-
植物根系是地上部分与土壤连接的桥梁(Pan et al.,2022),庞大的根系不仅有利于土壤颗粒的固定、有效控制土壤侵蚀的发生以及发挥重要的水土保持功能(苏樑等,2018),而且有利于调节碳(carbon,C)、氮(nitrogen,N)、磷(phosphorus,P)养分元素平衡以及促进C、N、P在生态系统中的循环。细根是植物根系中直径小于2 mm的部分(陈晓萍等,2018),其生产-死亡-分解循环周转迅速,通过死亡和分解向土壤归还养分的能力超过地上凋落物(Vogt et al.,1986;张小全和吴可红,2001;魏鹏等,2013)。当土壤养分发生匮乏、异质性变化时,细根可以通过调控生命周期、生态化学计量比值来适应环境的变化,是响应土壤环境变化最敏感的部位(Liu et al.,2014)。
-
生态化学计量学是一种研究多种化学元素含量及其平衡关系综合有效的方法(贺金生和韩兴国,2010;潘复静等,2011)。细根C∶N∶P比值可用于表征植物对N、P养分的利用效率(熊坤等,2015;张晓龙等,2021),也可以表征植物生长限制性情况,即N∶P比值低于14受到氮限制,高于16受到P限制,介于14~16之间受到N、P共同限制(谭雪等,2022;郑翔等,2022)。林地类型、季节、坡位等因子以及土壤养分全量和有效性变化会导致植物产生细根养分变化的适应性策略调整(陈晓萍等,2018;张雪等,2022)。利用生态化学计量学理论,分析植物细根C、N、P含量及其比值特征有助于了解植物对外界环境的适应能力和策略。但是,目前我们还未能清晰地了解喀斯特地区不同林地类型细根养分如何响应环境的变化。
-
不同林地类型其物种组成、群落结构等存在较大差异(刘帅楠等,2021),进而造成土壤养分含量的差异(田宁宁等,2015)。而受到土壤养分的变化影响最直接的是根系,养分的限制也会体现在植物细根上(谭雪等,2022)。研究表明,季节变化导致的土壤养分含量的差异强烈影响植物根系养分的变化,李胜平和王克林(2016)对桂北草地研究中发现,夏季与秋季土壤全氮、全磷、有效氮和有效磷含量相对高于其他季节,进而影响着细根C、N、P养分含量。当然,季节变化与植物细根生长动态变化具有协同性,如细根生物量和生长高峰均出现在雨季(Rufat &Dejong,2001;陈光水等,2004;徐志尧等,2018)。所以,季节的变化影响了植物地上地下和土壤环境的特性。另外,影响土壤环境特性的因素还包括坡位等地形因素(余明等,2019)。在非喀斯特地区上坡土壤养分相对贫瘠(杨森霖等,2018),而在喀斯特地区却出现土壤养分倒置现象,具体表现为上坡大于下坡(梁月明等,2017),从而影响植物对细根养分的分配以及细根对养分吸收利用最终造成不同坡位细根养分含量差异(秦艳等,2008;陈晓萍等,2018)。近年来诸多学者对土壤、植被乃至植物不同器官间生态化学计量特征进行研究,何高迅等(2020)认为植被类型与土壤C、N、P化学计量比有密切联系,土壤C、N、P化学计量比的变化会影响植被物种组成(Bui &Henderson,2013),反过来植被也可以通过枯落物和根系影响土壤C、N、P养分循环从而影响土壤养分含量(Gao et al.,2014)。郭雯等(2021)发现植被不同器官间养分分配格局存在差异,是通过调节器官间C∶N∶P比来响应外界环境变化且根的重要性非常高。
-
喀斯特地区石漠化严重,水土流失加剧,以致土地生产力下降,吕文强等(2016)和吴鹏等(2020)通过对植物地上部分,如叶片化学计量特征的研究来了解生境的养分限制状况以及养分获取效率,但植物地上部分对土壤环境变化的敏感度不如细根(郭雯等,2021)。因此,明晰细根养分在不同林地类型和季节间的变化、根系养分分配以及影响因素可以充分了解该地区植物根系适应环境的机制。为了探究不同林地类型细根养分响应环境变化的特征,我们采集了喀斯特地区灌木林和乔木林中植物细根及土壤样品进行分析,探讨喀斯特地区植物细根C、N、P养分含量及比值在不同林地类型、季节、坡位的变化特征,揭示喀斯特地区不同林地类型细根在适应季节和坡位等环境变化的响应规律,为喀斯特地区生态恢复与管理提供科学的依据。
-
1 材料、研究区域与方法
-
1.1 研究区域
-
研究区地处我国广西壮族自治区环江毛南族自治县,包括中国科学院环江喀斯特生态系统观测研究站(108°18′—108°19′ E、24°43′—24°44′ N)和木论国家级自然保护区(107°53′—108°05′ E、25°06′—25°12′ N)。该研究区为典型的喀斯特峰丛洼地且属于典型的亚热带季风气候,年均气温19.9℃,极端低温-5.2℃,极端高温38.7℃,年均降雨量1 389.1 mm,降水丰富但季节分布不均,雨季(4—9月)降雨量占全年降雨量的70%以上(陈洪松等,2012),旱季为10月至次年3月。
-
中国科学院环江喀斯特生态系统观测研究站所在地从1958年到1985年经历了频繁的火烧和放牧,1985年所有居民外迁,退化系统才得以恢复。其典型景观单元为峰丛洼地,研究区属亚热带季风气候(宋同清等,2009),该研究区约70%的面积被灌木林覆盖(潘复静等,2020),优势植物有红背山麻秆(Alchornea trewioides)、灰毛浆果楝(Cipadessa cinerascens)、盐麸木(Rhus chinensis)和深紫木蓝(Indigofera atropurpurea)等。
-
木论国家级自然保护区土地总面积190.2 hm2,森林覆盖率达94.8%,是目前世界上喀斯特地区保存最完好、面积最大的原生林(潘复静等,2011;张川等,2013)。优势植物有青冈栎(Cyclobalanopsis glauca)、檵木(Loropetalum chinense)、野独活(Miliusa balansae)、青檀(Pteroceltis tatarinowii)等(潘复静等,2020)。
-
1.2 细根和土壤样品采集及处理
-
2014年5月,在环江喀斯特生态系统观测研究站和木论国家级自然保护区各建立了15个标准样方(10 m × 10 m,每个坡位5个样地),布设在上、中、下3个坡位,每个坡位5个样方,样方间隔大于10 m。
-
在本研究中,用连续根钻法连续1年研究细根的季节动态(宋日钦等,2010)。2014年5月至2015年5月,每两个月通过连续根钻法对细根进行一次采样(采样时间分别为2014年5月、7月、9月、11月和2015年1月、3月、5月,雨季为4月到9月,旱季为10月至次年3月),采样深度为10 cm。每个样方分为4个子样方(5 m × 5 m),用内径10 cm × 内管长10 cm的根钻采集土样并混合成一个样本。总共收集了210个样本,即2种林地类型 × 15个样方 × 7次采样。
-
采集的土芯样品在水中浸泡24 h后将土壤冲洗干净。按照根系直径为小于等于2 mm的标准挑选出细根(施济普和唐建维,2002),接着根据细根的颜色、外形、弹性、根皮与中柱分离的难易程度区分活细根和死细根(Ostonen et al.,2005)。每个细根样品在65℃下干燥至少48 h后研磨并过0.154 mm筛孔。用于分析的活细根和死细根样本量共420个。
-
20 14年5月,每个样方的4个子样方采集10 cm深的土样,混合成一个样本,风干、研磨并过2 mm筛网以备分析其理化特征。
-
1.3 细根及土壤样品指标测定
-
用元素分析仪(Vario MAX CN,Elementar,Germany)测定细根的C含量和N含量;用H2SO4+H2O2消煮细根后,钼锑抗比色分光光度法测定P含量(潘复静等,2011)。
-
土壤全氮(total nitrogen,TN)采用凯氏定氮法并用流动注射仪(FIAstar 5000,FOSS,HiI1erd,Denmark)测定;土壤有效氮(available nitrogen,AN)采用碱解扩散法测定;土壤全磷(total phosphorus,TP)加NaOH后放入马弗炉高温消煮,H2SO4+HCl清洗后以钼蓝显色液显色,用分光光度计进行测定;土壤有效磷(available phosphorus,AP)用NaHCO3溶液浸提后,显色和测定步骤与TP相同(鲍士旦,2000)。
-
1.4 数据处理和分析方法
-
用Excel2013和SPSS 26.0软件对测定的原始数据进行处理,各项指标在分析前进行正态分布检验,采用单因素方差分析法(one-way ANOVA)和最小显著差异法(least signifcant difference,LSD)分析两种林地类型土壤养分和细根养分的含量差异,利用皮尔逊(Pearson)对两种林地类型细根C、N、P含量及其化学计量特征与土壤养分之间进行相关性分析。利用冗余分析(redundancy analysis,RDA)方法分析土壤养分与细根养分含量及其化学计量比之间的关系,再运用方差分解分析(variance partitioning analysis,VPA)方法分析环境因子对细根养分含量及其化学计量比差异的贡献率。
-
2 结果与分析
-
2.1 不同林地类型土壤养分特征
-
由图1可知,土壤TN和AN含量在灌木林与乔木林之间存在显著性差异(P<0.05),而土壤TP和AP含量在灌木林与乔木林之间的差异不显著。TN∶TP比值和AN∶AP比值在灌木林与乔木林之间的差异不显著。从灌木林到乔木林,土壤TN、AN和TP含量及TN∶TP、AN∶AP比值增加,AP含量降低。
-
2.2 林地类型对细根C、N、P含量及其化学计量特征的影响
-
两种林地类型下活细根C含量均显著高于死细根C含量(P<0.05,图2:a),而活细根N、P含量却小于死细根N、P含量(图2:b、c)。乔木林两类细根C、N、P含量以及N∶P比值均大于灌木林且细根N含量在两种林型间差异显著(P<0.05),而C∶N、C∶P比值均小于灌木林。
-
2.3 季节对细根C、N、P含量及其化学计量特征的影响
-
灌木林,雨季两类细根C含量(448.70、412.98 g·kg-1)低于旱季两类细根C含量(457.99、422.22 g·kg-1)(图2:a);雨季活细根N、P含量(14.24、1.22 g·kg-1)高于旱季活细根N、P含量(14.16、1.15 g·kg﹣1),而死细根N、P含量相反(图2:b、c)。雨季活细根养分计量比均小于旱季活细根养分计量比,而雨季死细根C∶P、N∶P比(314.70、13.87)大于旱季死细根C∶P、N∶P比(294.20、12.61)且死细根N∶P比的差异显著(P<0.05)(图2:e、f)。
-
乔木林中,雨季两类细根养分均小于旱季(图2:a、b、c)且2个季节下细根N含量差异显著(P<0.05);雨季、死细根的C∶N和C∶P比(21.97和391.49、20.36和304.91)均大于旱季活细根、死细根的C∶N和C∶P比(21.30和361.54、17.72和274.48)(图2:d、e),而N∶P比恰恰相反(图2:f)。
-
2.4 坡位对细根C、N、P含量及其化学计量特征的影响
-
灌木林中,从上坡到下坡活细根和死细根C含量逐渐降低(图3:a);下坡活细根和死细根N、P含量高于其他两个坡位(图3:b、c);上坡和中坡的活细根和死细根C∶N、C∶P比显著大于下坡(P<0.05;图3:d、e);活细根和死细根N∶P比在中坡最低(图3:f)。
-
乔木林中,上坡活细根和死细根C含量大于其他两个坡位(图3:a);中坡活细根和死细根N、P含量高于其他两个坡位(图3:b、c);下坡活细根和死细根C∶N比高于其他两个坡位(图3:d);上坡活细根和死细根C∶P、N∶P比显著高于其他两个坡位(P<0.05;图3:e、f)。
-
2.5 细根C、N、P含量及其生态化学计量比与土壤养分的联系
-
活细根和死细根N含量与土壤TN呈显著正相关(P<0.05),活细根N含量与土壤AP呈显著负相关(P<0.01)。死细根N含量与活细根N、P含量呈显著正相关(P<0.01),活细根的N含量与P含量呈显著正相关(P<0.01);活细根和死细根N含量、活细根P含量与活细根、死细根N∶P比呈显著正相关(P<0.01),与活细根、死细根C∶N比呈显著负相关(P<0.01)(表1)。
-
RDA分析和方差分解分析表明,细根C、N、P含量及其比值的变化主要受到林地类型(18.8%的单独解释量,F=7.933 8,P=0.001)、有效磷(6.6%的单独解释量,F=3.278 4,P<0.05)和季节的影响(6.5%的单独解释量,F=2.504 8,P<0.05)(图4)。
-
3 讨论
-
3.1 林地类型对细根养分含量及其计量比的影响
-
乔木林活细根和死细根C、N、P含量和N∶P比值高于灌木林,而C∶N和C∶P比值低于灌木林。廖逸宁和郭素娟(2022)研究表明土壤TN、TP含量的提高有利于促进细根养分的吸收。本研究发现,乔木林土壤TN、TP、AN含量均高于灌木林且乔木林可能对养分的吸收能力高于灌木林,因此说明乔木林细根养分高于灌木林。灌木林细根N∶P比小于14,细根生长主要受到N限制,可能是灌木细根P含量相对较高,导致细根N∶P比降低,进而表现为N限制;乔木林(N∶P>16)受到P限制,因乔木林土壤N含量相对于灌木林更高且P的供应量低于N,同时细根对N、P养分吸收不同步(郭润泉等,2018),导致N含量高于P含量,N∶P比升高,最终造成P限制更加严重,也有可能是因生长而产生的稀释作用使细根P含量相对较低(问宇翔等,2022)。相关性分析表明细根C含量与土壤养分没有显著相关性,这是由于C是植物结构性元素,稳定性强,不直接参与生产活动(胡欢甜等,2018)。同时,本研究中活细根N含量与土壤TN呈显著正相关,活细根N含量及活细根P含量与土壤AP呈显著负相关,因此影响细根C、N、P化学计量比的主要因素是N、P,而灌木林细根N、P含量小于乔木林细根N、P含量,所以造成灌木林细根C∶N、C∶P比大于乔木林。结合冗余分析结果可知,林地类型是细根C、N、P养分及其化学计量比最主要的影响因子,其影响机制可能是乔木物种细根对养分的吸收利用可能比灌木物种更强。相较于灌木林,乔木林群落物种丰富度增加(杨华斌等,2009),地表凋落物的输入量和地下根系生物量也因此增加,进而改善土壤质量(孙彩丽等,2021),而细根对土壤环境变化敏感,最终更利于促进细根对养分的吸收与储存。
-
3.2 季节对细根养分含量及其计量比的影响
-
在雨季,两种林地类型活细根和死细根C含量以及乔木林两类细根和灌木林死细根的N、P含量均小于旱季,而灌木林的活细根N、P含量大于旱季;灌木林中活细根C、N、P化学计量比雨季小于旱季;乔木林中雨季活细根和死细根C∶N、C∶P比大于旱季,而雨季N∶P比小于旱季。研究区雨热同季,雨季雨量充足,气温高,植物生长旺盛、生命力相对更强(邓彭艳等,2010),因而C的分配格局易发生变化,更多的C用于维持植物地上部分的生长繁殖(Pregitzer,2003;李旭等,2021),导致细根C含量雨季低于旱季。雨季灌木林处于生长旺盛阶段,需要大量的营养元素,而死细根可能在衰亡前将部分养分转移回体内为植物生长提供养分(张小全和吴可红,2001),造成雨季死细根N、P含量低于旱季。C在植物体内含量相对较高,变异程度相对较小,不会成为植物生长的限制元素(牛得草等,2011)且相关性分析表明细根C含量与细根N、P养分及化学计量比间没有显著相关性。因此,C∶N、C∶P的变化主要受N和P元素影响,而本研究中灌木林活细根N、P含量在雨季大于旱季进而导致灌木林雨季活细根C∶N、C∶P比小于旱季。与灌木林不同,乔木林活细根N、P养分却是雨季小于旱季,一方面会与物种组成不同以及植被生长有关,乔木林相较于灌木林物种丰富度增加,细根生物量相对更多(杨华斌等,2009;杜有新等,2010;王韦韦等,2014),而雨季是细根生物量的生长高峰(Rufat &Dejong et al.,2001;陈光水等,2004),更多的细根生物量会稀释了活细根中N、P养分元素进而造成雨季乔木林活细根N、P养分较低;另一方面可能是两种林型在旱季对水分胁迫的响应机制不同,灌木林浅根系植物较多主要利用浅层土壤水(黄甫昭等,2021),而在乔木林中有较多深根系植物以及浅根系植物,除了利用浅层土壤水还能利用深根提水供应浅根植物(陈洪松等,2013;陈日升等,2022),更有利于根系养分的吸收,加上在旱季时N、P养分元素可能从衰亡的细根转移到活细根中,导致活细根养分元素富集而死细根养分相对贫乏(Tripathi et al.,1999),最终致使乔木林雨季活细根C∶N、C∶P比大于旱季。Terzaghi等(2013)研究表明,细根C∶N、C∶P比通常反映细根周转能力,细根C∶N、C∶P比越大,细根周转越慢。因此,灌木林在雨季周转速率大于旱季,而乔木林却是旱季周转速率大于雨季。N∶P可作为对生产力起限制性作用的营养元素的指标(贺合亮等,2017),雨季灌木林和乔木林活细根N∶P比均小于旱季活细根N∶P比,因此两种林地类型在雨季受到P限制程度较低。综上所述,季节变化带来降水、气温等变化,而不同植被不同部位对外界环境变化的响应度不同,细根作为植被地下部分最敏感的部位积极响应外界环境变化调控养分循环,进而影响自身C、N、P养分含量及化学计量比。
-
图1 土壤全氮(TN)、有效氮(AN)、全磷(TP)、有效磷(AP)的含量及其化学计量比
-
Fig.1 Soil total nitrogen (TN) , available nitrogen ( AN) , total phosphorus ( TP) , available phosphorus ( AP) contents and their stoichiometric ratios
-
图2 不同林地类型细根C、N、P含量及其化学计量比的季节动态
-
Fig.2 Seasonal variation of C, N, P contents and their ratios of fine roots in different forest types
-
图3 不同林地类型不同坡位细根C、N、P含量及其化学计量比变化特征
-
Fig.3 Patterns of C, N, P contents and their ratios of fine roots in different forest types and slopes
-
3.3 坡位对细根养分含量及其计量比的影响
-
两种林地类型上坡细根C含量大于其他2个坡位,灌木林下坡细根N、P含量和乔木林中坡细根N、P含量比其他坡位高,而灌木林中坡及乔木林下坡细根N∶P比值比其他坡位低。坡位作为重要的地形因子,影响着水热条件、土壤养分等变化且与植物生长密切相关,间接影响植物细根养分(樊月等,2019)。上坡地表径流少,土壤保水能力差(张继光等,2010),为提高根系保水能力,植物会增加对根系中碳的分配比重,以维持根系的正常生理生态功能(罗海斌等,2020),最终造成两种林地类型上坡细根C含量大于下坡。同时,相关性分析表明,细根C含量与细根C、N、P化学计量比没有显著相关性,因而影响细根化学计量比的主要元素就是N、P。对此造成不同林地类型细根N、P养分及化学计量比在坡位上的差异可能有以下2个原因: (1)环境因子(土壤养分等)的空间异质性。西南喀斯特地区土壤养分含量出现上坡大于下坡的倒置现象(张伟等,2006;刘璐等,2010;梁月明等,2017),下坡由于土壤养分相对贫瘠,植物向细根分配的养分比例反而适当增加(蔡银美等,2022),对养分的利用率更高(曾昭霞等,2015),造成灌木林下坡细根N、P含量相对较高。灌木林上坡细根P含量均低于其他坡位,从而致使它们的细根C∶P比高于其他坡位;细根N含量下坡高于其他两个坡位,导致C∶N比相对低于其他2个坡位;同时,中坡细根N∶P比值低于其他坡位,说明灌木林中坡相对于其他坡位受到P限制较弱。(2)生物因子的空间异质性以及人类活动。乔木林中坡群落多样性高、群落结构健全、受人为干扰强度小(Peng et al.,2012),因此根系相对发达、根系生物量较大、植被覆盖率以及凋落物的积累和覆盖度相也对较高(刘欣等,2016),以致土壤肥力水平较高,更有利于细根对养分的吸收与贮存,使得乔木林中坡细根N、P养分高于其他两个坡位。同时,乔木林上坡细根N含量高于下坡,而细根P含量相反,造成下坡细根N∶P比值低于其他坡位,因此下坡相对于其他坡位受到P限制的程度低。由此可见,由于各坡位环境与生物因子以及人为活动的干扰,直接或间接地影响各坡位上细根对养分的吸收,造成坡位细根养分及化学计量比存在差异。
-
注: TN. 全氮; TP. 全磷; AN. 有效氮; AP. 有效磷; LC. 活细根碳; LN. 活细根氮; LP. 活细根磷; DC. 死细根碳; DN. 死细根氮; DP. 死细根磷; LC∶LN. 活细根碳氮比; LC∶LP. 活细根碳磷比; LN∶LP. 活细根氮磷比; DC∶DN. 死细根碳氮比; DC∶DP. 死细根碳磷比; DN∶DP. 死细根氮磷比。*表示相关性在0.05水平显著(双尾),**表示相关性在0.01水平显著(双尾)。
-
Note: TN. Total nitrogen; TP. Total phosphorus; b Available nitrogen; b Available phosphorus; LC. Living fine root carbon; LN. Living fine root nitrogen; LP. Living fine root phosphorus; DC. Dead fine root carbon; DN. Dead fine root nitrogen; DP. Dead fine root phosphorus; LC∶LN. The C∶N ratios of living fine roots; LC∶LP. The C∶P ratios of living fine roots; LN∶LP. The N∶P ratios of living fine roots; DC∶DN. The C∶N ratios of dead fine roots; DC∶DP. The C∶P ratios of dead fine roots; DN∶DP. The N∶P ratios of dead fine roots. *indicates the correlation is significant at 0.05 level (two-tailed) , and **indicates the correlation is significant at 0.01 level (two-tailed) .
-
图4 土壤因子与细根养分及其化学计量比分析
-
Fig.4 Analysis of soil properties and fine root nutrients and their stoichiometric ratios
-
4 结论
-
乔木林相较于灌木林细根养分含量更高,而C∶N和C∶P比值低于灌木林,表明乔木物种细根对N、P养分的吸收与储存能力可能更强,同时灌木林细根N∶P比低于乔木林,表明乔木林受到的P限制程度更大。
-
灌木林中雨季活细根N、P养分大于旱季,乔木林相反;灌木林雨季活细根C∶N、C∶P比小于旱季,而乔木林相反,但是N∶P比均为雨季小于旱季,表明在雨季两种植被受P限制程度低。
-
中下坡使得细根N、P含量较高而N∶P比值较低,表明较低的坡位P限制程度较低。
-
参考文献
-
BAO SD, 2000. Soil agricultural chemmistry analysis [M]. Beijing: China Agriculture Press. [鲍士旦, 2000. 土壤农化分析 [M]. 北京: 中国农业出版社. ]
-
BUI EN, HENDERSON BL, 2013. C∶N∶P stoichiometry in Australian soils with respect to vegetation and environmental factors [J]. Plant Soil, 373(1/2): 553-568.
-
CAI YM, ZHANG CF, LI XY, et al. , 2022. Effect of litter input on the growth and stoichiometry of fine roots of Pinus massoniana [J]. J NE For Univ, 50(6): 32-38. [蔡银美, 张成富, 李昕颖, 等, 2022. 凋落物输入对马尾松细根生长及化学计量的影响 [J]. 东北林业大学学报, 50(6): 32-38. ]
-
CHEN HS, YANG J, FU W, et al. , 2012. Characteristics of slope runoff and sediment yield on karst hill-slope with different land-use types in northwest Guangxi [J]. Trams Chin Soc Agric Eng, 28(16): 121-126. [陈洪松, 杨静, 傅伟, 等, 2012. 桂西北喀斯特峰丛不同土地利用方式坡面产流产沙特征 [J]. 农业工程学报, 28(16): 121-126. ]
-
CHEN HS, NIE YP, WANG KL, 2013. Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: a review [J]. Acta Ecol Sin, 33(2): 317-326. [陈洪松, 聂云鹏, 王克林, 2013. 岩溶山区水分时空异质性及植物适应机理研究进展 [J]. 生态学报, 33(2): 317-326. ]
-
CHEN GS, HE ZM, XIE JS, et al. , 2004. Comparision on fine root production, distribution and turnover between plantations of Fokienia hodginsii and Cunninghamia lancelata [J]. Sci Silv Sin, 40(4): 15-21. [陈光水, 何宗明, 谢锦升, 等, 2004. 福建柏和杉木人工林细根生产力、分布及周转的比较 [J]. 林业科学, 40(4): 15-21. ]
-
CHEN RS, KANG WX, HE JN, et al. , 2022. Water storage capacities of different vegetation ecosystems [J]. J Cent S Univ For Technol, 42(6): 108-116. [陈日升, 康文星, 何介南, 等, 2022. 不同植被生态系统的调蓄水量能力 [J]. 中南林业科技大学学报, 42(6): 108-116. ]
-
CHEN XP, GUO BQ, ZHONG QL, et al. , 2018. Response of fine root carbon, nitrogen, and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi Mountains [J]. Acta Ecol Sin, 38(1): 273-281. [陈晓萍, 郭炳桥, 钟全林, 等, 2018. 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应 [J]. 生态学报, 38(1): 273-281. ]
-
DENG PY, CHEN HS, NIE YP, et al. , 2010. Photosynthetic characteristics of Radermachera sinica and Alchornea trewioides in karst regions of Northwest Guangxi, China in dry and rainy seasons [J]. Chin J Ecol, 29(8): 1498-1504. [邓彭艳, 陈洪松, 聂云鹏, 等, 2010. 桂西北喀斯特地区菜豆树和红背山麻杆旱、雨季光合特性比较 [J]. 生态学杂志, 29(8): 1498-1504. ]
-
DU YX, PAN GX, LI LQ, et al. , 2010. Fine root biomass and its nutrient storage in karst ecosystems under different vegetations in Central Guizhou, China [J]. Chin J Appl Ecol, 21(8): 1926-1932. [杜有新, 潘根兴, 李恋卿, 等, 2010. 贵州中部喀斯特山地不同植被生态系统细根生态特征及养分储量 [J]. 应用生态学报, 21(8): 1926-1932. ]
-
FAN Y, CHEN ZW, PAN YL, et al. , 2019. Effect of stand, age, and slope position on the stoichiometric characters of Cunninghamia lanceolata-Aleurites montana mixed forest [J]. Chin J Appl Environ Biol, 25(2): 246-253. [樊月, 陈志为, 潘云龙, 等, 2019. 林龄和坡位对杉桐混交林化学计量特征的影响 [J]. 应用与环境生物学报, 25(2): 246-253. ]
-
GAO Y, HE NP, YU GR, et al. , 2014. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China [J]. Ecol Eng, 67 : 171-181.
-
GUO RQ, XIONG DC, SONG TT, et al. , 2018. Effects of simulated nitrogen deposition on stoichiometry of fine roots of Chinese fir ( Cunninghamia lanceolata) seedlings [J]. Acta Ecol Sin, 38(17): 6101-6110. [郭润泉, 熊德成, 宋涛涛, 等, 2018. 模拟氮沉降对杉木幼苗细根化学计量学特征的影响 [J]. 生态学报, 38(17): 6101-6110. ]
-
GUO W, QI LH, LEI G, et al. , 2021. Nutrient distribution patterns and stoichiometry characteristics in Phyllostachys edulis and its varieties [J]. J NE For Univ, 49(4): 39-44. [郭雯, 漆良华, 雷刚, 等, 2021. 毛竹及其变种养分分配格局与化学计量特征 [J]. 东北林业大学学报, 49(4): 39-44. ]
-
HE GX, WANG Y, PENG SX, et al. , 2020. Soil carbon, nitrogen and phosphorus stocks and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China [J]. Acta Ecol Sin, 40(13): 4425-4435. [何高迅, 王越, 彭淑娴, 等, 2020. 滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征 [J]. 生态学报, 40(13): 4425-4435. ]
-
HE HL, YANG XG, LI DD, et al. , 2017. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shurub on the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 41(1): 126-135. [贺合亮, 阳小成, 李丹丹, 等, 2017. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征 [J]. 植物生态学报, 41(1): 126-135. ]
-
HE JS, HAN XG, 2010. Ecological stoichiometry: Searching for unifying principles from indiviuals to ecosystems [J]. Chin J Plant Ecol, 34(1): 2-6. [贺金生, 韩兴国, 2010. 生态化学计量学: 探索从个体到生态系统的统一化理论 [J]. 植物生态学报, 34(1): 2-6. ]
-
HU HT, QIU LJ, GE LL, et al. , 2018. Stoichometry of fine roots and topsoil of five plantations in coastal sandy [J]. J Sichuan Agric Univ, 36(4): 444-449. [胡欢甜, 邱岭军, 葛露露, 等, 2018. 滨海沙地5种人工林细根与表层土壤化学计量特征 [J]. 四川农业大学学报, 36(4): 444-449. ]
-
HUANG PZ, LI JX, LI DX, et al. , 2021. Physiological and ecological adaption of karst woody plants to drought [J]. Guihaia, 41(10): 1644-1653. [黄甫昭, 李健星, 李冬兴, 等, 2021. 岩溶木本植物对干旱的生理生态适应 [J]. 广西植物, 41(10): 1644-1653. ]
-
LI SP, WANG KL, 2016. Seasonal distribution of soil nutrients and their response to the plant diversity of karst mountain grassland [J]. J Soil Water Conserv, 30(4): 199-205. [李胜平, 王克林, 2016. 桂西北喀斯特山地草地土壤养分季节变化规律及其对植被多样性的响应 [J]. 水土保持学报, 30(4): 199-205. ]
-
LI X, TAN ND, WU T, et al. , 2021. Plant growth and C∶N∶P stoichiometry characteristics in response to experimental warming in four co-occurring subtropical forest tree seedlings [J]. Acta Ecol Sin, 41(15): 6164-6158. [李旭, 谭钠丹, 吴婷, 等, 2021. 增温对南亚热带常绿阔叶林4种幼树生长和碳氮磷化学计量特征的影响 [J]. 生态学报, 41(15): 6146-6158. ]
-
LIANG YM, SU YR, HE XY, et al. , 2017. Various effects on the abundance and composition of arbuscular mycorrhizal fungal communities in soils in karst shrub ecosystems [J]. Chin J Environ Sci, 38(11): 4828-4835. [梁月明, 苏以荣, 何寻阳, 等, 2017. 喀斯特灌丛土壤丛枝菌根真菌群落结构及丰度的影响因子 [J]. 环境科学, 38(11): 4828-4835. ]
-
LIAO YN, GUO SJ, 2022. Effects of organic-inorganic fertilizer on the stoichiometric characteristics in chestnut rhizosphere soil and fine roots [J]. J NE For Univ, 50(1): 58-63. [廖逸宁, 郭素娟, 2022. 有机-无机肥配施对板栗根际土壤及细根化学计量特征的影响 [J]. 东北林业大学学报, 50(1): 58-63. ]
-
LIU C, XIAO WH, LEI PF, et al. , 2014. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient [J]. Plant Soil, 376(1/2) : 445-459.
-
LIU L, ZENG FP, SONG TQ, et al. , 2010. Spatial heterogeneity of soil nutrients in Karst area’ s Mulun National Nature Reserve [J]. Chin J Appl Ecol, 21(7): 1667-1673. [刘璐, 曾馥平, 宋同清, 等, 2010. 喀斯特木论自然保护区土壤养分的空间变异特征 [J]. 应用生态学报, 21(7): 1667-1673. ]
-
LIU SN, LI G, YANG CJ, et al. , 2021. Seasonal variation of soil carbon, nitrogrn and phosphorus stoichiometry under different vegetation types in loess hilly region [J]. J Soil Water Conserv, 35(6): 343-349. [刘帅楠, 李广, 杨传杰, 等, 2021. 植被类型对黄土丘陵区土壤碳氮磷化学计量特征的季节变异 [J]. 水土保持学报, 35(6): 343-349. ]
-
LIU X, HUANG YX, YUAN H, et al. , 2016. Effects of vegetation type and slope position on soil nitrogen transformation rate in karst regions [J]. Acta Ecol Sin, 36(9): 2578-2587. [刘欣, 黄运湘, 袁红, 等, 2016. 植被类型与坡位对喀斯特土壤氮转化速率的影响 [J]. 生态学报, 36(9): 2578-2587. ]
-
LUO HB, HUANG CM, ZHU HM, et al. , 2020. Effects of drought stress on carbon and nitrogen metabolism of sugarcane roots [J]. J S Agric, 51(6): 1332-1338. [罗海斌, 黄诚梅, 朱慧明, 等, 2020. 干旱胁迫对甘蔗根系碳氮代谢的影响 [J]. 南方农业学报, 51(6): 1332-1338. ]
-
LÜ WQ, ZHOU CY, YAN JH, et al. , 2016. Leaf C, N, and P stoichiometry for four typical artificial forests in the karst region of Guizhou Province [J]. J Zhejiang A & F Univ, 33(6): 984-990. [吕文强, 周传艳, 闫俊华, 等, 2016. 贵州省喀斯特地区4种典型人工林叶片化学计量特征 [J]. 浙江农林大学学报, 33(6): 984-990. ]
-
NIU DC, DONG XY, FU H, 2011. Seasonal dynamics of carbon, nitrogen and phosphorus stoichiometry in Stipa bungeana [J]. Pratac Sci, 28(6): 915-920. [牛得草, 董晓玉, 傅华, 2011. 长芒草不同季节碳氮磷生态化学计量特征 [J]. 草业科学, 28(6): 915-920. ]
-
OSTONEN I, LOHMUS K, PAJUSTE K, 2005. Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods [J]. For Ecol Manag, 212(1/3): 264-277.
-
PAN FJ, QIAN Q, LIANG YM, et al. , 2022. Spatial variations in fine root turnover, biomass, and necromass of two vegetation types in a karst ecosystem, Southwestern China [J]. Forests, 13(4): 611.
-
PAN FJ, WANG KL, ZHANG W, et al. , 2020. Seasonal changes and rhizosphere effects of soil nutrients and enzymatic activities in two vegetation successions of karst ecosystem [J]. J Guilin Univ Technol, 40(1): 209-217. [潘复静, 王克林, 张伟, 等, 2020. 喀斯特不同恢复阶段植物根际土养分和酶活性的季节性变化和根际效应 [J]. 桂林理工大学学报, 40(1): 209-217. ]
-
PAN FJ, ZHANG W, WANG KL, et al. , 2011. Litter C∶N∶P ecological stoichiometry character of plant communities in typical Karst Peak-Cluster depression [J]. Atca Ecol Sin, 31(2): 335-343. [潘复静, 张伟, 王克林, 等, 2011. 典型喀斯特峰丛洼地植被群落凋落物C∶N∶P生态化学计量特征 [J]. 生态学报, 31(2): 335-343. ]
-
PENG WX, SONG TQ, ZENG FP, et al. , 2012. Relationships between woody plants and environmental factors in karst mixed evergreen-deciduous broadleaf forest, southwest China [J]. J Food Agric Environ, 10(1): 890-896.
-
PREGITZER KS, 2003. Woody plants, carbon allocation and fine roots [J]. New Phytol, 158(3): 421-424.
-
QIN Y, WANG LH, ZHANG GS, et al. , 2008. Fine root biomass seasonal dynamics and spatial changes of Sabina vulgaris and Artemisia ordosica communities in MU US Sandland [J]. J Desert Res, 28(3): 455-461. [秦艳, 王林和, 张国盛, 等, 2008. 毛乌素沙地臭柏与油蒿群落细根生物量的季节动态及其空间变化 [J]. 中国沙漠, 28(3): 455-461. ]
-
RUFAT J, DEJONG TM, 2001. Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden [J]. Tree Physiol, 21(15): 1057.
-
SHI JP, TANG JW, 2002. Fine root dynamics of several types of tropical communities in Xishuangbanna [J]. Guihaia, 22(6): 509-512. [施济普, 唐建维, 2002. 西双版纳不同热带森林群落土壤表层的细根年动态 [J]. 广西植物, 22(6): 509-512. ]
-
SONG RQ, ZHAI MP, JIA LM, et al. , 2010. Fine root dynamics of different aged triploid Populus tomentosa pulp forests during growth period [J]. Chin J Ecol, 29(9): 1696-1702. [宋日钦, 翟明普, 贾黎明, 等, 2010. 不同年龄三倍体毛白杨纸浆林生长期间细根变化规律 [J]. 生态学杂志, 29(9): 1696-1702. ]
-
SONG TQ, PENG WX, ZENG FP, et al. , 2009. Spatial heterogeneity of surface soil moisture content in dry season in Mulun National Natural Reserve in Karst area [J]. Chin J Appl Ecol, 20(1): 98-104. [宋同清, 彭晚霞, 曾馥平, 等, 2009. 喀斯特木论自然保护区旱季土壤水分的空间异质性 [J]. 应用生态学报, 20(1): 98-104. ]
-
SU L, DU H, WANG H, et al. , 2018. Root architecture of the dominant species in various vegetation restoration processes in Karst peak-cluster depression [J]. Acta Bot Boreal-Occident Sin, 38(1): 150-157. [苏樑, 杜虎, 王华, 等, 2018. 喀斯特峰丛洼地不同植被恢复阶段优势种根系构型特征 [J]. 西北植物学报, 38(1): 150-157. ]
-
SUN CL, WANG YW, WANG CJ, et al. , 2021. Effects of land use conversion on soil extracellular enzyme activity and its stoichiometric characteristics in karst mountainous areas [J]. Acta Ecol Sin, 41(10): 4140-4149. [孙彩丽, 王艺伟, 王从军, 等, 2021. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响 [J]. 生态学报, 41(10): 4140-4149. ]
-
TAN X, LI LB, XIANG GW, et al. , 2022. Ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus in the fine root of Taxodium distichum and their correlation with soil nutrients in the riparian zone of the three Gorges Reservoir Region [J]. J SW Univ(Nat Sci Ed), 44(7): 14-23. [谭雪, 李留彬, 向国伟, 等, 2022. 三峡库区消落带落羽杉细根碳氮磷化学计量特征及其与土壤养分的关系研究 [J]. 西南大学学报(自然科学版), 44(7): 14-23. ]
-
TERZAGHI M, MONTAGNOLI A, DI IORIO A, et al. , 2013. Fine-root carbon and nitrogen concentration of European beech (Fagus sylvatica L. ) in Italy Prealps: possible implications of coppice conversion to high forest [J]. Front Plant Sci, 4: 192.
-
TIAN NN, ZHANG JJ, RU H, et al. , 2015. Soil moisture and nutrient characteristics of soil and water conservation forests in Loess Plateau of western Shanxi Province [J]. Sci Soil Water Conserv, 13(6): 61-67. [田宁宁, 张建军, 茹豪, 等, 2015. 晋西黄土区水土保持林地的土壤水分和养分特征 [J]. 中国水土保持科学, 13(6): 61-67. ]
-
TRIPATHI SK, SINGH KP, SINGH PK, 1999. Temporal changes in spatial pattern of fine-root mass and nutrient concentrations in Indian bamboo savanna [J]. Appl Veg Sci, 2(2): 229-238.
-
VOGT KA, GRIER CC, VOGT DJ, 1986. Production, turnover, and nutrient dynamics of aboveground and belowground detritus of world forests [J]. Adv Ecol Res, 15: 303-377.
-
WANG WW, HUANG JX, CHEN F, et al. , 2014. Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopisi carlesii forests [J]. Chin J Appl Ecol, 25(2): 318-324. [王韦韦, 黄锦学, 陈锋, 等, 2014. 树种多样性对亚热带米槠林细根生物量和形态特征的影响 [J]. 应用生态学报, 25(2): 318-324. ]
-
WEI P, LI XW, FAN C, et al. , 2013. Fine root biomass and carbon storage in surface soil of Cinnamomum camphora plantation in Rainy Area of West China [J]. Chin J Appl Ecol, 24(10): 2755-2762. [魏鹏, 李贤伟, 范川, 等, 2013. 华西雨屏区香樟人工林土壤表层细根生物量和碳储量 [J]. 应用生态学报, 24(10): 2755-2762. ]
-
WEN YX, FENG KQ, TONG R, et al. , 2022. Response of C, N, P stoichiometry of fine and coarse roots of Metasequoia glyptostroboides plantation to nitrogen addition [J]. For Res, 35(3): 161-168. [问宇翔, 冯坤乔, 童冉, 等, 2022. 水杉人工林细根和粗根碳氮磷计量特征对N添加的响应 [J]. 林业科学研究, 35(3): 161-168. ]
-
WU P, CUI YC, ZHAO WJ, et al. , 2020. Leaf stoichiometric characteristics of 68 typical plant species in Maolan National Nature Reserve, Guizhou, China [J]. Acta Ecol Sin, 40(14): 5063-5080. [吴鹏, 崔迎春, 赵文君, 等, 2020. 茂兰喀斯特区68种典型植物叶片化学计量特征 [J]. 生态学报, 40(14): 5063-5080. ]
-
XIONG K, JIN ML, YU T, et al. , 2015. Stoichiometric characteristics of CNP in typical steppe plant at different grazing gradients [J]. J Green Sci Technol, 17(7): 4-7. [熊坤, 金美伶, 于婷, 等, 2015. 不同放牧梯度上典型草原植物碳氮磷化学计量特征 [J]. 绿色科技, 17(7): 4-7. ]
-
XU ZY, ZHANG QD, YANG L, et al. , 2018. Analysis of temporal variation of soil water in a growing season in semi-arid loess hilly area [J]. J Arid Land Resour Environ, 32(3): 145-151. [徐志尧, 张钦弟, 杨磊, 2018. 半干旱黄土丘陵区土壤水分生长季动态分析 [J]. 干旱区资源与环境, 32(3): 145-151. ]
-
YANG HB, WEI XL, DANG W, 2009. Species composition and diversity variations at different succession stages of karst vegetation in central Guizhou [J]. J Mount Agric Biol, 28(3): 203-207. [杨华斌, 韦小丽, 党伟, 2009. 黔中喀斯特植被不同演替阶段群落物种组成及多样性 [J]. 山地农业生物学报, 28(3): 203-207. ]
-
YANG SL, ZHANG J, YANG WQ, et al. , 2018. A study on the growth characteristics of roots of Pennisetum sinese in different slope of the dry-hot valley [J]. J Yuannan Agric Univ(Nat Sci Ed), 40(3): 577-585. [杨森霖, 张健, 杨万勤, 等, 2018. 干热河谷区不同坡位引种巨菌草根系生长特性研究 [J]. 云南大学学报(自然科学版), 40(3): 577-585. ]
-
YU M, WANG ZM, XUE L, 2019. Effects of different slope positions on leaf nutrient of four broadleaf native tree species [J]. J Cent S Univ For Technol, 39(5): 89-94. [余明, 王卓敏, 薛立, 2019. 不同坡位对4种阔叶乡土树种叶片养分的影响 [J]. 中南林业科技大学学报, 39(5): 89-94. ]
-
ZENG ZX, WANG KL, LIU XL, et al. , 2015. Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi [J]. Chin J Plant Ecol, 39(7): 682-693. [曾昭霞, 王克林, 刘孝利, 等, 2015. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征 [J]. 植物生态学报, 39(7): 682-693. ]
-
ZHANG C, CHEN HS, NIE YP, et al. , 2013. Dynamics of soil profile water content in peak-cluster depression areas in karst region [J]. Chin J Ecol-Agric, 21(10): 1225-1232. [张川, 陈洪松, 聂云鹏, 等, 2013. 喀斯特地区洼地剖面土壤含水率的动态变化规律 [J]. 中国生态农业学报, 21(10): 1225-1232. ]
-
ZHANG JG, CHEN HS, SU YR, et al. , 2010. Variability of soil moisture and its relationship with environmental factors on karst hilllslope [J]. Trams Chin Soc Agric Eng, 26(9): 87-93. [张继光, 陈洪松, 苏以荣, 等, 2010. 喀斯特山区坡面土壤水分变异特征及其与环境因子的关系 [J]. 农业工程学报, 26(9): 87-93. ]
-
ZHANG W, CHEN HS, WANG KL, et al. , 2006. The heterogeneity of soil nutrients and their influencing factors in peak-cluster depression aress of karst region [J]. Sci Agric Sin, 39(9): 1828-1835. [张伟, 陈洪松, 王克林, 等, 2006. 喀斯特峰丛洼地土壤养分空间分异特征及影响因子分析 [J]. 中国农业科学, 39(9): 1828-1835. ]
-
ZHANG X, WANG DM, WEN WJ, et al. , 2022. Seasonal patterns in fine root biomass and nutrient storage of four plantations in the alpine region of Qinghai Province [J]. Sci Silv Sin, 58(6): 13-22. [张雪, 王冬梅, 温文杰, 等, 2022. 青海高寒区4种人工林细根生物量及其养分储量变化特征 [J]. 林业科学, 58(6): 13-22. ]
-
ZHANG XL, ZHOU JH, LAI LM, et al. , 2021. Carbon, nitrogen and phosphorus stoichiometric characteristics of Tamarix ramosissima Ledeb. shrubland and their influencing factors in a desert riparian area of China [J]. Res Environ Sci, 34(3): 698-706. [张晓龙, 周继华, 来利明, 等, 2021. 荒漠河岸多枝柽柳灌丛碳氮磷化学计量特征及其影响因素 [J]. 环境科学研究, 34(3): 698-706. ]
-
ZHANG XQ, WU KH, 2001. Fine-root production and turnover for forest ecosystems [J]. Sci Silv Sin, 37(3): 126-138. [张小全, 吴可红, 2001. 森林细根生产和周转研究 [J]. 林业科学, 37(3): 126-138. ]
-
ZHENG X, LIU Q, CAO MM, et al. , 2022. A review of responses of soil nitrous oxide emissions to nitrogen input in forest ecosystems [J]. Acta Pedol Sin, 59(5): 1190-1203. [郑翔, 刘琦, 曹敏敏, 等, 2022. 森林土壤氧化亚氮排放对氮输入的响应研究进展 [J]. 土壤学报, 59(5): 1190-1203. ]
-
摘要
植物细根养分生态化学计量特征是植被适应土壤环境的一种策略。为了解喀斯特地区不同林地类型细根碳(C)氮(N)磷(P)的生态化学计量比值的季节变化及其影响因素,该文研究了喀斯特地区灌木林和乔木林活细根和死细根的C、N、P含量和比值及其与环境因子的关系。结果表明:(1)总体上乔木林两类细根C、N、P含量高于灌木林,表明乔木物种细根对养分的吸收和储存比灌木物种更强。另外,两种林地类型活细根C含量显著高于死细根(P<0.05),而活细根N、P含量则低于死细根。(2)两种林地类型的两类细根C含量在雨季均低于旱季;灌木林活细根N、P含量在雨季高于旱季,而乔木林相反。灌木林活细根C∶N、C∶P和N∶P比值在雨季均低于旱季;乔木林两类细根的C∶N和C∶P比值在雨季高于旱季,而N∶P比值则是雨季低于旱季。雨季较低的活细根N∶P比值,表明灌木林和乔木林的植物在雨季的P限制程度较低。(3)两种林地类型上坡两类细根的C含量均高于中坡和下坡,而灌木林下坡N、P含量相对较高,乔木林中坡N、P含量相对较高;灌木林上坡两类细根C∶N、C∶P、N∶P比值相对较高,乔木林下坡两类细根的C∶N比值高于其他坡位而C∶P和N∶P比值是上坡高于其他坡位,表明两种林地中的植物在上坡受P限制影响较强,在中下坡受影响较弱。(4)冗余分析表明,林地类型、有效磷、季节是细根C、N、P养分含量及比值的主要影响因子,它们的单独解释量分别为18.8%、6.6%、6.5%。上述结果表明,在人工促进植被恢复时应考虑适当的林地类型、季节以及坡位差异造成的N∶P比值变化的影响,以便加快喀斯特生态系统的恢复。
Abstract
The ecological stoichiometry of fine root carbon (C), nitrogen (N), and phosphorus (P) is considered to reflect the strategies whereby plants adapt to the soil environment. In order to gain an understanding of the seasonal variation in fine root C∶N∶P ratios in different forest types of karst ecosystem, we measured the C, N, and P contents and ratios of living and dead fine roots in shrubland and arbor forest, as well as the influence of abiotic and biotic factors. The results were as follows: (1) C, N, and P contents in the fine roots of arbor forest were higher than those of shrubland, thereby indicating that the fine roots of arbors may by characterized by a stronger absorption and storage of nutrients than those of shrubs. In addition, the contents of C in living fine roots were significantly higher than those in dead fine roots (P<0.05), but N and P contents in living fine roots were lower than those in dead fine roots. (2) It was found that the contents of C in the living and dead fine roots of the two forest types were lower during the rainy season than during the dry season. The N and P contents of living fine roots of shrubs were higher during the rainy season than those in dry season, the opposite pattern was observed for the living fine roots of arbors. During the rainy season, the C∶N, C∶P, and N∶P ratios of living fine roots in shrubland were lower than the values obtained during the dry season. Conversely, the C∶N and C∶P ratios of the living and dead fine roots of arbors were higher during the rainy season than in the dry season, whereas the values for the N∶P ratio were lower during the rainy season than during the dry season. The lower N∶P ratios of rainy season tended to indicate that plants in shrubland and arbor forest may be less P restricted during this season. (3) It was found that for both the living and dead fine roots of the two forest types, C contents were higher in trees growing on the upper slopes than in those growing on the middle and lower slopes, whereas the contents of N and P were higher in shrubs growing on the lower slopes and in arbors growing on the middle slopes. Furthermore, the C∶N, C∶P, and N∶P ratios of living and dead fine roots were found to be relatively higher in shrubs growing on the upper slopes. In the case of arbor forest, the C∶N ratios of living and dead fine roots in trees growing on the lower slopes were higher than other slopes, however the C∶P and N∶P ratios in trees growing on the upper slopes were higher than those of trees growing at other slopes, indicating that trees under these two forest types were strongly influenced by P limitation in the upper slopes, but only weakly affected on the middle and lower slopes. (4) Redundancy analysis revealed that forest type, available phosphorus, and season were the main factors influencing the contents and ratios of C, N, and P nutrients in fine roots, and could explain 18.8%, 6.6%, and 6.5% of the observed variation, respectively. These findings indicate that the effects of changes in the N∶P ratio associated with differences in forest type, season, and slope should be taken into consideration when vegetation restoration is promoted, which will contribute to accelerating the restoration of karst ecosystems.