en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李竹梅(1988-),博士,讲师,研究方向为病原微生物学,(E-mail)lizhume@163.com。

通讯作者:

褚洪龙,博士,副教授,研究方向为植物与微生物互作、植物抗逆,(E-mail)chuhonglo@163.com。

中图分类号:Q949.32

文献标识码:A

文章编号:1000-3142(2024)02-0333-12

DOI:10.11931/guihaia.gxzw202207042

参考文献
BEHERA SS, RAY RC, 2016. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care [J]. Int J Biol Macromol, 92: 942-956.
参考文献
CHADHA J, HARJAI K, CHHIBBER S, 2022. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing [J]. Environ Microbiol, 24(6): 2630-2656.
参考文献
CHUA M, BALDWIN TC, HOCKING TJ, et al. , 2010. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N. E. Br [J]. J Ethnopharmacol, 128(2): 26-78.
参考文献
CUI S, CHEN CL, FENG JH, et al. , 2021. Characterization of Pectobacterium aroidearum causing konjac soft rot and biocontrol effect of Bacillus velezensis [J]. Chin Veget, (3): 83-93. [崔双, 陈昌龙, 冯佳豪, 等, 2021. 魔芋软腐病致病菌Pectobacterium aroidearum的特征及贝莱斯芽孢杆菌的生防效果 [J]. 中国蔬菜, (3): 83-93. ]
参考文献
DAI XF, ZHU L, ZHANG SL, et al. , 2021. Screening of antagonistic actinomycetes against Amorphophallus soft rot [J]. J SW Univ (Nat Sci Ed), 43(11): 9-17. [代雪凤, 朱丽, 张盛林, 等, 2021. 魔芋软腐病拮抗放线菌筛选 [J]. 西南大学学报(自然科学版), 43(11): 9-17. ]
参考文献
DU Q, DUAN C, LI S, et al. , 2020. First report of maize ear rot caused by Fusarium concentricum in china [J]. Plant Dis, 104(5): 1539-1540.
参考文献
GAO Y, ZHANG Y, CHEN F, et al. , 2022. A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis [J]. Comput Struct Biotechnol, 20: 1002-1011.
参考文献
HE F, ZHANG ZL, CUI M, et al. , 2016. Identification and allelopathic effect of dominant fungi in rootzone of Amorphophallus konjac and screening of the bio-control actinomycetes [J]. J NW A & F Univ (Nat Sci Ed), 44(4): 157-167. [何斐, 张忠良, 崔鸣, 等, 2016. 魔芋根域优势真菌鉴定和化感作用及其生防放线菌的筛选 [J]. 西北农林科技大学学报(自然科学版), 44(4): 157-167. ]
参考文献
HUANG L, LIU YX, REN XX, et al. , 2014. Isolation, identification and GFP maker of soft rot bacteria strains in Amorphophallus rivieri [J]. Guizhou Agric Sci, 42(12): 118-121. [黄露, 刘永翔, 任秀秀, 等, 2014. 魔芋软腐病菌的分离鉴定及其GFP标记 [J]. 贵州农业科学, 42(12): 118-121. ]
参考文献
KAVKLER K, DEMŠAR A, 2012. Impact of fungi on contemporary and accelerated aged wool fibres [J]. Polym Degrad Stabil, 97(5): 786-792.
参考文献
LANGE L, PILGAARD B, HERBST FA, et al. , 2019. Origin of fungal biomass degrading enzymes: Evolution, diversity and function of enzymes of early lineage fungi [J]. Fungal Biol Rev, 33(1): 82-97.
参考文献
LI H, ZHU G, BOYCE PC, et al. , 2010. Flora of China [M]. Beijing: Science Press: 23-33.
参考文献
LI YB, BAO XK, WAN Q, et al. , 2017. Isolation and pathogenicity of konjac root rot pathogenic fungi [C]//Proceedings of the Annual Meeting of Chinese Society for Plant Pathology. Shandong: Tai'an. [李迎宾, 暴晓凯, 万琪, 等, 2017. 魔芋块根腐烂病原真菌的分离及其致病性研究 [C]//中国植物病理学会2017年学术年会论文集. 山东: 泰安. ]
参考文献
QIN CD, JIANG Y, ZHANG R, et al. , 2021. First report of Fusarium concentricum causing shoot blight on Podocarpus macrophyllus in China [J]. Plant Dis, 160(2): 768.
参考文献
QIU L, CHOU NX, 1995. Konjac Resource and Its Development and Utilization Value [J]. Territ Nat Resour Study, 27(2): 73-74. [邱凌, 仇农学, 1995. 魔芋资源及其开发利用价值 [J]. 国土与自然资源研究, 27(2): 73-74. ]
参考文献
RAHIM H, KAMARUDIN NS, MOHD MH, 2020. First report of Fusarium concentricum causing fruit blotch on roselle (Hibiscus sabdariffa) [J]. Austral Plant Dis, 15: 15.
参考文献
SEENIVASAGAN R, BABALOLA OO, 2021. Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product [J]. Biology, 10(11): 1111.
参考文献
SRZEDNICKI G, BOROMPICHAICHARTKUL C, 2020. Konjac glucomannan-production, processing, and functional applications [M]. Boca Ration: CRC Press: 1-300.
参考文献
SUN MM, 2019, Pathogen identification and rapid detection method development for soft rot of Amorphophallus konjac [D]. Wuhan: Huazhong Agricultural University. [孙苗苗, 2019. 魔芋软腐病病原鉴定及快速检测技术研究 [D]. 武汉: 华中农业大学. ]
参考文献
VILGALYS R, HESTER M, 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species [J]. J Bacteriol, 172(8): 4238-4246
参考文献
WANG JH, FENG ZH, HAN Z, et al. , 2013. First report of pepper fruit rot caused by Fusarium concentricum in China [J]. Plant Dis, 97(12): 1657-1658.
参考文献
WANG ZM, LIU RN, DANG DZ, et al. , 2021. Symptoms, influencing factors and control measures of konjac soft rot [J]. NW Hortic, (2): 47-48. [王敏珍, 刘润妮, 党丹州, 等, 2021. 魔芋软腐病症状、影响因素与防治措施 [J]. 西北园艺(综合), (2): 47-48. ]
参考文献
WEI H, YANG M, PEI W, et al. , 2020. First report of Pectobacterium aroidearum causing soft rot of Amorphophallus konjac in China [J]. Plant Dis, 104(3): 969.
参考文献
WEI JC, 1979. Fungal identification manual [M]. Beijing: Science Press. [魏景超, 1979. 真菌鉴定手册 [M]. 北京: 科学出版社. ]
参考文献
WHITE TJ, BRUNS TD, LEE SB, et al. , 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics [M]//PCR Protocols. Pittsburgh: Academic Press: 315-322.
参考文献
WU J, DIAO Y, GU Y, et al. , 2011. Molecular detection of Pectobacterium species causing soft rot of Amorphophallus konjac [J]. World J Microb Biot, (27): 613-618.
参考文献
WU J, YANG C, JIAO Z, et al. , 2015. Genetic relationships of soft rot bacteria isolated from konjac in China by Amplified Fragment Length Polymorphism (AFLP) and 16S rDNA gene sequences [J]. Agric Sci, 6: 717-723.
参考文献
WU JP, DIAO Y, GU YC, et al. , 2021. Infection pathways of soft rot pathogens on Amorphophallus konjac [J]. Afr J Microbiol R, 4(14): 1495-1499.
参考文献
XU W, 2011. Isolation and identification of the soft rot and Sclerotium rolfsii of konjac and study of biological control in Langao County [D]. Yangling: Northwest A & F University. [徐炜, 2011. 岚皋县魔芋软腐病和白绢病病原菌的分离鉴定和生物防控初探 [D]. 杨凌: 西北农林科技大学. ]
参考文献
YANG Z, DAI CC, WANG XX, et al. , 2019. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases [J]. Acta Pedol Sin, 56(1): 12-22. [杨珍, 戴传超, 王兴祥, 等, 2019. 作物土传真菌病害发生的根际微生物机制研究进展 [J]. 土壤学报, 56(1): 12-22. ]
参考文献
ZHAO XM, LI ZY, CUI M, et al. , 2021. Preliminary study on soft rot control technology of konjac in Ankang [J]. Acta Agric Boreal-Occident Sin, 30(8): 1263-1270. [赵小明, 李增义, 崔鸣, 等, 2021. 安康魔芋软腐病防治技术初步研究 [J]. 西北农业学报, 30(8): 1263-1270. ]
参考文献
ZHANG HJ, SHAO M, DU P, et al. , 2012. Effects of diversity cultivation of konjac and maize in controlling konjac’s soft rot disease in Yunnan Province, Southwest China [J]. Chin J Ecol, 31(2): 332-336. [张红骥, 邵梅, 杜鹏, 等, 2012. 云南省魔芋与玉米多样性栽培控制魔芋软腐病 [J]. 生态学杂志, 31(2): 332-336. ]
参考文献
ZHANG YA, CHU HL, YU LQ, et al. , 2022. Analysis of the taxonomy, synteny, and virulence factors for soft rot pathogen Pectobacterium aroidearum in Amorphophallus konjac using comparative genomics [J]. Front Microbiol, 12: 679102.
参考文献
ZHANG YQ, XIE BJ, GAN X, 2005. Advance in the applications of konjac glucomannan and its derivatives [J]. Carbohyd Polym, 60: 27-31.
参考文献
ZHAO XL, HE SL, LIU SR, et al. , 2022. Isolation and identification of three strains of pathogen causing konjac stem rot and studies on pathogenicity [J]. Chin Veget, (6): 56-63. [赵兴丽, 贺圣凌, 刘思睿, 等, 2022. 3株魔芋茎腐病病原菌的分离鉴定与致病性研究 [J]. 中国蔬菜, (6): 56-63. ]
参考文献
ZHU F, 2018. Modifications of konjac glucomannan for diverse applications [J]. Food Chem, 256(Aug. 1): 419-426.
目录contents

    摘要

    魔芋软腐病是魔芋生产过程中的重要病害,也是限制魔芋产业发展的主要因素。目前,已有报道魔芋软腐病主要由细菌引起,鲜有真菌引起魔芋球茎软腐发病的报道。为明确云南曲靖市花魔芋(Amorphophallus konjac)软腐病的病原种类和侵染特征,该研究通过组织分离法,对采集自云南曲靖市的花魔芋病样进行了真菌的分离,通过形态学结合基于ITS与LSU序列分析的分子鉴定方法对分离真菌进行鉴定,并根据柯赫氏法则进行致病性测定,并对鉴定出的病原真菌同魔芋软腐病原细菌进行了双回接试验分析。结果表明:(1)从形态学和分子水平鉴定了轮纹镰刀菌(Fusarium concentricum)、尖孢镰刀菌(F. oxysporum)和F. ambrosium 3种镰刀菌,1种毛霉属真菌(Mucor sp.),1种根霉属真菌(Rhizopus sp.),1种青霉属真菌(Penicillium sp.)和1种粉红螺旋聚孢霉属真菌(Clonostachys sp.)。(2)统计分析发现,轮纹镰刀菌的相对丰度最高,为45.45%。(3)柯赫氏法则检测发现轮纹镰刀菌具有致病性。(4)轮纹镰刀菌和病原细菌胡萝卜果胶杆菌(Pectobacterium aroidearum)双接种魔芋球茎发现软腐病发病更快,病变组织重量显著高于单接种轮纹镰刀菌或果胶杆菌处理。综上表明,魔芋软腐病可能是由真菌和细菌复合侵染引发。该研究结果为魔芋软腐病的防治提供了理论依据。

    Abstract

    Konjac (Amorphophallus konjac) is a horticultural plant with high nutritional and medicinal values. Soft rot is a severe disease in production of konjac and it is also the main factor restricting the development of the konjac industry. It has been reported that the soft rot of konjac is mainly caused by pathogenic bacteria (mainly including Pectobacterium aroidearum, P. carotovorum subsp. carotovorum, P. chrysanthemi and Enterobacter sp.), and there is rare reports on pathogenic fungi that cause konjac soft rot. In order to clarify the pathogenic types and infection characteristics of the soft rot in Qujing City, Yunnan Province, the diseased corms were collected for fungal isolation by tissue isolation methods. The isolated fungi were identified by morphological and molecular identification methods based on ITS and LSU sequence analyses, and pathogenicity was determined according to Koch's rule. The infection characteristic was analyzed by mixed inoculation using the identified pathogenic fungi and the pathogenic bacteria of konjac soft rot. The results were as follows: (1) Three species of Fusarium spp. (Fusarium concentricum, F. oxysporum and F. ambrosium), one species of Mucor sp., one species of Rhizopus sp., one species of Penicillium sp. and one species of Clonostachys sp. were identified. (2) Statistics analysis found that Fusarium concentricum had the highest relative abundance (45.45%). (3) Koch postulates tests showed that inoculation with F. concentricum caused obvious soft rot symptoms of konjac corms within three days. (4) In addition, mixed Pectobacterium aroidearum and Fusarium concentricum together inoculation promoted the disease development, and the weight of rotten tissue was significantly higher than that of single inoculation using F. concentricum or Pectobacterium aroidearum. Overall, these results indicate that konjac soft rot may be caused by a combination of fungus and bacterium infection. The results provide a theoretical reference for the prevention and management of konjac soft rot.

  • 魔芋属(Amorphophallus)植物是天南星科(Araceae)多年生草本植物,主要生长在高海拔山区(邱凌和仇农学,1995)。全世界大约有170种,主要分布在越南、缅甸、中国、日本等国家,其中我国约有17种,主要集中分布在广东、四川、云南等地。魔芋球茎的蛋白质含量高于马铃薯和甘薯,并且富含膳食纤维。魔芋制品热量低,营养价值和药用价值高,食用魔芋具有减肥、降血压和血糖、改善肠道菌群结构和防癌等功效(Zhang et al.,2005;Chua et al.,2010;Srzednicki &Borompichaichartkul,2020)。魔芋葡甘聚糖(konjac glucomannan,KGM)作为魔芋粉的主要成分(Li et al.,2010),是一种水溶性多糖,在食品科学、营养保健、生物技术、药理学和精细化工等领域具有多种用途(Zhang et al.,2005;Chua et al.,2010;Behera &Ray,2016;Zhu,2018;Srzednicki et al.,2020)。花魔芋(Amorphophallus konjac)作为葡甘聚糖含量最高的魔芋种类之一,是我国主要的栽培种(Gao et al.,2022)。作为重要经济作物,魔芋已成为云、贵、川等地区农业经济发展中最具潜力与竞争优势的特色资源产业之一,也是乡村振兴重点推广种植的作物。

  • 软腐病是魔芋病害中影响最为严重的病害。由于缺乏持续有效的防控措施,被认为是对魔芋产业威胁最大的毁灭性病害,在魔芋生长期和贮藏期均可能发生。生长期魔芋软腐病的发病特征是植株的茎秆、球茎部位会由硬变软,叶片萎蔫,随后球茎发黑腐烂,有臭味散发出,并会出现倒苗的现象(Wei et al.,2020;王敏珍等,2021)。在贮藏期及播种期,如果种芋染上软腐病,球茎在发病的初期,其表皮会出现水渍状的褐色斑纹,并不断地向内扩展,球茎的白色组织逐渐变成灰色乃至黄褐色,渗出大量浓稠的菌液,致使球茎腐烂(王敏珍等,2021)。软腐病在魔芋种植区广泛传播严重阻碍了我国魔芋产业的发展。

  • 目前,有报道魔芋软腐病主要由胡萝卜果胶杆菌(Pectobacterium aroidearum)、胡萝卜果胶杆菌胡萝卜软腐亚种 [P. carotovorum subsp. carotovorum(Pcc)]、菊果胶杆菌(P. chrysanthemi)和肠杆菌属(Enterobacter sp.)等引起的细菌性软腐病(Wu et al.,2011;徐炜,2011;黄露等,2014;Wu et al.,2015;Sun,2019;Wei et al.,2020;Zhang et al.,2022),而关于魔芋软腐病病原真菌的报道比较少。何斐等(2016)研究发现,导致魔芋病株的根区、根表土壤和根系腐烂的病原真菌是腐皮镰刀菌(Fusarium solani)和尖孢镰刀菌(F. oxysporum);李迎宾等(2017)通过用离体菌丝块接种的方法研究表明尖孢镰刀菌对不同品种魔芋球茎致病力存在着差异;赵兴丽等(2022)分离鉴定了魔芋茎腐病的病原菌,也从病样分离鉴定出尖孢镰刀菌和腐皮镰刀菌2个种,但致病性检测发现尖孢镰刀菌菌株(xymy-8)无致病性,腐皮镰刀菌(xymy-7、xymy-9)有致病性且致病性有差异。主流观点认为魔芋软腐病病原菌为细菌(徐炜,2011;Wu et al.,2015;Wei et al.,2020;Zhang et al.,2022),但研究发现云南曲靖市地区储存期魔芋球茎发病会在病组织处长出大量真菌菌丝,田间发病植株取样放置后也会在极短的时间内长出大量菌丝,甚至在田间也能发现软腐病组织处有真菌菌丝长出。魔芋软腐病原细菌侵染特征相关研究表明,病原菌不能直接通过自然孔口侵染魔芋块茎,只能通过芽鞘、伤口侵染致病(黄露等,2014;Wu et al.,2021)。田间魔芋软腐病能够短期快速传播,一方面可能由于田间病原菌累积,雨水冲刷蔓延(张红骥等,2012);另一方面可能是由于病原真菌的侵染为病原细菌侵染提供了通道。

  • 本研究以云南省曲靖市魔芋产业种植区为研究区域,针对花魔芋软腐病球茎,采用真菌组织分离方法,通过形态学鉴定和分子生物学手段以及科赫氏法则检测,并利用所分离病原真菌与魔芋软腐病原细菌进行双回接试验,拟探讨以下问题:(1)魔芋软腐病病原物种类是真菌、细菌亦或复合病害;(2)魔芋软腐病病原真菌的种类、分类地位和病害特征如何。以期为云南地区魔芋软腐病的精准防治提供理论依据。

  • 1 材料与方法

  • 1.1 试验材料

  • 发病花魔芋球茎采自云南省曲靖市富源县、沾益区和陆良县魔芋种植基地,详见表1。魔芋发病症状如图1所示,植株叶片发黄,有萎蔫症状,并会出现倒苗现象,植株的茎秆和/或球茎部位有软腐症状,挖出的球茎发黑腐烂,散发出臭味(图1:A,B,D)。所采病样在病组织处有大量白色和/或黄色真菌菌丝,有些病样采集时未发现真菌菌丝,但在温放置后会在极短的时间内长出大量真菌菌丝(图1:B,C)。

  • 表1 样地概况

  • Table1 General situation of sample sites

  • 1.2 试验方法

  • 1.2.1 菌株的分离纯化

  • (1)真菌分离:取具有软腐病状的花魔芋球茎,流水冲洗掉表面泥土,取发病与健康交界处组织切成0.3 cm左右小块;75%的乙醇浸泡30 s对样品组织表面消毒,无菌水冲洗3次;将3~5块消毒后的组织块转移到PDA(培养基中含3‰乳酸)平板,均匀排布,编号,用封口膜封口;25℃培养箱中暗培养2~5 d。(2)真菌纯化:培养2~5 d后,组织块周围长出不同颜色和形状真菌菌落;用接种针沿菌落边缘挑取部分菌丝,接种至新PDA平板上,编号,培养箱中25℃暗培养,观察并记录其生长情况。重复真菌纯化培养操作2遍。

  • 1.2.2 形态学鉴定

  • 将分离纯化的菌株培养一周后,制作产孢菌株的临时玻片,用复合式显微镜(Olympus BX53)观察菌株的菌丝、产孢结构及孢子结构特征并拍照,使用Image FrameWork软件测量其孢子大小(每个菌株选择20个孢子)。具体参考《真菌鉴定手册》(魏景超,1979)进行形态鉴定。

  • 1.2.3 分子生物学鉴定

  • 从纯化后的真菌培养皿中刮取菌丝,置于1.5 mL离心管中,用液氮研磨,CTAB法提取真菌基因组DNA,用(LR0R: 5′-GTACCCGCTGAACTTAAGC-3′和LR5: 5′-ATCCTGA GGGAAACTTC-3′) (Vilgalys &Hester,1990)与(ITS4: 5′-TCCTCCGCTTATTGATATGC-3′ 和ITS5: 5′-GGAAGT AAAAGTCGTAACAAGG-3′)(White et al.,1990)两对引物分别扩增所分离菌株的LSU和ITS保守区段,扩增后的样品送测序。测序结果用BioEdit编辑后,在NCBI数据库中进行Blastn,下载高同源性序列和相关数据,以Russula vesca菌株作为系统发育树的外群,MEGA-X(Clustal W,Neighbor-Joining,bootstrap=1 000)构建系统发育树。

  • 1.2.4 致病性鉴定

  • (1)柯赫氏法则检测。将鉴定出的7种真菌培养平板,用打孔器打直径为0.5 cm的菌饼,菌丝面接在健康魔芋块茎片上,以无菌琼脂饼为空白对照置于28℃温箱保湿培养,观察是否出现软腐病特征。患病组织块再次分离真菌,鉴定。(2)病原细菌和真菌接种试验。处理1(F+P):将轮纹镰刀菌的菌饼(直径0.5 cm)和OD600为0.1的胡萝卜果胶杆菌菌液20 μL接种到健康魔芋块茎上。处理2(F):只接种轮纹镰刀菌菌饼和20 μL无菌水到健康魔芋块茎上。处理3(P):只接种OD600为0.1的胡萝卜果胶杆菌菌液20 μL和无菌琼脂饼到健康魔芋块茎上。处理4(CK):接种无菌水和无菌琼脂饼。将4种处理置于28℃保湿培养3 d,用硅胶勺将软腐组织挖出称重,获得的数据用SPSS(IBM SPSS Statistics 19)进行单因素方差分析(one-way ANOVA),用Tukey方法检验,用Excel制图。

  • 2 结果与分析

  • 2.1 球茎软腐真菌分离纯化

  • 从发病花魔芋球茎组织中分离、纯化出22株真菌,编号为M1-M25(M2、M13和M16纯化失败),在PDA培养基25℃培养5 d后观察菌落形态、微观结构特征。其中,菌株M1、M3、M4、M5、M6、M8、M9、M11、M14和M25生长迅速,菌落正反面都呈砖红偏紫色或淡紫色,边缘齐整,绒毛状,菌落表面有白色棉絮状,环纹不明显;分生孢子长约7.51 μm,宽约3.51 μm,以小型分生孢子为主,呈肾形,分生大孢子稍弯、或有隔;菌丝有隔,可产生红色色素,菌丝中部产孢。菌株M7在PDA生长迅速,菌落中部正、反面都呈红偏淡紫色,边缘白色不整齐;分生孢子长约7.60 μm,宽约4.03 μm,小型分生孢子卵圆形,大型分生孢子镰刀形,有隔,会产生红色色素,菌丝有隔,从菌丝中间产孢。菌株M10和M15生长迅速,菌落正反面都呈白色,边缘整齐,绒毛状,菌落环纹不明显;分生孢子长约10.77 μm,宽约5.92 μm,小型分生孢子为主,呈卵圆形,大型分生孢子稍弯,有一个分隔或无分隔,菌丝透明,有隔,从菌丝中部产孢。菌株M12、M19和M22的菌落正面呈白色并带有淡黄色,菌落中心高于边缘,有或无环纹;分生孢子长约4.68 μm,宽约3.16 μm,椭圆形,表面光滑,无隔透明;菌丝白色絮状,菌丝透明有隔,顶端呈帚状分枝。菌株M17和M21生长迅速,分生孢子长约5.54 μm,宽约4.01 μm,小型分生孢子为椭圆形,大型分生孢子为球形;菌丝分枝少,透明状,菌丝的顶端有球形孢子囊产孢。菌株M18、M20和M23生长迅速,菌落正面靠里颜色呈深灰色,边缘呈白色,反面呈白色,质地疏松,边缘不整齐,无菌落环纹,菌落表面有黑色;分生孢子为圆形或椭圆形,分生孢子长约4.35 μm,宽约3.61 μm,孢子壁厚;有营养菌丝,大部分无隔,会产生黄色色素,顶端膨大形成孢子囊进行产孢。菌株M24生长迅速,菌落正面呈灰白色发青,反面呈灰白色,边缘不整齐,绒毛状,菌落环纹明显;分生孢子长约3.15 μm,宽约2.67 μm,分生孢子为球形或卵圆形,孢子壁厚;菌丝有隔,中部产孢或顶端的产孢结构产孢(图2,图3)。

  • 2.2 球茎软腐真菌分子生物学鉴定

  • 由表2和图4可知,除M5菌株的ITS序列与轮纹镰刀菌模式菌株的相似度为96.89%以外,M1、M3、M4、M6、M8、M9、M11、M14和M25的ITS和LSU序列与轮纹镰刀菌模式菌株的相似度均大于97.77%(表1)。系统发育分析结果表明,M1、M3、M4、M6、M8、M9、M11、M14和M25与轮纹镰刀菌的进化地位接近,并且系统发育分析显示在同一进化分支的支持度为72%,可认为它们是同一物种。M10和M15与Fusarium ambrosium的进化地位接近,支持度为80%且与模式株F. ambrosium的ITS和LSU两段序列相似性在97.82%以上,可认为它们是同一物种。M7与尖孢镰刀菌的进化地位接近,支持度为99%且序列相似度为98.95%,可它们认为是同一物种。M12、M19和M22的ITS和LSU序列与粉红螺旋聚孢霉(Clonostachys rosea f. catenulata)模式菌株的相似度大于99%且支持度为84%,可认为它们是同一物种。M17的ITS和LSU序列与拜尼尔毛霉(Mucor bainieri)模式菌株的相似度分别是97.22%和99.23%且支持度为100%,可认为它们是同一物种;M21的ITS和LSU基因序列与拜尼尔毛霉菌株的相似度分别是91.39%和99.20%且支持度为100%,因此M21应该是毛霉属真菌。M18和M23的ITS和LSU基因序列与单孢根霉(Rhizopus azygosporus)的模式菌株相似度大于98%且支持度为97%,可认为M18和M23与单孢根霉是同一菌种;M20的ITS和LSU基因序列与单孢根霉菌株的相似度分别是98.89%和85.85%且支持率为100%,可认为M20是根霉属真菌。M24在NCBI数据库中的ITS和LSU基因序列与氯氮卓青霉(Penicillium solitum)菌株的相似度是91.80%且支持率为96%,可认为M24是青霉属真菌(Penicillium sp.)。

  • 图1 花魔芋软腐病症状图

  • Fig.1 Soft rot character of Amorphophallus konjac

  • 综上所述,结合形态鉴定结果共鉴定出轮纹镰刀菌、尖孢镰刀菌和Fusarium ambrosium 3种,占总分离真菌种类的43.86%;毛霉属真菌拜尼尔毛霉、单孢根霉、青霉属真菌(Penicillium sp.)和粉红螺旋聚孢霉各1种,各占总分离真菌种类的14.29%。

  • 根据鉴定结果,对不同种类菌株进行了分离频率的统计。从魔芋软腐病株中分离得到的轮纹镰刀菌出现的频率最高,其相对丰度为45.45%;菌株粉红螺旋聚孢霉和单孢根霉出现的频率较高,其相对丰度为13.64%;菌株Fusarium ambrosium和拜尼尔毛霉出现的频率较低,其相对丰度为9.09%;菌株尖孢镰刀菌和氯氮卓青霉出现的频率最低,其相对丰度为4.55%,由此可以推断,轮纹镰刀菌是魔芋软腐病致病菌的概率最大(表3)。

  • 2.3 柯赫氏法则检测

  • 将鉴定出的7个菌株直径0.5 cm的菌饼接种在健康的魔芋球茎切片上,28℃保湿培养3 d后,接种轮纹镰刀菌菌饼的球茎切片可以闻到明显的臭味,并且接菌处附近均出现了明显的发黑软腐症状且面积不断扩大,此现象与魔芋软腐病的发病症状相同,而空白对照处无发病的症状。从接种发病的魔芋球茎上又可以重新分离到接种菌株,因此可以确定该菌株可能是魔芋软腐病的致病真菌(图5)。同时接种轮纹镰刀菌和胡萝卜果胶杆菌(F+P)处理软腐组织重量显著高于单接种处理(F和P)处理,说明在野外环境中魔芋软腐病可能是由真菌和细菌复合侵染引起的;病原细菌胡萝卜果胶杆菌在相同条件下致病性高于轮纹镰刀菌(图6)。

  • 3 讨论与结论

  • 植物病害病原种类的确定,对于防治植物病害起着关键性作用。本研究对花魔芋病样球茎进行分离、纯化,获得22株真菌,根据形态特征结合分子生物学手段,共鉴定出7种真菌,其中镰刀菌有轮纹镰刀菌、尖孢镰刀菌和F. ambrosium 3种,毛霉属真菌、根霉属真菌单孢根霉、青霉属真菌(Penicillium sp.)和粉红螺旋聚孢霉各1种。根据柯赫氏法则检测本研究发现轮纹镰刀菌具有致病性,推断轮纹镰刀菌可能是云南曲靖市地区魔芋软腐病原真菌。据报道轮纹镰刀菌也是辣椒(Capsicum annuum)果实软腐病(Wang et al.,2013)、玉米(Zea mays)穗腐病(Du et al.,2020)、罗汉松(Podocarpus macrophyllus)萎蔫病(Qin et al.,2021)和玫瑰茄(Hibiscus sabdariffa)果斑病(Rahim et al.,2020)的病原真菌。云南地区魔芋大田规模化栽培往往与玉米套种,这可能会增加魔芋真菌性软腐病和玉米穗腐病的风险。何斐等(2016)在魔芋根际分离出尖孢镰刀菌和腐皮镰刀菌两种镰刀菌,通过回接毒素粗提液,发现可以引发魔芋球茎腐烂。李迎宾等(2017)也报道了从具有魔芋软腐症状的球茎分离出了尖孢镰刀菌和腐皮镰刀菌两种镰刀菌,致病性检测发现尖孢镰刀菌和腐皮镰刀菌都能引起花魔芋发病,但尖孢镰刀菌不能引起珠芽黄魔芋发病。赵兴丽等(2022)也从魔芋茎腐病病样分离鉴定出尖孢镰刀菌和腐皮镰刀菌两种镰刀菌,但致病性检测发现尖孢镰刀菌(菌株xymy-8)无致病性,腐皮镰刀菌(菌株xymy-7、xymy-9)有致病性,但致病性有差异。本研究也分离出了尖孢镰刀菌,但致病性检测发现其致病性弱于轮纹镰刀菌。不同研究中,这些镰刀菌对魔芋的致病性存在差异,可能与菌株间毒力差异和魔芋种植地域差异有关。

  • 图2 分离菌株PDA培养菌落图

  • Fig.2 Isolated strains cultured on PDA medium

  • 图3 分离菌株显微观察

  • Fig.3 Microscopic observation of isolated strains

  • 此外,本研究利用病原细菌胡萝卜果胶杆菌和致病真菌轮纹镰刀菌进行了双接种魔芋球茎试验,发现胡萝卜果胶杆菌和轮纹镰刀菌双接种处理的软腐组织重量显著高于单接种处理,说明魔芋软腐病细菌病原菌和真菌同时侵染会加快魔芋组织软腐化速率。因此,我们推测魔芋软腐病可能是一种真菌、细菌复合侵染病害。病原细菌不像病原真菌能够形成附着胞等结构主动侵入宿主,病原细菌侵染通常需要侵染孔口,并在侵染处达到一定的数量才能导致宿主发病(杨珍等,2019)。Wu 等(2021)研究魔芋软腐病侵染路径发现,软腐病病原细菌不能直接侵染完好球茎或从天然孔口侵入魔芋,而是通过伤口或根、鳞芽等组织的生长部位侵入魔芋。黄露等(2014)利用荧光蛋白标记病原细菌探究了不同接种(针刺、涂抹和灌根)方法对魔芋组培苗的侵染特性,也发现病原菌不能从自然孔口和根部侵染魔芋植株,主要是通过伤口侵染致病。田间魔芋软腐病能够短期大量传播爆发,一方面可能因田间病原菌累积而导致雨水冲刷蔓延(张红骥等,2012);另一方面可能因为真菌侵染伤口在自然状态下为病原细菌的侵染提供了侵染通道,从而导致软腐病的快速发病。本研究还在魔芋软腐病状组织病健交界处分离出了毛霉、根霉和青霉等腐生真菌,这些真菌不能引起健康魔芋球茎发病,它们在软腐病发病过程中具体有何作用,还有待进一步研究。但是,这些腐生真菌可以加速软腐组织的降解(Kavkler &Demšar,2019),在其快速繁殖的过程也会分泌各种多糖降解酶类物质(Lange et al.,2019),从而影响魔芋球茎健康部位,加快软腐病的发病速度。此外,我们还从魔芋软腐病状组织病健交界处分离出了粉红螺旋聚孢霉属真菌,它是一种生防菌,能够捕食真菌和线虫(Seenivasagan &Babalola,2021),可能是因为魔芋软腐病块组织处的次生侵染真菌和线虫能够为其提供食物。

  • 表2 花魔芋软腐病块组织分离真菌ITS和LSU序列NCBI数据库比对结果

  • Table2 Comparison results of isolation fungal ITS and LSU sequences soft rot tissue of Amorphophallus konjac in from NCBI database

  • 注: M1、M3~M12、M14、M15、M17~M25为分离菌株编号。下同。

  • Note: M1, M3-M12, M14, M15, M17-M25 are the numbers of isolated strains. The same below.

  • 图4 菌株的系统发育树

  • Fig.4 Phylogenetic tree of strains

  • 尽管对魔芋软腐病防治的研究相关报道较多(崔双等,2021;代雪凤等,2021;赵小明等,2021),但是效果显著的防治方法并不多。本研究明确了魔芋球茎软腐病组织的真菌群落类型,首次确定了轮纹镰刀菌可以引起魔芋球茎软腐,是致病真菌。病原细菌胡萝卜果胶杆菌和轮纹镰刀菌双回接试验显示魔芋软腐病原细菌和真菌同时侵染会提高魔芋组织软腐化速率,表明魔芋软腐病可能是一种真菌和细菌复合侵染的病害。本研究明确了云南曲靖市花魔芋种植区软腐病的病原真菌种类和病害特征,对于该病害的防控具有十分重要的现实意义。

  • 表3 分离菌株的相对丰度

  • Table3 Relative abundance of isolated strains

  • 图5 柯赫氏法则检测分离真菌

  • Fig.5 Koch postulates test of isolated fungi

  • 图6 混合病原菌接种致病性检测

  • Fig.6 Pathogenicity test of mixed pathogen inoculation

  • 参考文献

    • BEHERA SS, RAY RC, 2016. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care [J]. Int J Biol Macromol, 92: 942-956.

    • CHADHA J, HARJAI K, CHHIBBER S, 2022. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing [J]. Environ Microbiol, 24(6): 2630-2656.

    • CHUA M, BALDWIN TC, HOCKING TJ, et al. , 2010. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N. E. Br [J]. J Ethnopharmacol, 128(2): 26-78.

    • CUI S, CHEN CL, FENG JH, et al. , 2021. Characterization of Pectobacterium aroidearum causing konjac soft rot and biocontrol effect of Bacillus velezensis [J]. Chin Veget, (3): 83-93. [崔双, 陈昌龙, 冯佳豪, 等, 2021. 魔芋软腐病致病菌Pectobacterium aroidearum的特征及贝莱斯芽孢杆菌的生防效果 [J]. 中国蔬菜, (3): 83-93. ]

    • DAI XF, ZHU L, ZHANG SL, et al. , 2021. Screening of antagonistic actinomycetes against Amorphophallus soft rot [J]. J SW Univ (Nat Sci Ed), 43(11): 9-17. [代雪凤, 朱丽, 张盛林, 等, 2021. 魔芋软腐病拮抗放线菌筛选 [J]. 西南大学学报(自然科学版), 43(11): 9-17. ]

    • DU Q, DUAN C, LI S, et al. , 2020. First report of maize ear rot caused by Fusarium concentricum in china [J]. Plant Dis, 104(5): 1539-1540.

    • GAO Y, ZHANG Y, CHEN F, et al. , 2022. A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis [J]. Comput Struct Biotechnol, 20: 1002-1011.

    • HE F, ZHANG ZL, CUI M, et al. , 2016. Identification and allelopathic effect of dominant fungi in rootzone of Amorphophallus konjac and screening of the bio-control actinomycetes [J]. J NW A & F Univ (Nat Sci Ed), 44(4): 157-167. [何斐, 张忠良, 崔鸣, 等, 2016. 魔芋根域优势真菌鉴定和化感作用及其生防放线菌的筛选 [J]. 西北农林科技大学学报(自然科学版), 44(4): 157-167. ]

    • HUANG L, LIU YX, REN XX, et al. , 2014. Isolation, identification and GFP maker of soft rot bacteria strains in Amorphophallus rivieri [J]. Guizhou Agric Sci, 42(12): 118-121. [黄露, 刘永翔, 任秀秀, 等, 2014. 魔芋软腐病菌的分离鉴定及其GFP标记 [J]. 贵州农业科学, 42(12): 118-121. ]

    • KAVKLER K, DEMŠAR A, 2012. Impact of fungi on contemporary and accelerated aged wool fibres [J]. Polym Degrad Stabil, 97(5): 786-792.

    • LANGE L, PILGAARD B, HERBST FA, et al. , 2019. Origin of fungal biomass degrading enzymes: Evolution, diversity and function of enzymes of early lineage fungi [J]. Fungal Biol Rev, 33(1): 82-97.

    • LI H, ZHU G, BOYCE PC, et al. , 2010. Flora of China [M]. Beijing: Science Press: 23-33.

    • LI YB, BAO XK, WAN Q, et al. , 2017. Isolation and pathogenicity of konjac root rot pathogenic fungi [C]//Proceedings of the Annual Meeting of Chinese Society for Plant Pathology. Shandong: Tai'an. [李迎宾, 暴晓凯, 万琪, 等, 2017. 魔芋块根腐烂病原真菌的分离及其致病性研究 [C]//中国植物病理学会2017年学术年会论文集. 山东: 泰安. ]

    • QIN CD, JIANG Y, ZHANG R, et al. , 2021. First report of Fusarium concentricum causing shoot blight on Podocarpus macrophyllus in China [J]. Plant Dis, 160(2): 768.

    • QIU L, CHOU NX, 1995. Konjac Resource and Its Development and Utilization Value [J]. Territ Nat Resour Study, 27(2): 73-74. [邱凌, 仇农学, 1995. 魔芋资源及其开发利用价值 [J]. 国土与自然资源研究, 27(2): 73-74. ]

    • RAHIM H, KAMARUDIN NS, MOHD MH, 2020. First report of Fusarium concentricum causing fruit blotch on roselle (Hibiscus sabdariffa) [J]. Austral Plant Dis, 15: 15.

    • SEENIVASAGAN R, BABALOLA OO, 2021. Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product [J]. Biology, 10(11): 1111.

    • SRZEDNICKI G, BOROMPICHAICHARTKUL C, 2020. Konjac glucomannan-production, processing, and functional applications [M]. Boca Ration: CRC Press: 1-300.

    • SUN MM, 2019, Pathogen identification and rapid detection method development for soft rot of Amorphophallus konjac [D]. Wuhan: Huazhong Agricultural University. [孙苗苗, 2019. 魔芋软腐病病原鉴定及快速检测技术研究 [D]. 武汉: 华中农业大学. ]

    • VILGALYS R, HESTER M, 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species [J]. J Bacteriol, 172(8): 4238-4246

    • WANG JH, FENG ZH, HAN Z, et al. , 2013. First report of pepper fruit rot caused by Fusarium concentricum in China [J]. Plant Dis, 97(12): 1657-1658.

    • WANG ZM, LIU RN, DANG DZ, et al. , 2021. Symptoms, influencing factors and control measures of konjac soft rot [J]. NW Hortic, (2): 47-48. [王敏珍, 刘润妮, 党丹州, 等, 2021. 魔芋软腐病症状、影响因素与防治措施 [J]. 西北园艺(综合), (2): 47-48. ]

    • WEI H, YANG M, PEI W, et al. , 2020. First report of Pectobacterium aroidearum causing soft rot of Amorphophallus konjac in China [J]. Plant Dis, 104(3): 969.

    • WEI JC, 1979. Fungal identification manual [M]. Beijing: Science Press. [魏景超, 1979. 真菌鉴定手册 [M]. 北京: 科学出版社. ]

    • WHITE TJ, BRUNS TD, LEE SB, et al. , 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics [M]//PCR Protocols. Pittsburgh: Academic Press: 315-322.

    • WU J, DIAO Y, GU Y, et al. , 2011. Molecular detection of Pectobacterium species causing soft rot of Amorphophallus konjac [J]. World J Microb Biot, (27): 613-618.

    • WU J, YANG C, JIAO Z, et al. , 2015. Genetic relationships of soft rot bacteria isolated from konjac in China by Amplified Fragment Length Polymorphism (AFLP) and 16S rDNA gene sequences [J]. Agric Sci, 6: 717-723.

    • WU JP, DIAO Y, GU YC, et al. , 2021. Infection pathways of soft rot pathogens on Amorphophallus konjac [J]. Afr J Microbiol R, 4(14): 1495-1499.

    • XU W, 2011. Isolation and identification of the soft rot and Sclerotium rolfsii of konjac and study of biological control in Langao County [D]. Yangling: Northwest A & F University. [徐炜, 2011. 岚皋县魔芋软腐病和白绢病病原菌的分离鉴定和生物防控初探 [D]. 杨凌: 西北农林科技大学. ]

    • YANG Z, DAI CC, WANG XX, et al. , 2019. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases [J]. Acta Pedol Sin, 56(1): 12-22. [杨珍, 戴传超, 王兴祥, 等, 2019. 作物土传真菌病害发生的根际微生物机制研究进展 [J]. 土壤学报, 56(1): 12-22. ]

    • ZHAO XM, LI ZY, CUI M, et al. , 2021. Preliminary study on soft rot control technology of konjac in Ankang [J]. Acta Agric Boreal-Occident Sin, 30(8): 1263-1270. [赵小明, 李增义, 崔鸣, 等, 2021. 安康魔芋软腐病防治技术初步研究 [J]. 西北农业学报, 30(8): 1263-1270. ]

    • ZHANG HJ, SHAO M, DU P, et al. , 2012. Effects of diversity cultivation of konjac and maize in controlling konjac’s soft rot disease in Yunnan Province, Southwest China [J]. Chin J Ecol, 31(2): 332-336. [张红骥, 邵梅, 杜鹏, 等, 2012. 云南省魔芋与玉米多样性栽培控制魔芋软腐病 [J]. 生态学杂志, 31(2): 332-336. ]

    • ZHANG YA, CHU HL, YU LQ, et al. , 2022. Analysis of the taxonomy, synteny, and virulence factors for soft rot pathogen Pectobacterium aroidearum in Amorphophallus konjac using comparative genomics [J]. Front Microbiol, 12: 679102.

    • ZHANG YQ, XIE BJ, GAN X, 2005. Advance in the applications of konjac glucomannan and its derivatives [J]. Carbohyd Polym, 60: 27-31.

    • ZHAO XL, HE SL, LIU SR, et al. , 2022. Isolation and identification of three strains of pathogen causing konjac stem rot and studies on pathogenicity [J]. Chin Veget, (6): 56-63. [赵兴丽, 贺圣凌, 刘思睿, 等, 2022. 3株魔芋茎腐病病原菌的分离鉴定与致病性研究 [J]. 中国蔬菜, (6): 56-63. ]

    • ZHU F, 2018. Modifications of konjac glucomannan for diverse applications [J]. Food Chem, 256(Aug. 1): 419-426.

  • 参考文献

    • BEHERA SS, RAY RC, 2016. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care [J]. Int J Biol Macromol, 92: 942-956.

    • CHADHA J, HARJAI K, CHHIBBER S, 2022. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing [J]. Environ Microbiol, 24(6): 2630-2656.

    • CHUA M, BALDWIN TC, HOCKING TJ, et al. , 2010. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N. E. Br [J]. J Ethnopharmacol, 128(2): 26-78.

    • CUI S, CHEN CL, FENG JH, et al. , 2021. Characterization of Pectobacterium aroidearum causing konjac soft rot and biocontrol effect of Bacillus velezensis [J]. Chin Veget, (3): 83-93. [崔双, 陈昌龙, 冯佳豪, 等, 2021. 魔芋软腐病致病菌Pectobacterium aroidearum的特征及贝莱斯芽孢杆菌的生防效果 [J]. 中国蔬菜, (3): 83-93. ]

    • DAI XF, ZHU L, ZHANG SL, et al. , 2021. Screening of antagonistic actinomycetes against Amorphophallus soft rot [J]. J SW Univ (Nat Sci Ed), 43(11): 9-17. [代雪凤, 朱丽, 张盛林, 等, 2021. 魔芋软腐病拮抗放线菌筛选 [J]. 西南大学学报(自然科学版), 43(11): 9-17. ]

    • DU Q, DUAN C, LI S, et al. , 2020. First report of maize ear rot caused by Fusarium concentricum in china [J]. Plant Dis, 104(5): 1539-1540.

    • GAO Y, ZHANG Y, CHEN F, et al. , 2022. A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis [J]. Comput Struct Biotechnol, 20: 1002-1011.

    • HE F, ZHANG ZL, CUI M, et al. , 2016. Identification and allelopathic effect of dominant fungi in rootzone of Amorphophallus konjac and screening of the bio-control actinomycetes [J]. J NW A & F Univ (Nat Sci Ed), 44(4): 157-167. [何斐, 张忠良, 崔鸣, 等, 2016. 魔芋根域优势真菌鉴定和化感作用及其生防放线菌的筛选 [J]. 西北农林科技大学学报(自然科学版), 44(4): 157-167. ]

    • HUANG L, LIU YX, REN XX, et al. , 2014. Isolation, identification and GFP maker of soft rot bacteria strains in Amorphophallus rivieri [J]. Guizhou Agric Sci, 42(12): 118-121. [黄露, 刘永翔, 任秀秀, 等, 2014. 魔芋软腐病菌的分离鉴定及其GFP标记 [J]. 贵州农业科学, 42(12): 118-121. ]

    • KAVKLER K, DEMŠAR A, 2012. Impact of fungi on contemporary and accelerated aged wool fibres [J]. Polym Degrad Stabil, 97(5): 786-792.

    • LANGE L, PILGAARD B, HERBST FA, et al. , 2019. Origin of fungal biomass degrading enzymes: Evolution, diversity and function of enzymes of early lineage fungi [J]. Fungal Biol Rev, 33(1): 82-97.

    • LI H, ZHU G, BOYCE PC, et al. , 2010. Flora of China [M]. Beijing: Science Press: 23-33.

    • LI YB, BAO XK, WAN Q, et al. , 2017. Isolation and pathogenicity of konjac root rot pathogenic fungi [C]//Proceedings of the Annual Meeting of Chinese Society for Plant Pathology. Shandong: Tai'an. [李迎宾, 暴晓凯, 万琪, 等, 2017. 魔芋块根腐烂病原真菌的分离及其致病性研究 [C]//中国植物病理学会2017年学术年会论文集. 山东: 泰安. ]

    • QIN CD, JIANG Y, ZHANG R, et al. , 2021. First report of Fusarium concentricum causing shoot blight on Podocarpus macrophyllus in China [J]. Plant Dis, 160(2): 768.

    • QIU L, CHOU NX, 1995. Konjac Resource and Its Development and Utilization Value [J]. Territ Nat Resour Study, 27(2): 73-74. [邱凌, 仇农学, 1995. 魔芋资源及其开发利用价值 [J]. 国土与自然资源研究, 27(2): 73-74. ]

    • RAHIM H, KAMARUDIN NS, MOHD MH, 2020. First report of Fusarium concentricum causing fruit blotch on roselle (Hibiscus sabdariffa) [J]. Austral Plant Dis, 15: 15.

    • SEENIVASAGAN R, BABALOLA OO, 2021. Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product [J]. Biology, 10(11): 1111.

    • SRZEDNICKI G, BOROMPICHAICHARTKUL C, 2020. Konjac glucomannan-production, processing, and functional applications [M]. Boca Ration: CRC Press: 1-300.

    • SUN MM, 2019, Pathogen identification and rapid detection method development for soft rot of Amorphophallus konjac [D]. Wuhan: Huazhong Agricultural University. [孙苗苗, 2019. 魔芋软腐病病原鉴定及快速检测技术研究 [D]. 武汉: 华中农业大学. ]

    • VILGALYS R, HESTER M, 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species [J]. J Bacteriol, 172(8): 4238-4246

    • WANG JH, FENG ZH, HAN Z, et al. , 2013. First report of pepper fruit rot caused by Fusarium concentricum in China [J]. Plant Dis, 97(12): 1657-1658.

    • WANG ZM, LIU RN, DANG DZ, et al. , 2021. Symptoms, influencing factors and control measures of konjac soft rot [J]. NW Hortic, (2): 47-48. [王敏珍, 刘润妮, 党丹州, 等, 2021. 魔芋软腐病症状、影响因素与防治措施 [J]. 西北园艺(综合), (2): 47-48. ]

    • WEI H, YANG M, PEI W, et al. , 2020. First report of Pectobacterium aroidearum causing soft rot of Amorphophallus konjac in China [J]. Plant Dis, 104(3): 969.

    • WEI JC, 1979. Fungal identification manual [M]. Beijing: Science Press. [魏景超, 1979. 真菌鉴定手册 [M]. 北京: 科学出版社. ]

    • WHITE TJ, BRUNS TD, LEE SB, et al. , 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics [M]//PCR Protocols. Pittsburgh: Academic Press: 315-322.

    • WU J, DIAO Y, GU Y, et al. , 2011. Molecular detection of Pectobacterium species causing soft rot of Amorphophallus konjac [J]. World J Microb Biot, (27): 613-618.

    • WU J, YANG C, JIAO Z, et al. , 2015. Genetic relationships of soft rot bacteria isolated from konjac in China by Amplified Fragment Length Polymorphism (AFLP) and 16S rDNA gene sequences [J]. Agric Sci, 6: 717-723.

    • WU JP, DIAO Y, GU YC, et al. , 2021. Infection pathways of soft rot pathogens on Amorphophallus konjac [J]. Afr J Microbiol R, 4(14): 1495-1499.

    • XU W, 2011. Isolation and identification of the soft rot and Sclerotium rolfsii of konjac and study of biological control in Langao County [D]. Yangling: Northwest A & F University. [徐炜, 2011. 岚皋县魔芋软腐病和白绢病病原菌的分离鉴定和生物防控初探 [D]. 杨凌: 西北农林科技大学. ]

    • YANG Z, DAI CC, WANG XX, et al. , 2019. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases [J]. Acta Pedol Sin, 56(1): 12-22. [杨珍, 戴传超, 王兴祥, 等, 2019. 作物土传真菌病害发生的根际微生物机制研究进展 [J]. 土壤学报, 56(1): 12-22. ]

    • ZHAO XM, LI ZY, CUI M, et al. , 2021. Preliminary study on soft rot control technology of konjac in Ankang [J]. Acta Agric Boreal-Occident Sin, 30(8): 1263-1270. [赵小明, 李增义, 崔鸣, 等, 2021. 安康魔芋软腐病防治技术初步研究 [J]. 西北农业学报, 30(8): 1263-1270. ]

    • ZHANG HJ, SHAO M, DU P, et al. , 2012. Effects of diversity cultivation of konjac and maize in controlling konjac’s soft rot disease in Yunnan Province, Southwest China [J]. Chin J Ecol, 31(2): 332-336. [张红骥, 邵梅, 杜鹏, 等, 2012. 云南省魔芋与玉米多样性栽培控制魔芋软腐病 [J]. 生态学杂志, 31(2): 332-336. ]

    • ZHANG YA, CHU HL, YU LQ, et al. , 2022. Analysis of the taxonomy, synteny, and virulence factors for soft rot pathogen Pectobacterium aroidearum in Amorphophallus konjac using comparative genomics [J]. Front Microbiol, 12: 679102.

    • ZHANG YQ, XIE BJ, GAN X, 2005. Advance in the applications of konjac glucomannan and its derivatives [J]. Carbohyd Polym, 60: 27-31.

    • ZHAO XL, HE SL, LIU SR, et al. , 2022. Isolation and identification of three strains of pathogen causing konjac stem rot and studies on pathogenicity [J]. Chin Veget, (6): 56-63. [赵兴丽, 贺圣凌, 刘思睿, 等, 2022. 3株魔芋茎腐病病原菌的分离鉴定与致病性研究 [J]. 中国蔬菜, (6): 56-63. ]

    • ZHU F, 2018. Modifications of konjac glucomannan for diverse applications [J]. Food Chem, 256(Aug. 1): 419-426.