en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

安静(1976—),博士,副教授,主要从事植物生理生态研究,(E-mail)anjingsavage@163.com。

通讯作者:

韦小丽,博士,教授,主要从事珍贵树种研究,(E-mail)gdwxl-69@126.com。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2024)03-0501-09

DOI:10.11931/guihaia.gxzw202112012

参考文献
AN J, WEI X, HUO H, 2022. Transcriptome analysis reveals the accelerated expression of genes related to photosynthesis and chlorophyll biosynthesis contribution to shade-tolerant in Phoebe bournei [J]. BMC Plant Biol, 22(1): 1-14.
参考文献
BROWN RC, LEMMON BE, MULLINAX JB, 2015. Immunofluorescent staining of microtubules in plant tissues: improved embedding and sectioning techniques using Polyethylene Glycol (PEG) and Steedman's Wax [J]. Plant Biol, 102(1): 54-61.
参考文献
CALATAYUD A, BARRENO JWA, et al. , 2001. Changes in chlorophyll a fluorescence, lipid peroxidation, and detoxificant system in potato plants grown under filtered and non-filtered air in open-top chambers [J]. Photosynthetica, 39(4): 507-513.
参考文献
CATONI R, GRANATA MU, SARTORI F, et al. , 2015. Corylus avellana responsiveness to light variations: morphological, anatomical, and physiological leaf trait plasticity [J]. Photosynthetica, 53(1): 35-46.
参考文献
CAI JG, WEI MQ, ZHANG Y, et al. , 2017. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plant Ecol, 41(5): 570-576. [蔡建国, 韦孟琪, 章毅, 等, 2017. 遮阴对绣球光合特性和叶绿素荧光参数的影响 [J]. 植物生态学报, 41(5): 570-576. ]
参考文献
CHENG XR, XING WL, YUAN HJ, et al. , 2019. Phenotypic plasticity of Illicium lanceolatum in response to varied light environments [J]. Acta Ecol Sin, 39(6): 1935-1944. [成向荣, 邢文黎, 苑海静, 等, 2019. 披针叶茴香对变化光环境的表型可塑性 [J]. 生态学报, 39(6): 62-71. ]
参考文献
DUTILLEUL P, HAN L, VALLADARES F, et al. , 2015. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data [J]. Front Plant Sci, 6(172): 1-13.
参考文献
DU N, ZHANG XR, WANG W, et al. , 2011. Foliar phenotypic plasticity of a warm-temperate shrub, Vitex negundo var. heterophylla, to different light environments in the field [J]. Acta Ecol Sin, 31(20): 6049-6059. [杜宁, 张秀茹, 王炜, 等, 2011. 荆条叶性状对野外不同光环境的表型可塑性 [J]. 生态学报, 31(20): 6049-6059. ]
参考文献
ECKHARDT U, GRIMM B, HÖRTENSTEINER S, 2004. Recent advances in chlorophyll biosynthesis and breakdown in higher plants [J]. Plant Mol Biol, 56(1): 1-14.
参考文献
EICHELMANN H, 2011. The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis [J]. J Exp Bot, 62(6): 2205-2215.
参考文献
FENG Q, LIU N, WANG D, 2010. Physiological and ecological responses of Spiraea pubescens in different natural light environments [J]. J Cent S Univ For Technol, 30(9): 27-33. [冯强, 刘宁, 王暾, 2010. 不同自然光环境下土庄绣线菊的生理生态响应 [J]. 中南林业科技大学学报, 30(9): 27-33. ]
参考文献
FENG XY, LIU N, GUO JP, et al. , 2013. Morphological response and plasticity of seedlings and saplings of four mixed tree species in the mountainous areas of North China under controlled light conditions [J]. Sci Silv Sin, 49(11): 42-50. [冯晓燕, 刘宁, 郭晋平, 等, 2013. 控制光照条件下华北山地4个混交树种幼苗幼树的形态响应和可塑性 [J]. 林业科学, 49(11): 42-50. ]
参考文献
GIERTYCH MJ, KAROLEWSKI P, OLEKSYN J, 2015. Carbon allocation in seedlings of deciduous tree species depends on their shade tolerance [J]. Acta Physiol Plantarum, 37(10): 215-239.
参考文献
GIVNISH TJ, 1988. Adaptation to sun and shade: A whole-plant perspective [J]. Australian J Plant Physiol, 15: 63-92.
参考文献
GRATANI L, COVONE F, LARCHER W, 2006. Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis [J]. Trees, 20(5): 549-558.
参考文献
HAN H, 2020. Study on characteristics and natural regeneration of natural forest groups of Phoebe bournei [D]. Guiyang: Guizhou University: 1-64. [韩豪, 2020. 闽楠天然林种群特征及其天然更新研究 [D]. 贵阳: 贵州大学: 1-64. ]
参考文献
HU QP, GUO ZH, MA LY, et al. , 2008. Advance at phenotypic plasticity in plant responses to abiotic factors [J]. Sci Silv Sin, 44(5): 135-142. [胡启鹏, 郭志华, 马履一, 等, 2008. 植物表型可塑性对非生物环境因子的响应研究进展 [J]. 林业科学, 44(5): 135-142. ]
参考文献
LANDE R, 2010. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation [J]. J Evol Biol, 22(7): 1435-1446.
参考文献
LARRUE S, DAEHLER CC, VAUTIER F, et al. , 2014. Forest invasion by the African Tulip tree (Spathodea campanulata) in the Hawaiian Islands: are seedlings shade-tolerant? [J]. Pacific Sci, 68(3): 345-358.
参考文献
LEE DW, 1987. The selective advantage of palisade parenchyma in bifacial leaves [J]. Amer J Bot, 74: 618-619.
参考文献
LEI G, BO L, LIU WY, et al. , 2013. Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes [J]. Aquatic Bot, 107: 47-53.
参考文献
LI HS, 2006. Modern plant physiology [M]. Beijing: Higher Education Press. [李合生, 2006. 现代植物生理学 [M]. 北京: 高等教育出版社. ]
参考文献
LI N, YANG Y, YE J, et al. , 2016. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant [J]. Plant Growth Regul, 78(2): 253-262.
参考文献
LI ZF, PAN J, WANG JD, et al. , 2014. The effects of light environment on the growth and the phonotypic plasticity of the seedlings of Phoebe bournei [J]. J SW For Univ, 34(6): 65-69. [李肇锋, 潘军, 王金盾, 等, 2014. 光环境对闽楠幼树生长及其表型可塑性的影响 [J]. 西南林业大学学报, 34(6): 65-69. ]
参考文献
LORETTA G, 2014. Plant phenotypic plasticity in response to environmental factors [J]. Adv Bot, 2014: 208747.
参考文献
LÜ FD, XU DC, HOU HB, et al. , 2003. Comparative study on chlorophyll fluorescence character of five kinds of Camellia [J]. Econ For Res, 21(4): 4-7. [吕芳德, 徐德聪, 侯红波, 等, 2003. 5种红山茶叶绿素荧光特性的比较研究 [J]. 经济林研究, 21(4): 4-7. ] MA HL, ZHANG TF, ZHOU RL, et al. ,
参考文献
2018. The changes in photosynthetic characteristics of Leymus mollis (Trin. ) Hara leaves from coastal dunes having an environmental heterogeneity [J]. Acta Ecol Sin, 38(10): 3504-3513. [马会雷, 张婷凤, 周瑞莲, 等, 2018. 海岸不同坡向滨麦光合特性与风速异质环境的关系 [J]. 生态学报, 38(10): 3504-3513. ]
参考文献
MONTGOMERY R, 2004. Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient [J]. Tree Physiol, 24(2): 155-167.
参考文献
PUGLIELLI G, CRESCENTE MF, FRATTAROLI AR, et al. , 2015. Morphological, anatomical and physiological leaf trait plasticity of Sesleria nitida (Poaceae) in open vs shaded conditions [J]. Polish J Ecol, 63(1): 10-22.
参考文献
SANO T, HORIE H, MATSUNAGA A, et al. , 2018. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L. ) shoots under direct covering cultivation. [J]. J Sci Food Agric, 98: 5666-5676.
参考文献
SUN XL, XU YF, MA LY, 2010. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment [J]. Chin J Plant Ecol, 34(8): 989-999. [孙小玲, 许岳飞, 马鲁沂, 2010. 植株叶片的光合色素构成对遮阴的响应 [J]. 植物生态学报, 34(8): 989-999. ]
参考文献
SÜKRAN D, GUNES T, SIVACI R, 1998. Spectrophotometric determination of chlorophyll-A, B and total carotenoid cotents of some algae species using different solvents [J]. Turkish J Bot, 22(1): 13-17.
参考文献
TANG X, LIU G, JIANG J, et al. , 2020. Effects of growth irradiance on photosynthesis and photorespiration of Phoebe bournei leaves [J]. Funct Plant Biol, 47(12): 1053-1061.
参考文献
TANG XL, LIU GZ, JIANG J, et al. , 2020. Effects of shading on the chlorophyll fluorescence characteristics and light energy partitioning of one- and three-year-old Phoebe bournei seedlings [J]. Chin J Ecol, 39(10): 3247-3254. [唐星林, 刘光正, 姜姜, 等, 2020. 遮阴对闽楠一年生和三年生幼树叶绿素荧光特性及能量分配的影响 [J]. 生态学杂志, 39(10): 3247-3254. ]
参考文献
TIAN XX, WEI XL, AN CR, et al. , 2017. Ecological adaptability of Phoebe bournei seedlings to light [J]. Guizhou Agric Sci, 45(5): 36-40. [田肖箫, 韦小丽, 安常蓉, 等, 2017. 闽楠幼苗对光照的生态适应性 [J]. 贵州农业科学, 45(5): 36-40. ]
参考文献
URBAS P, ZOBEL K, 2000. Adaptive and inevitable morphological plasticity of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light [J]. Acta Oecol, 21(2): 139-147.
参考文献
VALLADARES F, JOSE C, ARANDA I, et al. , 2002. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity [J]. Trees, 16(6): 395-403.
参考文献
VALLADARES F, SANCHEZ D, ZAVALA MA, 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications [J]. J Ecol, 94(6): 1103-1116.
参考文献
VOGELMANN TC, MARTIN G, 1993. The functional significance of palisade tissue: penetration of directional versus diffuse light [J]. Plant Cell Environ, 16(1): 65-72.
参考文献
WANG D, HUANG XL, CHEN JZ, et al. , 2021. Plasticity of leaf traits of Juglans regia L. f. luodianense Liu et Xu seedlings under different light conditions in karst habitats [J]. Forests, 12: 81-94.
参考文献
WANG HY, WU F, LI M, et al. , 2021. Morphological and physiological responses of Pinus massoniana seedlings to different light gradients [J]. Forests, 12(523): 522-538.
参考文献
WANG Y, SU XH, PENG ZH, 2002. Research progress of plant shade tolerance [J]. For Res, 15(3): 349-355. [王雁, 苏雪痕, 彭镇华, 2002. 植物耐荫性研究进展 [J]. 林业科学研究, 15(3): 349-355. ]
参考文献
WANG ZX, 2012. Physiological and ecological characteristics of Phoebe bournei seedling under different light environments [D]. Fuzhou: Fujian Normal University: 1-66. [王振兴, 2012. 闽楠幼树在不同光环境下的生理生态特征 [D]. 福州: 福建师范大学: 1-66. ]
参考文献
WEN J, MENG LL, ZHANG J, et al. , 2014. Research progress on the effects of low light on plant photosynthetic characteristics [J]. Jiangsu Agric Sci, 42(7): 22-24. [闻婧, 孟力力, 张俊, 等, 2014. 弱光对植物光合特性影响的研究进展 [J]. 江苏农业科学, 42(7): 22-24. ]
参考文献
WRIGHT IJ, REICH PB, WESTOBY M, et al. , 2004. The worldwide leaf economics spectrum [J]. Nature, 428(6985): 821-827. XU DQ, 2013. The science of photosynthesis [M]. Beijing: Science Press: 94-95. [许大全, 2013. 光合作用学 [M]. 北京: 科学出版社: 94-95. ]
参考文献
YAN XL, WANG DL, 2014. Effects of shading on the leaves and photosynthetic characteristics of Ligustrum robustum [J]. Acta Ecol Sin, 34(13): 3538-3547. [闫小莉, 王德炉, 2014. 遮荫对苦丁茶树叶片特征及光合特性的影响 [J]. 生态学报, 34(13): 3538-3547. ]
参考文献
YIN DS, SHEN HL, 2016. Shade tolerance and the adaptability of forest plants in morphology and physiology: A review [J]. Chin J Appl Ecol, 27(8): 2687-2698. [殷东生, 沈海龙, 2016. 森林植物耐荫性及其形态和生理适应性研究进展 [J]. 应用生态学报, 27(8): 2687-2698. ]
目录contents

    摘要

    为深入研究闽楠幼苗在极弱光环境下的可塑性及生存策略,该文以2年生闽楠幼苗为试验材料,通过人工遮阴方式模拟不同光环境(100%、35%和10%透光率),测定不同处理下闽楠幼苗叶片表观形态、解剖结构和光合生理等参数,探讨幼苗形态、生理可塑性与光适应的内在联系。结果表明:(1)闽楠幼苗的叶长、叶宽、叶面积和比叶面积(SLA)均随着光强的减弱而增加,叶片厚度、栅栏组织厚度、海绵组织厚度和栅海比值(栅栏组织厚度/海绵组织厚度)等均以10%透光率下最小。(2)35%透光率的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、光能利用率(LUE)、光系统Ⅱ(PS Ⅱ)的光化学淬灭系数(qp)、非光化学淬灭系数(NPQ)、有效光合量子产量(Fv/Fm)及潜在光化学效率(Fv/Fo)等均显著高于100%和10%透光率处理。(3)叶绿素a、叶绿素b、类胡萝卜素、叶绿素总量及最大光化学效率(Fv/Fm)等均随着光强的减弱而增加,但叶绿素a/b随着光照强度的减弱而降低。(4)幼苗结构和生理表型可塑性指数显示,光合色素含量特征>形态特征>光合特征>解剖结构特征>叶绿素荧光参数特征,其中叶面积、SLA、PnGs、LUE及光合色素含量的表型可塑性指数在0.455~0.755之间。综上所述,闽楠幼苗不适宜在全光照下生长,在35%左右的透光率下表现良好;在10%透光率下,闽楠叶片通过增加叶面积、SLA、Pn及光合色素含量来提高对光能的捕获;弱光下闽楠幼苗主要通过调节光合色素含量与形态的可塑性,协同解剖结构、光合生理及叶绿素荧光参数可塑性的变化来适应弱光环境。该研究可为今后闽楠栽培管理提供理论依据。

    Abstract

    The purpose of this study is to explore the survival strategy of Phoebe bournei seedlings in natural communities under extremely low light environment. Two-year-old seedlings of P. bournei were used as experimental materials. Leaf morphology, anatomical structure and photosynthetic physiological characteristics of P. bournei seedlings were measured by simulating different light environments (100%, 35% and 10% light transmittance), and to explore the internal relationship between seedling morphology, physiological plasticity and light adaptation. The results were as follows: (1) The leaf length, leaf width, leaf area and specific leaf area (SLA) of seedlings increased with the decrease of light intensity. The leaf thickness, palisade tissue thickness, spongy tissue thickness and palisade/spongy (palisade tissue thickness/spongy tissue thickness) of 10% light transmittance were the minimum. (2) The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), light utilization efficiency (LUE), photochemical quenching coefficient (qp), non photochemical quenching coefficient (NPQ), effective photosynthetic quantum yield (Fv′/Fm) and potential photochemical efficiency (Fv/Fo) of photosystem Ⅱ of 35% light transmittance were significantly higher than those of 100% and 10% light transmittances. (3) Chlorophyll a, chlorophyll b, carotenoids, total chlorophyll and maximal photochemical efficiency (Fv/Fm) all increased with the decrease of light intensity, but chlorophyll a/b decreased with the decrease of light intensity. (4) The phenotypic plasticity indexes of seedling structure and physiology showed that photosynthetic pigment content characteristics > morphological characteristics > photosynthetic characteristics > anatomical structure characteristics > chlorophyll fluorescence parameter characteristics, among which, the phenotypic plasticity indexes of leaf area, SLA, Pn, Gs, LUE and photosynthetic pigment content ranged from 0.455 to 0.755. To sum up, P. bournei seedlings are not suitable to grow under full light, and perform well under about 35% light transmittance; under extremely low light with 10% light transmittance, P. bournei leaves can improve light energy capture by increasing leaf area, SLA, Pn and photosynthetic pigment content; the seedlings of P. bournei mainly adapt to the low light environment by adjusting the plasticity of photosynthetic pigment content and morphology, coordinating with the changes of anatomical structure, photosynthetic physiology and chlorophyll fluorescence parameter plasticity. This study can provide theoretical reference for the management and selection of light environment of P. bournei for future cultivation.

  • 光环境是影响植物生长的主要生态因子之一,对森林更新起着重要的调节作用(Giertych et al., 2015)。随着光环境的变化,植物在光适应策略等方面做出调整,以增加对光环境资源的获取能力和利用效率(Li et al.,2016;成向荣等,2019)。植物在响应不同光环境因子变化时,其形态结构、光合生理会产生不同的表现特征,即表型可塑性(Lei et al.,2013)。表型可塑性的大小可视为基因型改变其形态和生理以适应复杂环境的能力强弱(Valladares et al.,2006)。目前,关于植物表型可塑性的研究主要涉及光环境变化下的物种分布、群落组成和生产力方面(Lande,2010)及其重要的响应机制(Loretta,2014)。尽管前人对植物适应不同光环境条件的表型可塑性已有不少研究,但对于耐阴性植物,仍然缺乏结构和生理性状可塑性与光环境相关性的系统性探讨(殷东生和沈海龙,2016)。

  • 耐阴性反映了植物在低光环境下的生存和生长能力(Givnish,1988),直接影响到森林群落的演替更新模式。其中,在林下更新过程中,幼苗从种子萌芽到形态建成需权衡弱光环境下的生存/生长策略,而不同植物幼苗耐受弱光的程度存在显著差异(Gratani et al.,2006)。例如,阳性树种马尾松(Pinus massoniana)幼苗在20%以下光环境中难以存活(Wang HY et al.,2021),小菜绿菜花(Virola koschynii)、檀香紫檀(Dipteryx panamensis)、面包树(Brosimum alicastrum)(Montgomery,2004)和火焰木(Spathodea campanulata)(Larrue et al.,2014)却可在2.5%~10%的光强下存活,表现出极强的耐阴性。前述研究主要集中在光环境下的光合生理差异。目前,关于植物形态结构与生理性状对弱光环境的适应机制尚不清楚。

  • 闽楠(Phoebe bournei)为樟科(Lauraceae)楠属(Phoebe)常绿乔木,属于南方重要的珍贵用材树种,也是优良的造林和园林绿化树种。前人对闽楠幼苗、幼树在不同光环境下的光合速率、生物量分配(王振兴,2012;田肖箫等,2017)、叶绿素荧光特性(唐星林等,2020)、光抑制(李肇锋等,2014;唐星林等,2020)以及闽楠光呼吸与光合作用的关系(Tang et al.,2020)进行了研究。但是,上述研究对闽楠幼苗在弱光下的形态、结构和光合生理性状的可塑性缺少深入研究。本课题组前期对贵州省台江县登鲁村闽楠天然林幼苗中的调查中发现,闽楠幼苗虽然在6%~30%光强下生长优越,但是在极度阴蔽(<20%)的林下仍有大量的更新幼苗存活(韩豪,2020)。弱光环境下闽楠如何调整自身的光合及生理可塑性来适应光环境的变化,目前尚未报道。因此,本研究以2年生闽楠幼苗为试验材料,采用不同的遮光处理,通过人工设置不同的透光率梯度(100%、35%和10%透光率),测定闽楠幼苗在不同光环境下叶片的形态结构与光合生理指标变化,拟探讨以下问题:(1)揭示闽楠幼苗在弱光环境下的形态结构及光合生理特性;(2)阐释闽楠幼苗在弱光环境下的可塑性变化。本研究以期为今后闽楠天然林保护、森林营造、抚育及更新方面提供理论依据。

  • 1 材料与方法

  • 1.1 材料和处理

  • 试验在贵州省贵阳市花溪区贵州大学实验苗圃进行,地理位置为104°34′ E、26°34′ N,海拔高度1 159 m。选取来自贵州省榕江种源地长势一致的2年生优良闽楠幼苗进行盆栽试验。容器为直径17.6 cm、高14.5 cm的塑料花盆,以圃地黄壤与腐殖土按体积比1∶1配制成栽培基质。2018年3月10日栽苗,缓苗3个月,处理前苗高(27.39±0.303)cm,地径为(3.54±0.062)mm。

  • 采用不同透光率的黑色遮阳网进行遮阴处理,使用光量子计(Spectrum USA)测定3个处理的日均光量子密度分别为(933.38±44.984)μmol·m-2·s-1(100%透光率,CK)、(327.040±26.800)μmol·m-2·s-1(35%透光率,T1)、(95.33±1.911)μmol·m-2·s-1(10%透光率,T2),形成3个光环境梯度。每个处理50株苗。处理时间为2018年6月10日—9月10日,处理期间正常浇水、施肥和除草,保证水肥供应正常,处理90 d后开始取样测定不同光环境下闽楠叶片的表观形态、解剖结构、叶片光合参数、叶绿素荧光参数和光合色素含量等,每处理5个生物学重复。

  • 1.2 指标测定方法

  • 1.2.1 叶片形态及比叶面积

  • 每处理选取成熟健康叶子12片,采用LI3000(LI-CORInc.,Lincoln,USA)便携式叶面积仪测定叶面积;用三角板测量叶长与叶宽。将测定后的叶片在105℃下杀青半小时后,于65℃温度恒温烘至恒重后称量干重。比叶面积(SLA)=单位面积/干重(Wright et al.,2004)。

  • 1.2.2 叶片解剖结构

  • 选取不同处理的闽楠上部成熟叶片,沿主脉两侧剪取0.2 cm × 0.4 cm的小方块,取样后立即用FAA固定液(冰醋酸∶甲醛∶70%乙醇 = 90∶5∶5)固定,加入5 mL甘油后,放入4℃冰箱内固定24 h以上。采用常规石蜡切片法进行切片(Brown et al.,2015)。

  • 1.2.3 光合作用及叶绿素荧光参数测定

  • 选择晴天(2018年8月27—29日)9:30—11:30测定光合参数。每处理选取6株幼苗,每株选择健康完整、长势一致的3片叶,每叶重复测定3次,采用Li-6400XT便携式光合测定仪(LI-COR Inc.,Lincoln,USA),设置6400-18RGB三基色红蓝光源,光合有效辐射(photosynthetically active radiation,PAR)设定光强800 μmol·m-2·s-1,CO2控制在400 μmol·mol-1,流速设为500 mol·s-1,测定光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)等指标。分别计算叶片水分利用效率(water use efficiency,WUE,μmol·mmol-1)、光能利用率(light utilization efficiency,LUE,%)(Eichelmann,2011)。

  • WUE=Pn/TrLUE=Pn/PAR

  • 对上述同样的叶片,采用叶绿素荧光仪(Junior-PAM,德国)经过暗反应30 min以上,测定并计算叶绿素荧光诱导参数中的光系统Ⅱ(photosystem Ⅱ,PSⅡ)的有效光合量子产量 [Fv′/Fm′=(Fm′-Fo)/Fm]、光化学淬灭系数(photochemical quenching coefficient, qp)、非光化学淬灭系数(non-photochemical quenching coefficient,NPQ)、最大光化学效率(maximal photochemical efficiency,Fv/Fm)、潜在光化学效率(potential photochemical efficiency,Fv/Fo)。

  • 1.2.4 光合色素含量测定

  • 采集上述测定光合参数的叶片,迅速放入冰盒带回实验室,按照Sükran等(1998)的方法测定叶绿素a(Chl a)、叶绿素b(Chl b)、类胡萝卜素(Car)和总叶绿素(Chl)等含量,于黑暗环境中浸泡36 h。用V756CRT紫外分光光度计分别在662、645、470 nm下测出吸光度值A,各参数计算公式如下。

  • CChl a=11.75A662-2.350A645

  • CChl b=18.61A645-3.960A662

  • CCar=1 000A470-2.270CChl a-81.4CChl b/227;

  • CChl=CChl a+CChl b

  • 色素含量(mg·g-1)=(C×V)/(W×1 000)。

  • 式中: C (mg·mL-1)为色素浓度; V(mL)为提取物的体积; W(g)为鲜叶重量。

  • 1.2.5 表型可塑性指数计算

  • 参照Valladares等(2006)的方法计算表型可塑性指数(phenotypic plasticity index,IPP),计算公式如下。

  • IPP=(Vmax-Vmin)/Vmax

  • 式中: VmaxVmin分别为各处理性状的最大平均值与最小平均值。

  • 本研究参考Gratani等(2006)的方法将闽楠幼苗可塑性划分为叶片形态、叶片解剖、光合和光合色素含量特征。

  • 1.3 数据分析

  • 采用Adobe Phtotoshop CS6软件制作图片,采用SPSS 18.0软件分析数据;对不同处理的结果进行单因素方差分析(ANOVA),并利用LSD法进行多重比较。

  • 2 结果与分析

  • 2.1 不同光环境对闽楠幼苗叶片形态的影响

  • 长时间生长在不同的光环境下的闽楠叶片表观形态发生了明显变化(表1)。随着光照强度的减弱,闽楠叶片长、宽、叶面积和SLA均呈增加趋势且不同处理的叶片形态参数差异显著(P<0.05)。其中,T1和T2处理的叶长分别比CK增加24.1%和49.2%,叶宽分别增加36.1%和67.4%,叶面积分别增加66.7%和125.7%,SLA分别增加58.8%和117.8%。T2处理的叶柄长显著高于CK和T1处理(P<0.05),而CK和T1处理之间差异不显著。极弱光环境下,闽楠通过增大叶面积、延长叶柄、叶片变薄来接收和捕获更多的光能,表现出极强的可塑性。

  • 表1 不同光环境对闽楠幼苗叶长、叶宽、叶柄长、叶面积、比叶面积的影响

  • Table1 Effects of different light environments on leaf lengths, leaf widths, petiole lengths, leaf areas, specific leaf areas of Phoebe bournei seedlings

  • 注:不同字母表示处理间差异显著(P<0.05)。下同。

  • Note: Different letters indicate significant differences between treatments (P<0.05) . The same below.

  • 2.2 不同光环境对闽楠幼苗叶片解剖结构的影响

  • 对不同光环境闽楠叶片的解剖结构观察结果表明(表2,图1),CK表皮略有损伤,T1与T2表皮光滑,T1处理的栅栏组织厚度、海绵组织厚度、叶片厚度和栅海比(栅栏组织厚度/海绵组织厚度)均显著高于CK和T2处理,其中T1处理的各指标分别比CK高33.2%、7.6%、25%和38.7%,T2处理各参数指标均显著低于CK(P<0.05)。由图1可知,T2处理的叶片更薄,极弱光条件下海绵组织占比增多,栅海比显著低于CK和T2。

  • 表2 不同光环境对闽楠幼苗叶片组织解剖结构的影响

  • Table2 Effects of different light environments on anatomical structures of Phoebe bournei seedlings leaves

  • 图1 不同光环境下闽楠叶片横切面

  • Fig.1 Cross sections of Phoebe bournei leaves under different light environments

  • 2.3 不同光环境对闽楠幼苗光合参数的影响

  • 不同光照强度下闽楠幼苗叶片光合参数差异显著(P<0.05)(表3)。T1处理下的PnGs、Tr、LUE最大,T2次之,其中T1和T2的Pn分别比CK高119.4%和66.8%,表明适度遮阴有利于各光合参数的增加,强度遮阴则导致光合速率降低,但仍高于CK。此外,Ci随着光照强度的减弱而降低;强光和弱度光照下闽楠幼苗 WUE显著高于T2。

  • 2.4 不同光环境对闽楠幼苗叶绿素荧光参数和光合色素含量的影响

  • 随着光环境的减弱,光系统Ⅱ(PSⅡ)的光化学淬灭系数(qp)、非光化学淬灭系数(NPQ)、有效光合量子产量(Fv′/Fm)及潜在光化学效率(Fv/Fo)均是T1显著高于CK和T2,CK与T2的qpFv′/Fm差异不显著(P>0.05)(表4)。最大光化学效率(Fv/Fm)均随着光环境的减弱而增强,T2的Fv/Fm值分别比CK和T1提高了8.3%和4.7%。

  • 随着光照强度的降低,闽楠叶片叶绿素a、叶绿素b、类胡萝卜素及总叶绿素含量积累均呈增加趋势(表4)且不同处理间差异显著(P<0.05)。T2处理的类胡萝卜素与总叶绿素分别比T1、CK提高了2.30、1.76倍和2.33、1.49倍,表明遮阴有利于光合色素的积累。然而,叶绿素a/b比值随光照强度的减少而降低(P<0.05),表明弱光条件下,叶绿素b积累的速率高于叶绿素a。

  • 2.5 不同光环境对闽楠幼苗结构与生理特征的可塑性影响

  • 通过计算闽楠叶片表观形态、解剖结构、光合生理各参数的表型可塑性指数可知,各类型表型可塑性指数均值大小依次为光合色素含量特征>形态特征>光合特征>解剖结构特征>叶绿素荧光参数特征(表5)。光合色素含量特征中叶绿素a、叶绿素b、类胡萝卜素及总叶绿素和叶绿素a/b的表型可塑性指数均在0.455~0.755之间,表现出较高的表型可塑性;在形态特征中,叶面积和比叶面积表型可塑性指数较大,分别达到0.557和0.541,而叶长表型可塑性指数较小;在解剖结构特征中,栅栏组织厚度可塑性指数(0.431)较大,其次为栅海比,而海绵组织厚度和叶片厚度较小;光合特征中的PnGs和LUE均超过0.500;而叶绿素荧光参数特征表型可塑性指数均小于0.300。

  • 3 讨论与结论

  • 叶片是植物进行光合作用及与外界环境进行物质和能量交换的主要场所,是植物对外界环境变化最敏感的器官(成向荣等,2019)。森林植物在林下弱光环境中的生存和生长是其长期适应环境选择的结果,而耐阴性树种叶片的形态和生理特征会影响到光捕获能力(Dutilleul et al.,2015)。叶的形态结构在不同光环境下的表型可塑性显得尤为重要。比叶面积(SLA)是单位质量下叶面积的大小,更大的比叶面积,意味着更大的叶面积、更薄的叶片(Giertych et al.,2015),其也可作为弱光下植物提高碳获取的有效途径(Wright et al.,2004)。弱光条件下,植物用等量的干物质制造更大的叶面积,从而获得更多的光能(冯强等,2010)。本研究中闽楠叶片的形态表现出极强的可塑性,极弱光条件下,幼苗通过增加叶长、叶宽来增大叶面积和比叶面积,并延长叶柄以捕获更多的光能。前人研究发现随着光强的减弱,叶片厚度变薄,栅海比减少,栅栏组织层数降低,细胞变短且圆,排列疏松,细胞间隙增大,以上参数的改变均可作为植物长期在弱光环境下的适应特征(闻婧等,2014;Puglielli et al.,2015;Catoni et al.,2015)。本研究发现闽楠幼苗(除CK外)均随着光照辐射强度减弱,其栅栏组织厚度、海绵组织厚度、叶片厚度、栅/海比减小。而在100%透光率环境(CK)中,叶片厚度略低于T1处理,其可能与闽楠幼苗不适应全光照环境表皮易受损有关。同时,本研究结果显示,闽楠叶片在10%透光率下,栅栏组织和叶片均变薄,海绵组织占比增大,使其在低光环境下能增强叶片内反射光和散射光的吸收,有利于叶片在有限的光强下获得更多的光能,这与闻婧等(2014)研究弱光条件下叶片结构可塑性的响应模式相似。综上所述,闽楠幼苗叶形态、结构指标中主要通过调整叶面积、比叶面积、叶片厚度及栅栏组织厚度来适应弱光环境变化。

  • 表3 不同光环境对闽楠幼苗光合参数和荧光参数的影响

  • Table3 Effects of different light environments on photosynthetic parameters and fluorescence parameters of Phoebe bournei seedlings

  • 表4 不同光环境对闽楠幼苗叶绿素荧光参数与光合色素含量的影响

  • Table4 Effects of different light environments on chlorophyll fluorescence parameters and photosynthetic pigment contents of Phoebe bournei seedlings

  • 植物形态结构的建成需要能量的支持,光照作为光合作用的主要能量来源,在电子传递、光合磷酸化、碳同化过程中起着重要的调节作用(李合生,2006;马会雷等,2018)。因此,闽楠形态结构的变化必然会引起光合生理参数的差异。在本研究中,T1下的光合生理参数(PnGs、Tr、LUE)最大,表现出良好的光合特性。此外,闽楠作为耐阴树种,其幼苗耐弱光的能力比耐强光的能力强,在10%透光率的极弱光强下其Pn、Tr仍然达到了最适光强的76.03%和65.15%,而全光下其Pn、Tr仅达到了最适光强的45.6%和35.2%。叶绿素是参与植物光合作用的重要色素(Sano et al., 2018)。本研究结果表明,闽楠幼苗在遮阴下有利于光合色素的积累。Eckhardt等(2004)认为,叶绿素酸酯a加氧酶基因(CAO)可调控叶绿素a氧化形成叶绿素b的途径,是叶绿素b形成过程中的关键酶。本课题组前期对不同光环境下闽楠幼苗转录组数据分析发现,T2中调控叶绿素a转化为叶绿素b的CAO基因显著上调表达(An et al.,2022),该研究结果与闽楠幼苗在弱光环境下叶绿素b含量增加趋势相一致。同时,光合色素积累的改变会影响叶片对不同光质的捕获能力,捕光色素复合体(LHCII)中叶绿素b含量的增加可提高植物对蓝紫光的利用效率,维持光系统 I 和Ⅱ之间的能量平衡(杜宁等,2011)。由此推测,闽楠幼苗在弱光环境下为提高光能吸收能力,使得叶片叶绿素b增加的速率比叶绿素a的增加速率快,这与闫小莉和王德炉(2014)的研究结果相似,也与闽楠幼苗在弱下光能利用效率值较高相吻合。同时,类胡萝卜素具有光能捕获和光破坏防御两大功能(孙小玲等,2010),闽楠幼苗在弱光环境下类胡萝卜素的增加,其目的可能是为协助叶绿素捕获更多光能。

  • 叶绿体荧光动力学被视为植物光合作用与环境关系的内在探针,可检测植物在不同环境条件下的光量子产量,反映了叶片潜在的光合能力 (Calatayud &Barreno,2001;Wang D et al.,2021)。其中,有效光合量子产量(Fv′/Fm)显示PSⅡ反应中心部分关闭情况下实际的PSⅡ光能捕获效率(吕芳德等,2003),而光化学猝灭(qp)反映了PSⅡ天线色素吸收的光能用于光化学电子传递的份额(蔡建国等,2017)。本研究中,闽楠幼苗的Fv′/Fmqp均在T1光强下最高,CK和T2处理次之,表明T1处理下闽楠的光能捕获效率高,这与T1下光合速率(Pn)、光能利用率(LUE)值最高相一致,说明适当的弱光条件有利于闽楠幼苗发挥光合潜能,提高光合效率。非光化学猝灭(NPQ)表示PSⅡ天线色素吸收多余光能以热能的形式进行耗散的参数,代表植物光合系统的自我保护能力(Wang D et al.,2021)。本研究发现在T1处理下,NPQ较CK升高,表明光能转化为热耗散的比例提高,在光强减弱下可以迅速启动光保护机制。此外,Fv/Fm反映了PSⅡ反应中心光能的转化效率,在植物正常生长的情况下,Fv/Fm一般介于0.80~0.85之间(许大全,2013)。本研究中,闽楠幼苗CK条件下Fv/Fm为0.78且Pn低于T2,推测闽楠幼苗在全光照下可能受到了光抑制且CK处理下表皮细胞排列紊乱,可进一步证实该结论。弱光环境下耐阴性植物Fv/Fm均在0.8以上,表明其潜在的光合能力较强(蔡建国等,2017),因此推测在10%透光率下,闽楠幼苗仍保持最高的光能转化效率。

  • 表5 不同光环境下闽楠幼苗形态和生理指标的表型可塑性指数

  • Table5 Morphological and physiological indexes IPP of Phoebe bournei seedlings in different light environments

  • 可塑性指标的大小可以反映植物对环境变化适应能力的强弱(Valladares et al.,2002)。柱状的栅栏组织细胞使光量子能够透过中心液泡或细胞间隙造成光能的投射损失(Lee,1987;Vogelmann &Martin,1993)。闽楠栅栏组织表型可塑性指数(0.431)高于其他解剖结构,表明栅栏组织厚度对光环境适应调节能力较强。耐阴植物与喜光植物相比,其叶片具有相对发达的海绵组织,其不规则分布的细胞对于减少光量子投射损失、提高弱光照条件下的光量子利用效率具有重要的促进作用(王雁等,2002)。在10%透光率下栅栏组织和叶片均变薄,海绵组织占比增大,使其在低光环境下能增强叶片内反射光和散射光的吸收,有利于叶片在有限的光强下获得更多的光能,这也与Urbas和 Zobel (2000)研究弱光条件下的鹅肝草(Hepatica nobilis)、山楂(Lathyrus vernus)、芝麻(Sesleria caerulea)叶片结构可塑性的响应模式相似。弱光环境下耐阴植物叶片光合能力与形态特征能力之间存在着权衡关系(胡启鹏等,2008)。本研究中,闽楠的光合色素含量特征与形态特征的可塑性较高,说明光合色素与形态特征指标对光环境的适应调节能力较强。前人认为耐阴树种之所以在弱光环境下生长得好,其因为具有较高的形态可塑性与较高光合色素含量,可抵消较低光合生理可塑性带来的不足(Valladares et al.,2002),冯晓燕等(2013)的研究表明耐阴种白杄(Picea meyeri)幼苗在不同光环境下具有较高的形态可塑性。本研究中闽楠幼苗叶面积、比叶面积的可塑性都高于Pn,再一次印证了前人的论断。

  • 闽楠幼苗作为一种耐阴植物,其主要通过调节光合色素含量积累与叶片的形态、解剖结构特性及光合生理特征来适应光环境变化,在弱光下主要采取了提高光合色素积累、增大叶面积和比叶面积等来适应弱光环境的生存策略。

  • 参考文献

    • AN J, WEI X, HUO H, 2022. Transcriptome analysis reveals the accelerated expression of genes related to photosynthesis and chlorophyll biosynthesis contribution to shade-tolerant in Phoebe bournei [J]. BMC Plant Biol, 22(1): 1-14.

    • BROWN RC, LEMMON BE, MULLINAX JB, 2015. Immunofluorescent staining of microtubules in plant tissues: improved embedding and sectioning techniques using Polyethylene Glycol (PEG) and Steedman's Wax [J]. Plant Biol, 102(1): 54-61.

    • CALATAYUD A, BARRENO JWA, et al. , 2001. Changes in chlorophyll a fluorescence, lipid peroxidation, and detoxificant system in potato plants grown under filtered and non-filtered air in open-top chambers [J]. Photosynthetica, 39(4): 507-513.

    • CATONI R, GRANATA MU, SARTORI F, et al. , 2015. Corylus avellana responsiveness to light variations: morphological, anatomical, and physiological leaf trait plasticity [J]. Photosynthetica, 53(1): 35-46.

    • CAI JG, WEI MQ, ZHANG Y, et al. , 2017. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plant Ecol, 41(5): 570-576. [蔡建国, 韦孟琪, 章毅, 等, 2017. 遮阴对绣球光合特性和叶绿素荧光参数的影响 [J]. 植物生态学报, 41(5): 570-576. ]

    • CHENG XR, XING WL, YUAN HJ, et al. , 2019. Phenotypic plasticity of Illicium lanceolatum in response to varied light environments [J]. Acta Ecol Sin, 39(6): 1935-1944. [成向荣, 邢文黎, 苑海静, 等, 2019. 披针叶茴香对变化光环境的表型可塑性 [J]. 生态学报, 39(6): 62-71. ]

    • DUTILLEUL P, HAN L, VALLADARES F, et al. , 2015. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data [J]. Front Plant Sci, 6(172): 1-13.

    • DU N, ZHANG XR, WANG W, et al. , 2011. Foliar phenotypic plasticity of a warm-temperate shrub, Vitex negundo var. heterophylla, to different light environments in the field [J]. Acta Ecol Sin, 31(20): 6049-6059. [杜宁, 张秀茹, 王炜, 等, 2011. 荆条叶性状对野外不同光环境的表型可塑性 [J]. 生态学报, 31(20): 6049-6059. ]

    • ECKHARDT U, GRIMM B, HÖRTENSTEINER S, 2004. Recent advances in chlorophyll biosynthesis and breakdown in higher plants [J]. Plant Mol Biol, 56(1): 1-14.

    • EICHELMANN H, 2011. The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis [J]. J Exp Bot, 62(6): 2205-2215.

    • FENG Q, LIU N, WANG D, 2010. Physiological and ecological responses of Spiraea pubescens in different natural light environments [J]. J Cent S Univ For Technol, 30(9): 27-33. [冯强, 刘宁, 王暾, 2010. 不同自然光环境下土庄绣线菊的生理生态响应 [J]. 中南林业科技大学学报, 30(9): 27-33. ]

    • FENG XY, LIU N, GUO JP, et al. , 2013. Morphological response and plasticity of seedlings and saplings of four mixed tree species in the mountainous areas of North China under controlled light conditions [J]. Sci Silv Sin, 49(11): 42-50. [冯晓燕, 刘宁, 郭晋平, 等, 2013. 控制光照条件下华北山地4个混交树种幼苗幼树的形态响应和可塑性 [J]. 林业科学, 49(11): 42-50. ]

    • GIERTYCH MJ, KAROLEWSKI P, OLEKSYN J, 2015. Carbon allocation in seedlings of deciduous tree species depends on their shade tolerance [J]. Acta Physiol Plantarum, 37(10): 215-239.

    • GIVNISH TJ, 1988. Adaptation to sun and shade: A whole-plant perspective [J]. Australian J Plant Physiol, 15: 63-92.

    • GRATANI L, COVONE F, LARCHER W, 2006. Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis [J]. Trees, 20(5): 549-558.

    • HAN H, 2020. Study on characteristics and natural regeneration of natural forest groups of Phoebe bournei [D]. Guiyang: Guizhou University: 1-64. [韩豪, 2020. 闽楠天然林种群特征及其天然更新研究 [D]. 贵阳: 贵州大学: 1-64. ]

    • HU QP, GUO ZH, MA LY, et al. , 2008. Advance at phenotypic plasticity in plant responses to abiotic factors [J]. Sci Silv Sin, 44(5): 135-142. [胡启鹏, 郭志华, 马履一, 等, 2008. 植物表型可塑性对非生物环境因子的响应研究进展 [J]. 林业科学, 44(5): 135-142. ]

    • LANDE R, 2010. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation [J]. J Evol Biol, 22(7): 1435-1446.

    • LARRUE S, DAEHLER CC, VAUTIER F, et al. , 2014. Forest invasion by the African Tulip tree (Spathodea campanulata) in the Hawaiian Islands: are seedlings shade-tolerant? [J]. Pacific Sci, 68(3): 345-358.

    • LEE DW, 1987. The selective advantage of palisade parenchyma in bifacial leaves [J]. Amer J Bot, 74: 618-619.

    • LEI G, BO L, LIU WY, et al. , 2013. Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes [J]. Aquatic Bot, 107: 47-53.

    • LI HS, 2006. Modern plant physiology [M]. Beijing: Higher Education Press. [李合生, 2006. 现代植物生理学 [M]. 北京: 高等教育出版社. ]

    • LI N, YANG Y, YE J, et al. , 2016. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant [J]. Plant Growth Regul, 78(2): 253-262.

    • LI ZF, PAN J, WANG JD, et al. , 2014. The effects of light environment on the growth and the phonotypic plasticity of the seedlings of Phoebe bournei [J]. J SW For Univ, 34(6): 65-69. [李肇锋, 潘军, 王金盾, 等, 2014. 光环境对闽楠幼树生长及其表型可塑性的影响 [J]. 西南林业大学学报, 34(6): 65-69. ]

    • LORETTA G, 2014. Plant phenotypic plasticity in response to environmental factors [J]. Adv Bot, 2014: 208747.

    • LÜ FD, XU DC, HOU HB, et al. , 2003. Comparative study on chlorophyll fluorescence character of five kinds of Camellia [J]. Econ For Res, 21(4): 4-7. [吕芳德, 徐德聪, 侯红波, 等, 2003. 5种红山茶叶绿素荧光特性的比较研究 [J]. 经济林研究, 21(4): 4-7. ] MA HL, ZHANG TF, ZHOU RL, et al. ,

    • 2018. The changes in photosynthetic characteristics of Leymus mollis (Trin. ) Hara leaves from coastal dunes having an environmental heterogeneity [J]. Acta Ecol Sin, 38(10): 3504-3513. [马会雷, 张婷凤, 周瑞莲, 等, 2018. 海岸不同坡向滨麦光合特性与风速异质环境的关系 [J]. 生态学报, 38(10): 3504-3513. ]

    • MONTGOMERY R, 2004. Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient [J]. Tree Physiol, 24(2): 155-167.

    • PUGLIELLI G, CRESCENTE MF, FRATTAROLI AR, et al. , 2015. Morphological, anatomical and physiological leaf trait plasticity of Sesleria nitida (Poaceae) in open vs shaded conditions [J]. Polish J Ecol, 63(1): 10-22.

    • SANO T, HORIE H, MATSUNAGA A, et al. , 2018. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L. ) shoots under direct covering cultivation. [J]. J Sci Food Agric, 98: 5666-5676.

    • SUN XL, XU YF, MA LY, 2010. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment [J]. Chin J Plant Ecol, 34(8): 989-999. [孙小玲, 许岳飞, 马鲁沂, 2010. 植株叶片的光合色素构成对遮阴的响应 [J]. 植物生态学报, 34(8): 989-999. ]

    • SÜKRAN D, GUNES T, SIVACI R, 1998. Spectrophotometric determination of chlorophyll-A, B and total carotenoid cotents of some algae species using different solvents [J]. Turkish J Bot, 22(1): 13-17.

    • TANG X, LIU G, JIANG J, et al. , 2020. Effects of growth irradiance on photosynthesis and photorespiration of Phoebe bournei leaves [J]. Funct Plant Biol, 47(12): 1053-1061.

    • TANG XL, LIU GZ, JIANG J, et al. , 2020. Effects of shading on the chlorophyll fluorescence characteristics and light energy partitioning of one- and three-year-old Phoebe bournei seedlings [J]. Chin J Ecol, 39(10): 3247-3254. [唐星林, 刘光正, 姜姜, 等, 2020. 遮阴对闽楠一年生和三年生幼树叶绿素荧光特性及能量分配的影响 [J]. 生态学杂志, 39(10): 3247-3254. ]

    • TIAN XX, WEI XL, AN CR, et al. , 2017. Ecological adaptability of Phoebe bournei seedlings to light [J]. Guizhou Agric Sci, 45(5): 36-40. [田肖箫, 韦小丽, 安常蓉, 等, 2017. 闽楠幼苗对光照的生态适应性 [J]. 贵州农业科学, 45(5): 36-40. ]

    • URBAS P, ZOBEL K, 2000. Adaptive and inevitable morphological plasticity of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light [J]. Acta Oecol, 21(2): 139-147.

    • VALLADARES F, JOSE C, ARANDA I, et al. , 2002. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity [J]. Trees, 16(6): 395-403.

    • VALLADARES F, SANCHEZ D, ZAVALA MA, 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications [J]. J Ecol, 94(6): 1103-1116.

    • VOGELMANN TC, MARTIN G, 1993. The functional significance of palisade tissue: penetration of directional versus diffuse light [J]. Plant Cell Environ, 16(1): 65-72.

    • WANG D, HUANG XL, CHEN JZ, et al. , 2021. Plasticity of leaf traits of Juglans regia L. f. luodianense Liu et Xu seedlings under different light conditions in karst habitats [J]. Forests, 12: 81-94.

    • WANG HY, WU F, LI M, et al. , 2021. Morphological and physiological responses of Pinus massoniana seedlings to different light gradients [J]. Forests, 12(523): 522-538.

    • WANG Y, SU XH, PENG ZH, 2002. Research progress of plant shade tolerance [J]. For Res, 15(3): 349-355. [王雁, 苏雪痕, 彭镇华, 2002. 植物耐荫性研究进展 [J]. 林业科学研究, 15(3): 349-355. ]

    • WANG ZX, 2012. Physiological and ecological characteristics of Phoebe bournei seedling under different light environments [D]. Fuzhou: Fujian Normal University: 1-66. [王振兴, 2012. 闽楠幼树在不同光环境下的生理生态特征 [D]. 福州: 福建师范大学: 1-66. ]

    • WEN J, MENG LL, ZHANG J, et al. , 2014. Research progress on the effects of low light on plant photosynthetic characteristics [J]. Jiangsu Agric Sci, 42(7): 22-24. [闻婧, 孟力力, 张俊, 等, 2014. 弱光对植物光合特性影响的研究进展 [J]. 江苏农业科学, 42(7): 22-24. ]

    • WRIGHT IJ, REICH PB, WESTOBY M, et al. , 2004. The worldwide leaf economics spectrum [J]. Nature, 428(6985): 821-827. XU DQ, 2013. The science of photosynthesis [M]. Beijing: Science Press: 94-95. [许大全, 2013. 光合作用学 [M]. 北京: 科学出版社: 94-95. ]

    • YAN XL, WANG DL, 2014. Effects of shading on the leaves and photosynthetic characteristics of Ligustrum robustum [J]. Acta Ecol Sin, 34(13): 3538-3547. [闫小莉, 王德炉, 2014. 遮荫对苦丁茶树叶片特征及光合特性的影响 [J]. 生态学报, 34(13): 3538-3547. ]

    • YIN DS, SHEN HL, 2016. Shade tolerance and the adaptability of forest plants in morphology and physiology: A review [J]. Chin J Appl Ecol, 27(8): 2687-2698. [殷东生, 沈海龙, 2016. 森林植物耐荫性及其形态和生理适应性研究进展 [J]. 应用生态学报, 27(8): 2687-2698. ]

  • 参考文献

    • AN J, WEI X, HUO H, 2022. Transcriptome analysis reveals the accelerated expression of genes related to photosynthesis and chlorophyll biosynthesis contribution to shade-tolerant in Phoebe bournei [J]. BMC Plant Biol, 22(1): 1-14.

    • BROWN RC, LEMMON BE, MULLINAX JB, 2015. Immunofluorescent staining of microtubules in plant tissues: improved embedding and sectioning techniques using Polyethylene Glycol (PEG) and Steedman's Wax [J]. Plant Biol, 102(1): 54-61.

    • CALATAYUD A, BARRENO JWA, et al. , 2001. Changes in chlorophyll a fluorescence, lipid peroxidation, and detoxificant system in potato plants grown under filtered and non-filtered air in open-top chambers [J]. Photosynthetica, 39(4): 507-513.

    • CATONI R, GRANATA MU, SARTORI F, et al. , 2015. Corylus avellana responsiveness to light variations: morphological, anatomical, and physiological leaf trait plasticity [J]. Photosynthetica, 53(1): 35-46.

    • CAI JG, WEI MQ, ZHANG Y, et al. , 2017. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plant Ecol, 41(5): 570-576. [蔡建国, 韦孟琪, 章毅, 等, 2017. 遮阴对绣球光合特性和叶绿素荧光参数的影响 [J]. 植物生态学报, 41(5): 570-576. ]

    • CHENG XR, XING WL, YUAN HJ, et al. , 2019. Phenotypic plasticity of Illicium lanceolatum in response to varied light environments [J]. Acta Ecol Sin, 39(6): 1935-1944. [成向荣, 邢文黎, 苑海静, 等, 2019. 披针叶茴香对变化光环境的表型可塑性 [J]. 生态学报, 39(6): 62-71. ]

    • DUTILLEUL P, HAN L, VALLADARES F, et al. , 2015. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data [J]. Front Plant Sci, 6(172): 1-13.

    • DU N, ZHANG XR, WANG W, et al. , 2011. Foliar phenotypic plasticity of a warm-temperate shrub, Vitex negundo var. heterophylla, to different light environments in the field [J]. Acta Ecol Sin, 31(20): 6049-6059. [杜宁, 张秀茹, 王炜, 等, 2011. 荆条叶性状对野外不同光环境的表型可塑性 [J]. 生态学报, 31(20): 6049-6059. ]

    • ECKHARDT U, GRIMM B, HÖRTENSTEINER S, 2004. Recent advances in chlorophyll biosynthesis and breakdown in higher plants [J]. Plant Mol Biol, 56(1): 1-14.

    • EICHELMANN H, 2011. The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis [J]. J Exp Bot, 62(6): 2205-2215.

    • FENG Q, LIU N, WANG D, 2010. Physiological and ecological responses of Spiraea pubescens in different natural light environments [J]. J Cent S Univ For Technol, 30(9): 27-33. [冯强, 刘宁, 王暾, 2010. 不同自然光环境下土庄绣线菊的生理生态响应 [J]. 中南林业科技大学学报, 30(9): 27-33. ]

    • FENG XY, LIU N, GUO JP, et al. , 2013. Morphological response and plasticity of seedlings and saplings of four mixed tree species in the mountainous areas of North China under controlled light conditions [J]. Sci Silv Sin, 49(11): 42-50. [冯晓燕, 刘宁, 郭晋平, 等, 2013. 控制光照条件下华北山地4个混交树种幼苗幼树的形态响应和可塑性 [J]. 林业科学, 49(11): 42-50. ]

    • GIERTYCH MJ, KAROLEWSKI P, OLEKSYN J, 2015. Carbon allocation in seedlings of deciduous tree species depends on their shade tolerance [J]. Acta Physiol Plantarum, 37(10): 215-239.

    • GIVNISH TJ, 1988. Adaptation to sun and shade: A whole-plant perspective [J]. Australian J Plant Physiol, 15: 63-92.

    • GRATANI L, COVONE F, LARCHER W, 2006. Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis [J]. Trees, 20(5): 549-558.

    • HAN H, 2020. Study on characteristics and natural regeneration of natural forest groups of Phoebe bournei [D]. Guiyang: Guizhou University: 1-64. [韩豪, 2020. 闽楠天然林种群特征及其天然更新研究 [D]. 贵阳: 贵州大学: 1-64. ]

    • HU QP, GUO ZH, MA LY, et al. , 2008. Advance at phenotypic plasticity in plant responses to abiotic factors [J]. Sci Silv Sin, 44(5): 135-142. [胡启鹏, 郭志华, 马履一, 等, 2008. 植物表型可塑性对非生物环境因子的响应研究进展 [J]. 林业科学, 44(5): 135-142. ]

    • LANDE R, 2010. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation [J]. J Evol Biol, 22(7): 1435-1446.

    • LARRUE S, DAEHLER CC, VAUTIER F, et al. , 2014. Forest invasion by the African Tulip tree (Spathodea campanulata) in the Hawaiian Islands: are seedlings shade-tolerant? [J]. Pacific Sci, 68(3): 345-358.

    • LEE DW, 1987. The selective advantage of palisade parenchyma in bifacial leaves [J]. Amer J Bot, 74: 618-619.

    • LEI G, BO L, LIU WY, et al. , 2013. Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes [J]. Aquatic Bot, 107: 47-53.

    • LI HS, 2006. Modern plant physiology [M]. Beijing: Higher Education Press. [李合生, 2006. 现代植物生理学 [M]. 北京: 高等教育出版社. ]

    • LI N, YANG Y, YE J, et al. , 2016. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant [J]. Plant Growth Regul, 78(2): 253-262.

    • LI ZF, PAN J, WANG JD, et al. , 2014. The effects of light environment on the growth and the phonotypic plasticity of the seedlings of Phoebe bournei [J]. J SW For Univ, 34(6): 65-69. [李肇锋, 潘军, 王金盾, 等, 2014. 光环境对闽楠幼树生长及其表型可塑性的影响 [J]. 西南林业大学学报, 34(6): 65-69. ]

    • LORETTA G, 2014. Plant phenotypic plasticity in response to environmental factors [J]. Adv Bot, 2014: 208747.

    • LÜ FD, XU DC, HOU HB, et al. , 2003. Comparative study on chlorophyll fluorescence character of five kinds of Camellia [J]. Econ For Res, 21(4): 4-7. [吕芳德, 徐德聪, 侯红波, 等, 2003. 5种红山茶叶绿素荧光特性的比较研究 [J]. 经济林研究, 21(4): 4-7. ] MA HL, ZHANG TF, ZHOU RL, et al. ,

    • 2018. The changes in photosynthetic characteristics of Leymus mollis (Trin. ) Hara leaves from coastal dunes having an environmental heterogeneity [J]. Acta Ecol Sin, 38(10): 3504-3513. [马会雷, 张婷凤, 周瑞莲, 等, 2018. 海岸不同坡向滨麦光合特性与风速异质环境的关系 [J]. 生态学报, 38(10): 3504-3513. ]

    • MONTGOMERY R, 2004. Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient [J]. Tree Physiol, 24(2): 155-167.

    • PUGLIELLI G, CRESCENTE MF, FRATTAROLI AR, et al. , 2015. Morphological, anatomical and physiological leaf trait plasticity of Sesleria nitida (Poaceae) in open vs shaded conditions [J]. Polish J Ecol, 63(1): 10-22.

    • SANO T, HORIE H, MATSUNAGA A, et al. , 2018. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L. ) shoots under direct covering cultivation. [J]. J Sci Food Agric, 98: 5666-5676.

    • SUN XL, XU YF, MA LY, 2010. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment [J]. Chin J Plant Ecol, 34(8): 989-999. [孙小玲, 许岳飞, 马鲁沂, 2010. 植株叶片的光合色素构成对遮阴的响应 [J]. 植物生态学报, 34(8): 989-999. ]

    • SÜKRAN D, GUNES T, SIVACI R, 1998. Spectrophotometric determination of chlorophyll-A, B and total carotenoid cotents of some algae species using different solvents [J]. Turkish J Bot, 22(1): 13-17.

    • TANG X, LIU G, JIANG J, et al. , 2020. Effects of growth irradiance on photosynthesis and photorespiration of Phoebe bournei leaves [J]. Funct Plant Biol, 47(12): 1053-1061.

    • TANG XL, LIU GZ, JIANG J, et al. , 2020. Effects of shading on the chlorophyll fluorescence characteristics and light energy partitioning of one- and three-year-old Phoebe bournei seedlings [J]. Chin J Ecol, 39(10): 3247-3254. [唐星林, 刘光正, 姜姜, 等, 2020. 遮阴对闽楠一年生和三年生幼树叶绿素荧光特性及能量分配的影响 [J]. 生态学杂志, 39(10): 3247-3254. ]

    • TIAN XX, WEI XL, AN CR, et al. , 2017. Ecological adaptability of Phoebe bournei seedlings to light [J]. Guizhou Agric Sci, 45(5): 36-40. [田肖箫, 韦小丽, 安常蓉, 等, 2017. 闽楠幼苗对光照的生态适应性 [J]. 贵州农业科学, 45(5): 36-40. ]

    • URBAS P, ZOBEL K, 2000. Adaptive and inevitable morphological plasticity of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light [J]. Acta Oecol, 21(2): 139-147.

    • VALLADARES F, JOSE C, ARANDA I, et al. , 2002. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity [J]. Trees, 16(6): 395-403.

    • VALLADARES F, SANCHEZ D, ZAVALA MA, 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications [J]. J Ecol, 94(6): 1103-1116.

    • VOGELMANN TC, MARTIN G, 1993. The functional significance of palisade tissue: penetration of directional versus diffuse light [J]. Plant Cell Environ, 16(1): 65-72.

    • WANG D, HUANG XL, CHEN JZ, et al. , 2021. Plasticity of leaf traits of Juglans regia L. f. luodianense Liu et Xu seedlings under different light conditions in karst habitats [J]. Forests, 12: 81-94.

    • WANG HY, WU F, LI M, et al. , 2021. Morphological and physiological responses of Pinus massoniana seedlings to different light gradients [J]. Forests, 12(523): 522-538.

    • WANG Y, SU XH, PENG ZH, 2002. Research progress of plant shade tolerance [J]. For Res, 15(3): 349-355. [王雁, 苏雪痕, 彭镇华, 2002. 植物耐荫性研究进展 [J]. 林业科学研究, 15(3): 349-355. ]

    • WANG ZX, 2012. Physiological and ecological characteristics of Phoebe bournei seedling under different light environments [D]. Fuzhou: Fujian Normal University: 1-66. [王振兴, 2012. 闽楠幼树在不同光环境下的生理生态特征 [D]. 福州: 福建师范大学: 1-66. ]

    • WEN J, MENG LL, ZHANG J, et al. , 2014. Research progress on the effects of low light on plant photosynthetic characteristics [J]. Jiangsu Agric Sci, 42(7): 22-24. [闻婧, 孟力力, 张俊, 等, 2014. 弱光对植物光合特性影响的研究进展 [J]. 江苏农业科学, 42(7): 22-24. ]

    • WRIGHT IJ, REICH PB, WESTOBY M, et al. , 2004. The worldwide leaf economics spectrum [J]. Nature, 428(6985): 821-827. XU DQ, 2013. The science of photosynthesis [M]. Beijing: Science Press: 94-95. [许大全, 2013. 光合作用学 [M]. 北京: 科学出版社: 94-95. ]

    • YAN XL, WANG DL, 2014. Effects of shading on the leaves and photosynthetic characteristics of Ligustrum robustum [J]. Acta Ecol Sin, 34(13): 3538-3547. [闫小莉, 王德炉, 2014. 遮荫对苦丁茶树叶片特征及光合特性的影响 [J]. 生态学报, 34(13): 3538-3547. ]

    • YIN DS, SHEN HL, 2016. Shade tolerance and the adaptability of forest plants in morphology and physiology: A review [J]. Chin J Appl Ecol, 27(8): 2687-2698. [殷东生, 沈海龙, 2016. 森林植物耐荫性及其形态和生理适应性研究进展 [J]. 应用生态学报, 27(8): 2687-2698. ]