-924.
参考文献
ZHOU A, LIU E, JIAO L, et al. , 2018. Characterization of increased cuticular wax mutant and analysis of genes involved in wax biosynthesis in Dianthus spiculifolius [J]. Hortic Res, 5(40): 3-9.
参考文献
ZHOU YQ, SHAO LY, GUO MM, et al. , 2020. Cloning and bioinformatics analysis of C3H gene in Rehmannia glutinosa [J]. Guihaia, 40(9): 1281-1287. [周延清, 邵露营, 郭萌萌, 等, 2020. 地黄C3H基因的克隆及生物信息学分析 [J]. 广西植物, 40(9): 1281-1287. ]
参考文献
ZHU C, WANG FY, SUN XW, et al. , 2022. Bioinformatics and expression analysis of wax synthesis related genes in coconut [J]. Mol Plant Breed, 20(13): 4289-4295. [朱聪, 王富有, 孙熹微, 等, 2022. 椰子蜡质合成相关基因的生物信息学及其表达分析 [J]. 分子植物育种, 20(13): 4289-4295. ]
参考文献
ZHANG YT, WANG ZQ, LIU YS, et al. , 2023. Plasma membrane-associated calcium signaling modulates cadmium transport [J]. New Phytol, 238(1): 313-331.
目录contents

    摘要

    植物蜡酯合成酶催化长链醇和长链脂肪酸合成蜡酯,对植物蜡质合成及其抗旱、抗致病菌袭击和紫外辐射、抗寒和昆虫侵害等环境胁迫具有非常重要的作用;镉是环境中含量最高的有毒重金属之一,严重威胁植物的生长发育、质量、产量和食用安全。为研究地黄蜡酯合成酶基因镉胁迫表达,该文从地黄全长转录组测序数据中鉴定其成员,并用生物信息学技术与qRT-PCR对其编码蛋白质的理化性质、系统进化和保守结构域及其组织表达与镉胁迫表达进行分析。结果表明:(1)鉴定出两个蜡酯合成酶基因RgOATWSD1与RgOATWSD2,其编码蛋白质的长度、理论等电点和相对分子量依次为463 aa与473 aa、8.86与9.34、51.31 kD与52.49 kD,均为不稳定蛋白。(2)二者均具有acyl_WS_DGAT保守域与DUF1298超家族,前者占其氨基酸序列的92.65%~94.50%。(3)二者均定位于内质网中,二级结构以无规卷曲与α螺旋为主;RgOATWSD1为跨膜蛋白,而RgOATWSD2 不是。(4)二者均在地黄根、茎、叶中差异表达。(5)二者表达均受镉胁迫诱导,但其表达变化趋势不同。该研究鉴定了两个镉胁迫应答反应的蜡酯合成酶基因,为地黄RgOATWSD的镉胁迫表达及功能研究奠定了基础。

    Abstract

    Plant wax ester synthase catalyzes the synthesis of wax esters from long-chain alcohols and fatty acids, and plays very important roles in plant wax synthesis and some resistances to drought, pathogenic bacteria, ultraviolet radiation, cold and insect invasion and other environmental stresses; cadmium (Cd) is one of the toxic heavy metals with the highest content in environment, and seriously threatens plant growth, development, quality, yield, and plant food safety. In order to explore the Cd stress expressions of wax ester synthase genes in Rehmannia glutinosa, we identified its wax ester synthase genes from its full-length transcriptome sequencing data, analyzed both physiochemical properties, phytogenetic trees and conserved domains with bioinformatics methods, and tissue expressions and Cd stress expressions using qRT-PCR. The results were as follows: (1) Two wax ester synthase genes, named as RgOATWSD1 and RgOATWSD2, were identified, whose coding proteins were unstable hydrophobic proteins with amino acid lengths of 463 aa and 473 aa, isoelectric points of 8.86 and 9.34 and molecular weights of 51.31 kD and 52.49 kD, respectively. (2) Both proteins contained a conserved acyl_WS_DGAT domain and DUF1298 superfamily, in which the former accounted for 92.65% to 94.50% of the amino acid sequence. (3) Both proteins were located in the endoplasmic reticulum and both secondary structures were mainly composed of random coil and α-helix;RgOATWSD2 was not transmembrane protein but RgOATWSD1. (4) Both were differentially expressed in the roots, stems and leaves of R. glutinosa plants. (5) Both expressions were highly responsive to Cd stress, but both expression change trends were different under Cd stress. This study identifies two wax ester synthase genes in response to Cd stress, and lays a foundation for further research on Cd stress expression and other functions of RgOATWSD.

  • 随着我国工业化与城市化进程的加快,土壤和食品的重金属污染问题日益加剧,其中,重金属镉(Cd)是其首要污染物。镉污染土壤的治理难度很大,不但对植物生长发育、质量和产量具有严重不良影响,而且镉通过食物链从植物转移到动物和人体内,也会严重危害动物和人的健康。因此,当前具有较高的环保和经济价值的土壤污染治理方法是利用自然生长植物或遗传改良植物吸收、解毒与富集镉污染土壤中的镉对其进行修复(陈思思等,2022;罗艳芳等,2022;于永昂等,2022)。迄今为止,虽然已经鉴定了对镉胁迫应答的构树转录因子BpbZIP1(陈思思等,2022)、花生NAS家族(罗艳芳等,2022)、小麦TaAlaAT基因(于永昂等,2022)、伴矿景天WRKY基因家族(王剑超等,2023)和水稻OsPT1等基因(姜南等,2023),但是还有很多植物镉胁迫应答反应基因有待挖掘与功能研究,如植物蜡酯合成酶(wax ester synthase,WS or WSD)基因。

  • 蜡酯是长链醇和长链脂肪酸在蜡酯合成酶催化下经过酯化反应生成的酯,广泛存在于动物、植物和微生物,具有多种重要的生物学功能。就植物而言,蜡酯主要存在于植物初生芽表面的角质层中或者霍霍巴的种子油中,防止植物水分流失、致病菌袭击、紫外辐射和昆虫侵害(肖一凡等,2020)与抗旱(肖一凡等,2020;王春语等,2023)及抗寒(朱聪等,2022)等环境胁迫。目前,从小麦(温宏伟等,2021)、高粱(王春语等,2023)、椰子(朱聪等,2022)、拟南芥和霍霍巴(肖一凡等,2020)、丝颖针茅和紫花针茅(Yang et al.,2020)、芜菁(Yang et al.,2019)、尖叶石竹(Zhou et al.,2018)、葡萄(Nicolas et al.,2020)、苹果(Wang et al.,2022)和向日葵(Shalini &Martin,2020)等植物中克隆了蜡酯合成酶,但是尚未见从地黄中克隆WSD基因及其镉胁迫表达的报道。

  • 地黄(Rehmannia glutinosa)为玄参科地黄属多年生草本的植物,生长在我国辽宁、内蒙古和河南等地(周延清等,2020)。其块根是我国著名中药材,每年需求量较高,约1.5×107 kg。在药材上,它分为鲜地黄和生地黄、熟地黄三类。鲜地黄味道甘苦,清热、生津、凉血与补血;生地黄味甘性寒,清热滋阴;熟地黄性微温,味道甘甜,补血滋阴、填髓益精(徐军和傅喆暾,2017)。地黄种质资源、药理作用、化学成分、栽培育种和组学等方面研究较多,然而,地黄Cd污染及其胁迫研究很少,仅有地黄RgABCC基因Cd胁迫的报道(Zhao et al.,2009;Yang et al.,2021)。因此,有待深入研究地黄Cd胁迫应答反应基因。

  • 本研究以地黄为研究材料,从其全长转录组测序数据中查找Wax ester synthase、WS或WSD及其编码基因(RgOATWSD),采用生物信息学、盆栽法与实时荧光定量PCR的方法,通过对其两个基因编码蛋白质的理化性质、系统进化和保守结构域及其组织表达与镉胁迫表达进行分析,拟探讨以下问题:(1)地黄中是否有蜡酯合成酶基因;(2)地黄蜡酯合成酶基因大小及其编码蛋白质的特征如何;(3)地黄蜡酯合成酶基因空间表达模式及其镉胁迫表达如何。

  • 1 材料与方法

  • 1.1 材料

  • 地黄“金九”品种全长转录组测序数据(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA780233)的基因注释表与CDS表;河南师范大学生命科学学院气候室中培养的盆栽“金九”地黄植株。其光照周期为每天16 h光,8 h暗,培养温度为(26±2)℃,光照强度为2 000 lx。

  • 1.2 方法

  • 1.2.1 氧-酰基转移酶WSD基因家族成员获取

  • 打开上述基因注释表文件,点击查找,输入Wax ester synthase、WS或WSD,点击全部查找,出现目标酶及其对应的基因名。利用其基因名在上述CDS表中查找其基因及其大小与碱基序列,命名为RgOATWSD基因。

  • 1.2.2 RgOATWSD基因的生物信息学分析

  • 利用NCBI(https://www.ncbi.nlm.nih.gov/home/analyze/)中的ORF Finder进行氨基酸序列的推导,并利用Blastn工具查找与RgOATWSD蛋白同源性较高的序列;运用软件DNAMAN 6.0进行氨基酸的多重序列比对;利用MEGA 6.0软件构建系统进化树;利用ExPASy-ProtParm在线分析软件(https://web.expasy.org/protparam/)预测RgOATWSD蛋白的理化性质;通过在线网址WoLF PSORT(https://wolfpsort.hgc.jp/)对RgOATWSD蛋白进行亚细胞定位预测;利用TMHMM 2.0进行跨膜结构域的分析;通过NCBI的Conserved Donmain Search(https://www.ncbi.nlm.nih.gov/ Structure/cdd/wrpsb.cgi)对其保守结构域进行在线分析;利用SignalP(http://www.cbs.dtu.dk/services/SignalP/)进行信号肽预测;利用NetNGlyc 1.0(http://www.cbs.dtu.dk/services/NetNGlyc/)进行N-糖基化位点预测;利用NetPhos 2.0(http://www.cbs.dtu.dk/services/ NetPhos/)进行磷酸化位点预测;通过SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl? page=npsa_sopma.html)及SWISS-MODEL(https:// swissmodel.expasy.org/)预测蛋白质的二级和三级结构。

  • 1.2.3 镉处理地黄幼苗的培养和处理

  • 将地黄新鲜块根切成2~3 cm小块,种于花盆基质(营养土与蛭石比例为1∶1.5)中,在气候室培养;2~3 d浇1次水,生长4周后,挑取长势一致的幼苗进行处理;用40 mmol·L-1镉水溶液浇地黄幼苗(CT),用同样体积的水浇同样数量的地黄幼苗(CK),两组均设置3个重复;处理12 h后,分别取CT与CK的根、茎和叶,洗净,晾干,液氮速冻,于-80℃冰箱中保存备用(袁萍,2023)。

  • 1.2.4 qRT-PCR技术检测基因表达

  • 根据RgOATWSD1与RgOATWSD2基因的碱基序列,用Primer Premier 5设计其qRT-PCR的引物:(1)RgOATWSD1基因的正向引物为F(5′-AGCGAGTT GTTGCTGATGC-3′),反向引物为R(5′-GTTGCCCC ACTGACTTCCA-3′)。(2)RgOATWSD2基因的正向引物为F(5′-TGATAAGTCGCCGATTAGGTC-3′),反向引物R(5′-CTTTTGATGGTTCGATGTGCT-3′)。这些引物由苏州金唯智生物科技有限公司合成;按照我们前期研究中提取地黄的总RNA方法与qRT-PCR技术,以地黄基因TIP41为内参基因,用qRT-PCR检测两基因在CT与CK的根、茎、叶中的表达水平,用2-ΔΔCt法计算其表达量(Li et al.,2022)。

  • 2 结果与分析

  • 2.1 RgOATWSD基因家族的鉴定

  • 在上述基因注释结果表中查到Wax ester synthase-like Acyl-CoA acyltransferase domain或O-acyltransferase WSD1(Arabidopsis thaliana)与O-acyltransferase WSD1-like isoform X2 [Sesamum indicum],以及基因F01_transcript_13342和F01_transcript_16419,在CDS表中查到两个基因大小分别为1 392 bp和1 422 bp,其碱基序列如图1所示,并将其分别命名为RgOATWSD1和RgOATWSD2,统称RgOATWSD基因。

  • 2.2 RgOATWSD氨基酸序列的推导、同源性比对以及系统进化分析

  • 根据RgOATWSD1和RgOATWSD2基因序列,利用软件DNAMAN 6.0推导出其分别编码由463和473氨基酸残基组成的蛋白质,并将其分别命名为RgOATWSD1和RgOATWSD2(图1),统称RgOATWSD蛋白。

  • 利用DNAMAN 6.0进行氨基酸多重序列比对,比对结果如图2所示。由图2可知,RgOATWSD1与白花泡桐 [Paulownia fortunei(KAI3448120.1)]、芝麻 [Sesamum indicum(XP_011092557.1)]、紫花风铃木 [Handroanthus impetiginosus(PIM99635.1)]的相似度较高,分别为87.79%、83.62%、82.51%;RgOATWSD2与白花泡桐(KAI3457227.1)、芝麻(XP_011100361.1)、松蒿 [Phtheirospermum japonicum(GFP86401.1)]的相似度较高,分别为83.01%、78.69%、77.73%。利用MEGA 6.0进行OATWSD蛋白系统进化树的构建,结果如图3所示。由图3可知,RgOATWSD1与白花泡桐聚为一支,进化上亲缘关系最近,RgOATWSD2与松蒿聚为一支,进化上亲缘关系最近,其中白花泡桐与松蒿均属于玄参科。

  • 图1 RgOATWSD核苷酸序列及其编码蛋白质的氨基酸序列

  • Fig.1 Nucleotide sequences of RgOATWSD and amino acid sequences of its coding RgOATWSD proteins

  • 2.3 RgOATWSD理化学性质

  • 利用ExPASy-ProtParam tool在线工具对RgOATWSD进行化学性质分析。结果发现,RgOATWSD1由463个氨基酸残基组成,包括20种氨基酸,其中Ala、Leu和Ser含量高,分别为8.4%、11.0%和8.2%,相对分子质量为51.31 kD,化学分子式为C2283H3693N639O649S26,带负电荷残基总数(Asp+Glu)50个与带正电荷残基总数(Arg+Lys)57个,理论等电点为8.86,该蛋白不稳定指数预测结果是45.19,为不稳定蛋白,脂肪指数为102.76,总的亲水性平均系数为0.049,属于疏水性蛋白;RgOATWSD2由473个氨基酸残基组成,包括20种氨基酸,其中Leu、Lys和Ser含量多,分别为11.6%、7.6%和7.6%,相对分子质量为52.49 kD,化学分子式为C2353H3791N629O679S23,带负电荷残基总数(Asp+Glu)44个与带正电荷残基总数(Arg+Lys)57个,理论等电点为9.34,该蛋白不稳定指数预测结果是42.93,为不稳定蛋白,脂肪指数为92.96,总的亲水性平均系数为-0.140,属于亲水性蛋白。

  • 利用NetPhos 2.0工具对RgOATWSD1与RgOATWSD2编码的氨基酸序列进行在线分析,结果表明分值大于0.5的各类磷酸化位点分别有42个和44个,并均匀分布在多肽链中。其中,RgOATWSD1丝氨酸磷酸化位点有37个,苏氨酸的磷酸化位点有18个,酪氨酸磷酸化位点有7个;RgOATWSD2丝氨酸磷酸化位点有36个,苏氨酸的磷酸化位点有31个,酪氨酸磷酸化位点有12个。利用NetNGlyc 1.0工具对RgOATWSD1与RgOATWSD2编码氨基酸序列进行在线分析,发现二者均无N-糖基化位点。

  • 图2 RgOATWSD氨基酸序列的同源性比对

  • Fig.2 Homology alignment of the RgOATWSD amino acid sequences

  • 应用TMHMM 2.0工具对RgOATWSD1编码的氨基酸序列进行在线分析,结果显示该蛋白为单次跨膜蛋白,包括1~184位氨基酸在膜内、185~207位氨基酸为跨膜区域、208~463位氨基酸定位在膜外。RgOATWSD2全部定位在膜外,不具有跨膜结构域。

  • 图3 RgOATWSD与其他植物OATWSD蛋白系统进化树

  • Fig.3 Phylogenetic trees of RgOATWSD and other OATWSD proteins

  • 图4 RgOATWSD二级结构预测

  • Fig.4 Prediction of secondary structures of RgOATWSD

  • 利用SignalP-4.1工具对编码氨基酸序列进行在线分析,结果表明RgOATWSD1和RgOATWSD2蛋白的信号肽无峰值出现,说明地黄OATWSD蛋白不存在信号肽,也说明该蛋白不属于分泌型蛋白。利用WoLF PSORT工具对编码氨基酸序列进行亚细胞定位分析,结果表明RgOATWSD1和RgOATWSD2蛋白均可能存在于内质网中。应用SOPMA对RgOATWSD1和RgOATWSD2蛋白进行二级结构分析。结果发现,RgOATWSD1由39.96%的α螺旋、39.09%的无规卷曲、17.71%的延伸链和3.24%的β转角共4种结构元件组成,其中α螺旋比例最大;RgOATWSD2由39.32%的α螺旋、41.01%的无规卷曲、16.49%的延伸链和3.17%的β转角共4种结构元件组成,其中无规卷曲的比例最大(图4)。

  • 2.4 RgOATWSD保守结构域预测

  • 利用NCBI的Conserved Donmain Search进行在线分析,发现RgOATWSD1与RgOATWSD2均具有acyl_WS_DGAT保守域与DUF1298超家族,前者分别覆盖RgOATWSD1氨基酸序列的92.65%和RgOATWSD2氨基酸序列的94.50%。该家族是一种酰基转移酶家族,类似WS二酰基甘油酰基转移酶(WS/DGAT)和甘油单酰基转移酶(MGAT)等,具有类似二酰基甘油酰基转移酶和甘油单酰基转移酶相似的活性,后者在其中分别占7.35%与5.50%,功能未知(图5)。

  • 图5 RgOATWSD保守结构域分析

  • Fig.5 Conservative domain analyses of RgOATWSD

  • 图6 RgOATWSD三级结构预测

  • Fig.6 Prediction of tertiary structures of RgOATWSD

  • 2.5 RgOATWSD三级结构分析

  • 应用SWISS-MODEL对两种蛋白进行三级结构分析,发现其中包含的二级结构元件与上述二级结构的预测结果相吻合(图4),而RgOATWSD1与RgOATWSD2的三级结构形态有些不同,RgOATWSD1比较像球形(图6)。

  • 2.6 镉对RgOATWSD基因在地黄不同组织部位表达的影响

  • qRT-PCR结果表明,RgOATWSD1与RgOATWSD2在CT和CK的根、茎和叶组织中均有表达,其中,RgOATWSD1在幼苗叶中的表达量最高,RgOATWSD2在幼苗根的表达量最高。由图7可知,在镉胁迫处理下,RgOATWSD1与RgOATWSD2基因在地黄根、茎和叶组织中都表达,但其表达水平均与对照组的表达水平有明显变化且二者的变化相反,RgOATWSD1在根、茎与叶中的表达均上调,根部的变化最为明显,RgOATWSD2在根、茎与叶中的表达均下调,茎部的变化最为明显。以上结果表明,2个基因对地黄镉胁迫响应具有一定的差异表达。

  • 图7 RgOATWSD基因在镉处理地黄不同组织部位的相对表达

  • Fig.7 Relative expressions of RgOATWSD genes in different tissues of Rehmannia glutinosa under cadmium stress

  • 3 讨论与结论

  • 植物脂肪酸代谢途径主要有酰基还原途径与脱羰基化途径,前者产生蜡酯,蜡酯在生成过程中虽然需要醛类中间体,但并不释放出来;后者形成烷烃、醛、酮与仲醇。目前,霍霍巴和拟南芥等植物的WS或者WSD1已经被报道,但地黄WSD未见报道。本研究从地黄全长转录组测序数据中鉴定出两个蜡酯合成酶基因RgOATWSD1与RgOATWSD2,与其他已知植物蜡酯合成酶基因同源性高,具有蜡酯合成酶基因的功能(Kunst &Samuels,2009)且发现RgOATWSD1 和RgOATWSD2都定位于内质网,与拟南芥WSD1定位于内质网的结果一致,以及发现RgOATWSD1与霍霍巴的WS一样具有跨膜区域和疏水性(肖一凡等,2020)。RgOATWSD在地黄根、茎与叶组织的空间表达分析表明,RgOATWSD1与RgOATWSD2在根、茎与叶组织中均有不同程度的表达,而且在地黄茎与叶中表达的结果与拟南芥WSD1基因在茎与叶中表达的结果一致(Patwari et al.,2019)。上述发现表明,RgOATWSD具有其他植物物种中已知蜡酯合成酶基因相似的结构特征与空间表达特性。

  • 植物表皮蜡质是植物与环境之间的保护屏障,能够保护植物免受干旱、盐、冷、紫外线、病原菌和昆虫等的侵害。例如,植物表皮蜡酯的积累和生物合成与植物的抗旱性反应密切相关(Seo et al.,2011; Patwari et al.,2019),植物角质层蜡酯的积累有助于抗旱性的提高;拟南芥AtWSD1参与了干旱期间蜡酯的积累,干旱期间叶片和茎中蜡酯的积累增加,说明该基因在拟南芥茎和叶组织中的蜡酯合成中起着关键作用(Patwari et al.,2019);苹果MdWSD1基因通过调控酯类和醇类的合成,影响表皮蜡酯含量(王东阳,2016);芜菁BrrWSD1基因的剪接变异体及其在干旱胁迫下合成蜡酯的作用,证明其与干旱胁迫有关(Yang et al.,2019);在甘蓝中检测到甘蓝BoWSD1基因在不同处理下表现出不同的表达模式,推测其在对NaCl、干旱、冷和热等非生物胁迫的反应中起重要作用(Zeng et al.,2020)。但是迄今为止,植物WSD基因的Cd胁迫表达未见报道。因此,作者在其团队研究地黄与棉花Cd胁迫的同时开展了RgOATWSD基因的Cd胁迫表达研究(魏喜,2023;袁萍,2023),发现RgOATWSD基因表达对镉胁迫有显著的应答反应,从而扩宽了植物WSD基因非生物胁迫表达的范围。然而RgOATWSD基因的镉胁迫表达机理尚不清楚。

  • 目前,虽然植物对Cd胁迫响应的分子机制很不清楚(Zhang et al.,2023),但是有一些好的探索发现。例如,Cd胁迫会激发植物通过质膜Ca2+信号调控Cd胁迫的分子机制(Zhang et al.,2023);当植物受到Cd胁迫时,植物体启动生理生化网络调控响应,包括植物维持其体内活性氧和活性氮的代谢水平及在抗氧化酶类、非酶类抗氧化物质、钙信号传递、激素、内质网加工、调控蛋白和基因表达等方面的变化(安婷婷等,2021)。就基因表达变化而言,主要有参与Cd的吸收、转运和解毒的NRAMP,参与转运Cd至植物地上部的HMAMYBABAZIPbHLHRCD1等基因家族成员,以上参与植物镉胁迫响应的分子机制比较清楚(魏喜,2023)。本研究中的基因RgOATWSD1和RgOATWSD2对Cd胁迫响应未见报道,但发现二者编码的蛋白质都定位于内质网,因此,推测其Cd胁迫响应机制可能类似于上述的基于内质网加工与基因参与的镉胁迫响应机制(安婷婷等,2021)。

  • 综上所述,本研究成功从地黄全长转录组测序数据中鉴定出两个地黄蜡酯合成酶基因RgOATWSD1与RgOATWSD2,用生物信息学技术分析了其编码酶的理化特性与结构特点,发现其在地黄根、茎与叶中的空间表达模式及2个基因表达模式的差异,进而发现其对镉胁迫应答反应明显及两者之间的差异。本研究结果扩大了已知地黄功能基因数据库,丰富了植物镉胁迫应答的蜡酯合成酶基因信息,为进一步研究其结构功能及其镉胁迫分子机理奠定基础。

  • 参考文献

    • AN TT, HUANG D, WANG H, et al. , 2021. Research advances in plant physiological and biochemical mechanisms in response to cadmium stress [J]. Chin Bull Bot, 56(3): 347-362. [安婷婷, 黄帝, 王浩, 等, 2021. 植物响应镉胁迫的生理生化机制研究进展 [J]. 植物学报, 56(3): 347-362. ]

    • CHEN SS, XIE MH, CUI MK, et al. , 2022. Identification of Broussonetia papyrifera transcription factor BpbZIP1 and analysis of its response to cadmium stress [J]. Bull Bot Res, 42(3): 394-402. [陈思思, 谢牧洪, 崔茂凯, 等, 2022. 构树转录因子BpbZIP1的鉴定及镉胁迫响应分析 [J]. 植物研究, 42(3): 394-402. ]

    • JIANG N, SHI Y, ZHAO Z, et al. , 2023. Expression and functional analysis of OsPT1 gene in rice under cadmium stress [J]. Biotechnol Bull, 39(1): 166-174. [姜南, 石杨, 赵志, 等, 2023. 镉胁迫下水稻OsPT1的表达及功能分析 [J]. 生物技术通报, 39(1): 166-174. ]

    • KUNST L, SAMUELS L, 2009. Plant cuticles shine: advances in wax biosynthesis and export [J]. Curr Opin Plant Biol, 12(б): 721-727.

    • LI JJ, ZHU JL, LI HM, et al. , 2022. The effects of NAA on the tuberous root yield and quality of Rehmannia glutinosa and its regulatory mechanism by transcriptome and metabolome profiling [J]. Curr Issues Mol Biol, 44(8): 3291-3311.

    • LUO YF, WANG CH, ZHANG Z, et al. , 2022. Genome-wide identification of peanut NAS family and their expression response to iron deficiency and cadmium stress [J]. Plant Physiol J, 58(6): 1119-1132. [罗艳芳, 王朝慧, 张铮, 等, 2022. 花生NAS家族全基因组鉴定及其基因表达对缺铁和镉胁迫的响应 [J]. 植物生理学报, 58(6): 1119-1132. ]

    • NICOLAS D, RICCO T, WONG DCJ, et al. , 2020. Drought stress modulates cuticular wax composition of the grape berry [J]. J Exp Bot, 71(10): 3126-3141.

    • PATWARI P, SALEWSKI V, GUTBROD K, et al. , 2019. Surface wax esters contribute to drought tolerance in Arabidopsis [J]. Plant J, 98(4): 727-744.

    • SEO PJ, LEE SB, MI CS, et al. , 2011. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis [J]. Plant Cell, 23(3): 1138-1152.

    • SHALINI T, MARTIN A, 2020. Identification, isolation, and heterologous expression of sunflower wax synthase for the synthesis of tailored wax esters [J]. J Food Biochem, 44(10): e13433.

    • WANG CY, LI ZJ, WANG P, et al. , 2023. Physiological and biochemical analysis of drought resistance in sorghum cuticular wax-deficient mutant sb1 [J]. Biotechnol Bull, 39(5): 46-53. [王春语, 李政君, 王平, 等, 2023. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析 [J]. 生物技术通报, 39(5): 46-53. ]

    • WANG DY, 2016. The clone of MdCER4, MdWSD1, MdMAH1 and their response to ethylene regulation [D]. Zibo: Shandong University of Technology: 16-25. [王东阳, 2016. 苹果MdCER4、MdWSD1、MdMAH1基因的克隆及对乙烯调控的响应 [D]. 淄博: 山东理工大学: 16-25. ]

    • WANG HB, LV XY, LI YY, et al. , 2022. Identification and expression analysis of WSD (wax ester synthase/ diacylglycerol acyltransferase) gene family in apple [J]. Erwerbs-Obstbau, 6: 1-12.

    • WANG JC, QIU WM, JIN KM, et al. , 2023. Comprehensive analysis of WRKY transcription factor in Sedum plumbizincicola responding to cadmium stress [J]. J Nanjing For Univ (Nat Sci Ed), 47(2): 49-60. [王剑超, 邱文敏, 金康鸣, 等, 2023. 伴矿景天WRKY基因家族鉴定及镉胁迫响应分析 [J]. 南京林业大学学报(自然科学版), 47(2): 49-60. ]

    • WEN HW, DANG YF, DONG FF, et al. , 2021. Analysis on differentially expressed genes of flag leaf epidermis wax based on transcriptome sequencing in wheat [J]. Shanxi Agric Sci, 49(12): 1462-1466. [温宏伟, 党一飞, 董凡凡, 等, 2021. 基于转录组测序的小麦旗叶表皮蜡质差异表达基因分析 [J]. 山西农业科学, 49(12): 1462-1466. ]

    • WEI X, 2023. Function and molecular mechanism of GhRCD1 gene in cotton under Cd stress [D]. Xinxiang: Henan Normal University: 16-25. [魏喜, 2023. 棉花GhRCD1基因在Cd胁迫中的功能及分子机制研究 [D]. 新乡: 河南师范大学: 16-25. ]

    • XIAO YF, PENG J, ZHANG Y, et al. , 2020. Research progress and applications of wax ester synthase [J]. J Beijing Univ Chem Technol (Nat Sci Ed), 47(6): 1-11. [肖一凡, 彭杰, 张扬, 等, 2020. 蜡酯合成酶的研究进展及其应用 [J]. 北京化工大学学报(自然科学版), 47(6): 1-11. ]

    • XU J, FU ZT, 2017. Discussion on the historical evolution and efficacy of processed products of Rehmannia glutinosa [J]. J Tradit Chin Med, 39(9): 1913-1916. [徐军, 傅喆暾, 2017. 地黄炮制品名历史沿革及功效考辨探讨 [J]. 中成药, 39(9): 1913-1916. ]

    • YANG YH, WANG CJ, LI RF, et al. , 2021. Transcriptome-based identification and expression characterization of RgABCC transporters in Rehmannia glutinosa [J]. PLoS ONE, 16(6): e0253188.

    • YANG YQ, PU YN, YIN X, et al. , 2019. A splice variant of BrrWSD1 in turnip (Brassica rapa var. rapa) and its possible role in wax ester synthesis under drought stress [J]. J Agric Food Chem, 67(40): 11077-11088.

    • YANG YQ, ZHOU ZL, LI Y, et al. , 2020. Uncovering the role of positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress [J]. J Exp Bot, 71(14): 4159-4170.

    • YU YA, ZHANG XB, ZHANG L, et al. , 2022. Cloning of TaAlaAT gene in wheat (Triticum aestivum L. ) and its expression analysis under cadmium stress [J]. Jiangsu Agric Sci, 50(18): 48-53. [于永昂, 张夏冰, 张蕾, 等, 2022. 小麦TaAlaAT基因的克隆及镉胁迫下表达分析 [J]. 江苏农业科学, 50(18): 48-53. ]

    • YUAN P, 2023. Study on the tolerance of Rehmannia glutinosa to heavy metal cadmium stress [D]. Xinxiang: Henan Normal University: 50-51. [袁萍, 2023. 地黄对重金属镉胁迫的耐性研究 [D]. 新乡: 河南师范大学: 50-51. ]

    • ZENG AS, XU YY, SONG LX, et al. , 2020. Validation of suitable reference genes for qRT-PCR in cabbage (Brassica oleracea L. ) under different abiotic stress experimental conditions [J]. J Plant Biochem Biotechnol, 30(1): 184-195.

    • ZHAO CJ, BAI L, OU YF, et al. , 2009. Decontamination of organochlorine pesticides residue and heavy metal in Rehmannia glutinosa Libosch by SFE [J]. J Chromatogr Sci, 47(10): 919-924.

    • ZHOU A, LIU E, JIAO L, et al. , 2018. Characterization of increased cuticular wax mutant and analysis of genes involved in wax biosynthesis in Dianthus spiculifolius [J]. Hortic Res, 5(40): 3-9.

    • ZHOU YQ, SHAO LY, GUO MM, et al. , 2020. Cloning and bioinformatics analysis of C3H gene in Rehmannia glutinosa [J]. Guihaia, 40(9): 1281-1287. [周延清, 邵露营, 郭萌萌, 等, 2020. 地黄C3H基因的克隆及生物信息学分析 [J]. 广西植物, 40(9): 1281-1287. ]

    • ZHU C, WANG FY, SUN XW, et al. , 2022. Bioinformatics and expression analysis of wax synthesis related genes in coconut [J]. Mol Plant Breed, 20(13): 4289-4295. [朱聪, 王富有, 孙熹微, 等, 2022. 椰子蜡质合成相关基因的生物信息学及其表达分析 [J]. 分子植物育种, 20(13): 4289-4295. ]

    • ZHANG YT, WANG ZQ, LIU YS, et al. , 2023. Plasma membrane-associated calcium signaling modulates cadmium transport [J]. New Phytol, 238(1): 313-331.

  • 参考文献

    • AN TT, HUANG D, WANG H, et al. , 2021. Research advances in plant physiological and biochemical mechanisms in response to cadmium stress [J]. Chin Bull Bot, 56(3): 347-362. [安婷婷, 黄帝, 王浩, 等, 2021. 植物响应镉胁迫的生理生化机制研究进展 [J]. 植物学报, 56(3): 347-362. ]

    • CHEN SS, XIE MH, CUI MK, et al. , 2022. Identification of Broussonetia papyrifera transcription factor BpbZIP1 and analysis of its response to cadmium stress [J]. Bull Bot Res, 42(3): 394-402. [陈思思, 谢牧洪, 崔茂凯, 等, 2022. 构树转录因子BpbZIP1的鉴定及镉胁迫响应分析 [J]. 植物研究, 42(3): 394-402. ]

    • JIANG N, SHI Y, ZHAO Z, et al. , 2023. Expression and functional analysis of OsPT1 gene in rice under cadmium stress [J]. Biotechnol Bull, 39(1): 166-174. [姜南, 石杨, 赵志, 等, 2023. 镉胁迫下水稻OsPT1的表达及功能分析 [J]. 生物技术通报, 39(1): 166-174. ]

    • KUNST L, SAMUELS L, 2009. Plant cuticles shine: advances in wax biosynthesis and export [J]. Curr Opin Plant Biol, 12(б): 721-727.

    • LI JJ, ZHU JL, LI HM, et al. , 2022. The effects of NAA on the tuberous root yield and quality of Rehmannia glutinosa and its regulatory mechanism by transcriptome and metabolome profiling [J]. Curr Issues Mol Biol, 44(8): 3291-3311.

    • LUO YF, WANG CH, ZHANG Z, et al. , 2022. Genome-wide identification of peanut NAS family and their expression response to iron deficiency and cadmium stress [J]. Plant Physiol J, 58(6): 1119-1132. [罗艳芳, 王朝慧, 张铮, 等, 2022. 花生NAS家族全基因组鉴定及其基因表达对缺铁和镉胁迫的响应 [J]. 植物生理学报, 58(6): 1119-1132. ]

    • NICOLAS D, RICCO T, WONG DCJ, et al. , 2020. Drought stress modulates cuticular wax composition of the grape berry [J]. J Exp Bot, 71(10): 3126-3141.

    • PATWARI P, SALEWSKI V, GUTBROD K, et al. , 2019. Surface wax esters contribute to drought tolerance in Arabidopsis [J]. Plant J, 98(4): 727-744.

    • SEO PJ, LEE SB, MI CS, et al. , 2011. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis [J]. Plant Cell, 23(3): 1138-1152.

    • SHALINI T, MARTIN A, 2020. Identification, isolation, and heterologous expression of sunflower wax synthase for the synthesis of tailored wax esters [J]. J Food Biochem, 44(10): e13433.

    • WANG CY, LI ZJ, WANG P, et al. , 2023. Physiological and biochemical analysis of drought resistance in sorghum cuticular wax-deficient mutant sb1 [J]. Biotechnol Bull, 39(5): 46-53. [王春语, 李政君, 王平, 等, 2023. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析 [J]. 生物技术通报, 39(5): 46-53. ]

    • WANG DY, 2016. The clone of MdCER4, MdWSD1, MdMAH1 and their response to ethylene regulation [D]. Zibo: Shandong University of Technology: 16-25. [王东阳, 2016. 苹果MdCER4、MdWSD1、MdMAH1基因的克隆及对乙烯调控的响应 [D]. 淄博: 山东理工大学: 16-25. ]

    • WANG HB, LV XY, LI YY, et al. , 2022. Identification and expression analysis of WSD (wax ester synthase/ diacylglycerol acyltransferase) gene family in apple [J]. Erwerbs-Obstbau, 6: 1-12.

    • WANG JC, QIU WM, JIN KM, et al. , 2023. Comprehensive analysis of WRKY transcription factor in Sedum plumbizincicola responding to cadmium stress [J]. J Nanjing For Univ (Nat Sci Ed), 47(2): 49-60. [王剑超, 邱文敏, 金康鸣, 等, 2023. 伴矿景天WRKY基因家族鉴定及镉胁迫响应分析 [J]. 南京林业大学学报(自然科学版), 47(2): 49-60. ]

    • WEN HW, DANG YF, DONG FF, et al. , 2021. Analysis on differentially expressed genes of flag leaf epidermis wax based on transcriptome sequencing in wheat [J]. Shanxi Agric Sci, 49(12): 1462-1466. [温宏伟, 党一飞, 董凡凡, 等, 2021. 基于转录组测序的小麦旗叶表皮蜡质差异表达基因分析 [J]. 山西农业科学, 49(12): 1462-1466. ]

    • WEI X, 2023. Function and molecular mechanism of GhRCD1 gene in cotton under Cd stress [D]. Xinxiang: Henan Normal University: 16-25. [魏喜, 2023. 棉花GhRCD1基因在Cd胁迫中的功能及分子机制研究 [D]. 新乡: 河南师范大学: 16-25. ]

    • XIAO YF, PENG J, ZHANG Y, et al. , 2020. Research progress and applications of wax ester synthase [J]. J Beijing Univ Chem Technol (Nat Sci Ed), 47(6): 1-11. [肖一凡, 彭杰, 张扬, 等, 2020. 蜡酯合成酶的研究进展及其应用 [J]. 北京化工大学学报(自然科学版), 47(6): 1-11. ]

    • XU J, FU ZT, 2017. Discussion on the historical evolution and efficacy of processed products of Rehmannia glutinosa [J]. J Tradit Chin Med, 39(9): 1913-1916. [徐军, 傅喆暾, 2017. 地黄炮制品名历史沿革及功效考辨探讨 [J]. 中成药, 39(9): 1913-1916. ]

    • YANG YH, WANG CJ, LI RF, et al. , 2021. Transcriptome-based identification and expression characterization of RgABCC transporters in Rehmannia glutinosa [J]. PLoS ONE, 16(6): e0253188.

    • YANG YQ, PU YN, YIN X, et al. , 2019. A splice variant of BrrWSD1 in turnip (Brassica rapa var. rapa) and its possible role in wax ester synthesis under drought stress [J]. J Agric Food Chem, 67(40): 11077-11088.

    • YANG YQ, ZHOU ZL, LI Y, et al. , 2020. Uncovering the role of positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress [J]. J Exp Bot, 71(14): 4159-4170.

    • YU YA, ZHANG XB, ZHANG L, et al. , 2022. Cloning of TaAlaAT gene in wheat (Triticum aestivum L. ) and its expression analysis under cadmium stress [J]. Jiangsu Agric Sci, 50(18): 48-53. [于永昂, 张夏冰, 张蕾, 等, 2022. 小麦TaAlaAT基因的克隆及镉胁迫下表达分析 [J]. 江苏农业科学, 50(18): 48-53. ]

    • YUAN P, 2023. Study on the tolerance of Rehmannia glutinosa to heavy metal cadmium stress [D]. Xinxiang: Henan Normal University: 50-51. [袁萍, 2023. 地黄对重金属镉胁迫的耐性研究 [D]. 新乡: 河南师范大学: 50-51. ]

    • ZENG AS, XU YY, SONG LX, et al. , 2020. Validation of suitable reference genes for qRT-PCR in cabbage (Brassica oleracea L. ) under different abiotic stress experimental conditions [J]. J Plant Biochem Biotechnol, 30(1): 184-195.

    • ZHAO CJ, BAI L, OU YF, et al. , 2009. Decontamination of organochlorine pesticides residue and heavy metal in Rehmannia glutinosa Libosch by SFE [J]. J Chromatogr Sci, 47(10): 919-924.

    • ZHOU A, LIU E, JIAO L, et al. , 2018. Characterization of increased cuticular wax mutant and analysis of genes involved in wax biosynthesis in Dianthus spiculifolius [J]. Hortic Res, 5(40): 3-9.

    • ZHOU YQ, SHAO LY, GUO MM, et al. , 2020. Cloning and bioinformatics analysis of C3H gene in Rehmannia glutinosa [J]. Guihaia, 40(9): 1281-1287. [周延清, 邵露营, 郭萌萌, 等, 2020. 地黄C3H基因的克隆及生物信息学分析 [J]. 广西植物, 40(9): 1281-1287. ]

    • ZHU C, WANG FY, SUN XW, et al. , 2022. Bioinformatics and expression analysis of wax synthesis related genes in coconut [J]. Mol Plant Breed, 20(13): 4289-4295. [朱聪, 王富有, 孙熹微, 等, 2022. 椰子蜡质合成相关基因的生物信息学及其表达分析 [J]. 分子植物育种, 20(13): 4289-4295. ]

    • ZHANG YT, WANG ZQ, LIU YS, et al. , 2023. Plasma membrane-associated calcium signaling modulates cadmium transport [J]. New Phytol, 238(1): 313-331.