en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张富荣(1998—),硕士研究生,研究方向为植物的无机氮利用机制,(E-mail)furongzhang0218@126.com。

通讯作者:

吴沿友,博士,研究员,研究方向为喀斯特生态环境和环境地球化学,(E-mail)wuyanyou@mail.gyig.ac.cn。

中图分类号:Q945.1

文献标识码:A

文章编号:1000-3142(2024)03-0576-10

DOI:10.11931/guihaia.gxzw202212016

参考文献
BLACK BL, FUCHIGAMI LH, COLEMAN GD, 2002. Partitioning of nitrate assimilation among leaves, stems and roots of poplar [J]. Tree Physiol, 22(10): 717-724.
参考文献
BUSCH FA, SAGE RF, FARQUHAR GD, 2018. Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway [J]. Nat Plants, 4(1): 46-54.
参考文献
CUI RX, LEE BW, 2002. Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice [J]. Korean J Crop Sci, 47(5): 390-394.
参考文献
EVANS RD, BLOOM AJ, SUKRAPANNA SS, et al. , 1996. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition [J]. Plant Cell Environ, 19(11): 1317-1323.
参考文献
GENG LI, GAO HY, LIU P, et al. , 2010. Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage [J]. Plant Nutr Fert Sci, 16(3): 536-542.
参考文献
GULMON SL, CHU CC, 1981. The effects of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the chaparral shrub, Diplacus aurantiacus [J]. Oecologia, 49(2): 207-212.
参考文献
HAYES JM, 2004. An introduction to isotopic calculations [EB/OL]. https: //www. whoi. edu/cms/files/jhayes/2005/9/IsoCalcs30Sept04_5184. pdf.
参考文献
HUANG F, ZHANG CL, XIE YC, et al. , 2015. Inorganic carbon flux and its source in the karst catchment of Maocun, Guilin, China [J]. Environ Earth Sci, 74(2): 1079-1089.
参考文献
HUPPE HC, TURPIN DH, 1994. Integration of carbon and nitrogen metabolism in plant and algal cells [J]. Ann Rev Biol, 45(1): 577-607.
参考文献
HU Y, GUY RD, SOOLANAYAKANAHALLY RY, 2022. Nitrogen isotope discrimination in open-pollinated and hybrid canola suggests indirect selection for enhanced ammonium utilization [J]. Front Plant Sci, 13: 1024080.
参考文献
HU Y, GUY RD, 2020. Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics [J]. Plant Cell Environ, 43(9): 2112-2123.
参考文献
KAISER WM, HUBER SC, 2001. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers [J]. J Exp Bot, 52(363): 1981-1989.
参考文献
KALCSITS LA, GUY RD, 2013. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana [J]. Physiol Plantarum, 149(2): 249-259.
参考文献
KALCSITS LA, BUSCHHAUS HA, GUY RD, 2014. Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants [J]. Physiol Plant, 151(3): 293-304.
参考文献
LARSSON M, OLSSON T, LARSSON CM, 1985. Distribution of reducing power between photosynthetic carbon and nitrogen assimilation in Scenedesmus [J]. Planta, 164(2): 246-253.
参考文献
MARIOTTI A, MARIOTTI F, CHAMPIGNY ML, et al. , 1982. Nitrogen isotope fractionation associated with nitrate reductase activity and uptake of NO3- by pearl millet [J]. Plant Physiol, 69(4): 880-884.
参考文献
MIAO YF, LI SX, XU XF, et al. , 2014. Responses of winter wheat to ammonium and nitrate nitrogen [J]. Acta Pedol Sin, 51(3): 564-574. [苗艳芳, 李生秀, 徐晓峰, 等, 2014. 冬小麦对铵态氮和硝态氮的响应 [J]. 土壤学报, 51(3): 564-574. ]
参考文献
NOVOA R, LOOMIS RS, 1981. Nitrogen and plant production [J]. Plant Soil, 58(1/2/3): 177-204.
参考文献
PATE JS, STEWART GR, UNKOVICH M, 1993. 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of component species [J]. Plant Cell Environ, 16(4): 365-373.
参考文献
PANG HS, ZHANG HH, TIAN Y, et al. , 2014. Effects of NO3--N on growth and photosynthetic characteristics of mulberry seedlings under Na2CO3 stress [J]. Pratacul Sci, 31(8): 1515-1522. [逄好胜, 张会慧, 田野, 等, 2014. 硝态氮对Na2CO3胁迫下桑树幼苗生长和光合特性的影响 [J]. 草业科学, 31(8): 1515-1522. ]
参考文献
POORTER H, EVANS JR, 1998. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area [J]. Oecologia, 116(1): 26-37.
参考文献
PRITCHARD ES, GUY RD, 2005. Nitrogen isotope discrimination in white spruce fed with low concentrations of ammonium and nitrate [J]. Trees, 19(1): 89-98.
参考文献
ROBINSON D, HANDLEY LL, SCRIMGEOUR CM, et al. , 2000. Using stable isotope natural abundances (δ15N and δ13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch. ) genotypes [J]. J Exp Bot, 51(342): 41-50.
参考文献
SALSAC L, CHAILLOU S, MOROT GJF, et al. , 1987. Nitrate and ammonium nutrition in plants [J]. Plant Physiol Biochem, 25(6): 805-812.
参考文献
TSAY YF, SCHROEDER JI, FELDMANN KA, et al. , 1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter [J]. Cell, 72(5): 705-713.
参考文献
WALTERS MB, KRUGER EL, REICH PB, 1993. Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings: species, light environment and ontogenetic considerations [J]. Oecologia, 96(2): 219-231.
参考文献
WAN YJ, JU XT, INGWERSEN J, et al. , 2009. Gross nitrogen transformations and related nitrous oxide emissions in an intensively used calcareous soil [J]. Soil Sci Soc Am J, 73(1): 102-112.
参考文献
WANG H, HU GQ, LOU YH, et al. , 2016. Responses of natural 15N abundance in cauliflower (Brassica oleracea L. var. botrytis) and soil to the application of organic and chemical fertilizers [J]. Can J Plant Sci, 96(5): 819-827.
参考文献
WANG M, SHEN QR, XU GH, et al. , 2014. New insight into the strategy for nitrogen metabolism in plant cells [J]. Int Rev Cell Mol Biol, 310: 1-37.
参考文献
WANG MY, SIDDIQI MY, RUTH TJ, et al. , 1993. Ammonium uptake by rice roots (II. kinetics of 13NH4+ influx across the plasmalemma) [J]. Plant Physiol, 103(4): 1259-1267.
参考文献
WEN BB, XIAO W, MU Q, et al. , 2020. How does nitrate regulate plant senescence? [J]. Plant Physiol Biochem, 157: 60-69.
参考文献
XU N, ZHANG HH, ZHU WX, et al. , 2012. Effects of nitrogen form on seedling growth and its photosynthetic characteristics of forage mulberry [J]. Pratacul Sci, 29(10): 1574-1580. [许楠, 张会慧, 朱文旭, 等, 2012. 氮素形态对饲料桑树幼苗生长和光合特性的影响 [J]. 草业科学, 29(10): 1574-1580. ]
参考文献
YUAN Y, 2018. The role of nitrogen, phosphorus and potassium in mulberry production [J]. Newsl Sericul Tea, (1): 13-15. [袁颖, 2018. 氮、磷、钾在桑树生产中的作用 [J]. 蚕桑茶叶通讯, (1): 13-15. ]
参考文献
ZHANG KY, WU YY, LI HT, et al, 2022. Effect of inorganic nitrogen supply on the salt-tolerance of Brassica napus plantlets in vitro [J]. Guihaia, 42(3): 422-428. [张开艳, 吴沿友, 李海涛, 等, 2022. 无机氮供应对甘蓝型油菜组培苗盐耐受能力的影响 [J]. 广西植物, 42(3): 422-428. ]
参考文献
ZHAO PX, 2019. Chinese mulberry culture with a long history [J]. Rural · Agriculture · Farmers(Version A), (9): 55-58. [赵佩霞, 2019. 源远流长的中华桑文化 [J]. 农村·农业·农民(A版), (9): 55-58. ]
目录contents

    摘要

    喀斯特地区土壤中的硝态氮占主导地位,但土壤中的硝态氮含量存在时间和空间上的异质性。因此,种植在喀斯特地区的桑树幼苗可能会遭受低氮胁迫。为了给种植在喀斯特地区的桑树幼苗提供科学的无机氮管理,该研究以桑树幼苗为材料,采用水培试验,以改进的霍格兰(Hoagland)营养液为培养基质,以δ15N值为22.35‰的硝酸钠提供唯一氮源,设置3个硝态氮浓度梯度(0.5、2.0、8.0 mmol·L-1),测定桑树幼苗的光合特征以及叶、茎和根的干重、碳含量、氮含量和δ15N值,分析不同供氮水平下桑树幼苗的生理响应,通过整个植株尺度的稳定氮同位素分馏值评估桑树幼苗的氮需求与氮供应的关系,通过植株的氮积累量与碳积累量研究碳氮耦合关系。结果表明:(1)当硝态氮浓度在0.5、2.0 mmol·L-1时,增加硝态氮的浓度能显著提高桑树幼苗的叶绿素含量和净光合速率,进而显著促进生物量的积累。然而,当硝态氮浓度超过2.0 mmol·L-1时,更多的硝态氮供应(8.0 mmol·L-1)并没有带来叶绿素含量、净光合速率和生物量的显著增加。(2)增加硝态氮的供应量能促进桑树幼苗的氮同化,桑树幼苗的氮积累量随着硝态氮供应量的增加而逐渐增加,然而,桑树幼苗的碳积累量在硝态氮浓度为2.0 mmol·L-1和8.0 mmol·L-1时无明显变化。(3)桑树幼苗的硝态氮同化产物的稳定氮同位素分馏值在硝态氮浓度为2.0 mmol·L-1时达到最小。综上所述,硝态氮浓度为2.0 mmol·L-1时的无机氮供应量接近桑树幼苗的无机氮需求量,外部氮供应量与植株氮需求量接近平衡意味着植物体内的碳氮代谢能够有效协调,进而实现了碳氮同化产物的同步增长。

    Abstract

    Nitrate is predominant in the karst soils. However, the temporal and spatial heterogeneities are observed for the nitrate content in the soils. Hence, the Morus alba seedlings grown in karst regions may suffer from low nitrogen stress. In order to provide a scientific management of inorganic nitrogen for M. alba seedlings grown in karst regions, the M. alba seedlings were used as the experimental materials in this study. The M. alba seedlings were cultured hydroponically with a modified Hoagland solution. NaNO3, with a δ15N of 22.35‰, was employed as the sole nitrogen source at three concentrations (0.5, 2.0, and 8.0 mmol·L-1) in this study. The photosynthetic characteristics, dry weights, carbon contents, nitrogen contents and δ15N values of the leaves, stems and roots of the M. alba seedlings were measured in this study. The physiological responses to different nitrogen supply levels were analyzed for M. alba seedlings. The relationship between internal nitrogen demand and external nitrogen supply of M. alba seedlings was estimated based on the stable nitrogen isotope fractionation values at the whole-plant scale. The carbon-nitrogen coupling relationship was studied based on the nitrogen accumulation amount (NAA) and carbon accumulation amount (CAA) in the whole plant. The results were as follows:(1) When the nitrate nitrogen concentrations at 0.5, 2.0 mmol·L-1, increasing nitrate nitrogen concentrations significantly increased the chlorophyll content and net photosynthetic rate of the M. alba seedlings, which in turn significantly promoted the biomass accumulation. However, when the nitrate nitrogen concentration exceeded 2.0 mmol·L-1, more nitrate nitrogen supply (8.0 mmol·L-1) did not lead to a significant increase in the chlorophyll content, net photosynthetic rate and biomass. (2) Increasing the nitrate nitrogen supply could promote the nitrogen assimilation in M. alba seedlings. The NAA in M. alba seedlings gradually increased with increasing nitrate nitrogen supply. However, the CAA in M. alba seedlings did not change significantly at nitrate nitrogen concentrations of 2.0 mmol·L-1 and 8.0 mmol·L-1. (3) The stable nitrogen isotope fractionation values of the nitrate nitrogen assimilates in the whole M. alba seedlings reached the minimum value at 2.0 mmol·L-1. Therefore, the inorganic nitrogen supply at the nitrate nitrogen concentration of 2.0 mmol·L-1 is close to the internal nitrogen demand of M. alba seedlings, and the close balance between external nitrogen supply and internal nitrogen demand of the plants means an effective coordination of carbon and nitrogen metabolism in plants, thus achieving a simultaneous increase in carbon and nitrogen assimilates.

  • 植物吸收利用的无机氮主要是硝态氮和铵态氮。然而,在通气性良好或者pH为碱性的土壤中,大量铵根在好气性细菌的作用下通过硝化作用迅速转变为硝酸根。因为喀斯特地区的基岩中富含钙元素(Huang et al.,2015),并且钙质土壤具有高pH的特点(Wan et al.,2009),所以喀斯特地区土壤中铵态氮会以很高的速率氧化成硝态氮,这也加剧了喀斯特地区土壤低铵多硝的特征。由于喀斯特地区土壤中的硝态氮占主导地位,因此,探究喀斯特生境植物对硝态氮浓度的生理响应具有重要研究意义。

  • 硝酸盐对植物的生长具有多重作用,生物圈中99%的有机氮由植物同化的硝态氮转化而来(Wang et al.,1993)。硝态氮是一种重要的营养元素,同时在植物体内扮演着信号分子的作用,硝酸盐能够调节乙烯、脱落酸的合成,并与细胞分裂素相互作用调节植物的衰老 (Wen et al.,2020)。植物进化出了高亲和转运系统和低亲和转运系统以便适应土壤中硝态氮浓度的异质性分布。苗艳芳等(2014)研究表明土壤中硝态氮的积累量是决定氮肥肥效的主要因子,也是决定不同形态氮素效果的主要因子。因此,探究偏碱性条件下不同浓度的硝态氮对植物生长发育的影响,对科学管理喀斯特环境中植物的无机氮供应具有重要意义。

  • 植物光合碳同化与氮同化联系紧密,既相互依存又彼此竞争。光合碳同化是植物利用光反应过程中形成的ATP和NADPH把CO2还原成糖类或其他有机物的过程;植物无机氮同化是指植物吸收环境里的NO3-或NH4+,利用光反应和暗反应产生的还原力和能量,同时利用碳同化产物作为氨基受体合成氨基酸的过程,植物体中氨基酸的合成将碳同化与氮同化密切联系在一起(Wang et al.,2014;Busch et al.,2018)。适量施氮会促进植物的氮代谢与碳代谢(张开艳等,2022),同时氮同化会消耗很大一部分光合产物和还原力。光合碳同化为氮同化提供能量与骨架,氮同化会与碳同化竞争光合作用产生的还原力以及中间产物(Geng et al.,2010)。因此,探究合理的氮素施用量对提高植物的产量与品质有重要研究价值。

  • 植物根系从培养基质中吸收无机氮后,部分无机氮在根部同化,未同化的无机氮部分转运到叶部同化,部分返回到培养基质中(Hu et al.,2022)。植物在同化无机氮时总是偏爱更轻的氮(14N),相应地,流出的未同化的无机氮就富集更重的无机氮(15N)。因此,整个植株尺度的稳定氮同位素值就相对偏负于氮源的稳定氮同位素值(Hu &Guy,2020)。整个植株尺度的稳定氮同位素值与氮源稳定氮同位素值的差值是由氮同位素分馏而造成(Kalcsits &Guy,2013)。在硝酸盐作为唯一氮源的条件下,整个植株尺度的稳定氮同位素分馏值将取决于硝酸还原酶的活力和还原力的供应情况。硝酸还原酶活力强,还原力供应充足,从根部流入的硝酸盐就会尽可能多地被同化,于是,从根部流出的未同化的硝酸盐的量就会减少。相应地,整个植株尺度的稳定氮同位素分馏值就会偏小。若植物遭受硝酸还原酶活力限制或还原力限制,那么根部流出的未同化的硝酸盐的量就会增加,这就会导致整个植株尺度的氮同位素分馏增大(Mariotti et al.,1982)。因此,整个植株尺度的稳定氮同位素分馏值就会与植株的硝酸盐供需密切相关。基于同位素质量平衡方程(Hayes,2004),可以计算出种植在不同硝酸盐浓度下的整个植株尺度的稳定氮同位素分馏值,这样就能在时间尺度上评估植物的硝酸盐供需情况,从而弥补了传统方法不能在时间尺度上评估植物的硝酸盐供需情况的不足。

  • 桑树(Morus alba)为多年生落叶木本植物,在我国分布极为广泛,我国桑园面积居世界之首,提供了世界80%的桑蚕茧生产量。桑树集较高生态价值与较高经济价值于一体,是多元开发、生态扶贫的极好树种。植桑养蚕产业的成本低,技术门槛低。我国西南部属于喀斯特地区,多山少地,基底脆弱,种桑养蚕效益远高于种植甘蔗、玉米、黄豆等农作物。桑树根系发达,具有涵养水源、防风固沙等功效(赵佩霞,2019),对于土体浅薄、成土速度缓慢、水土流失强烈的我国西南部喀斯特地区的修复和治理具有重要的价值。然而,若桑园氮素供应不足,桑树就会出现枝叶生长缓慢、枝条柔软细短、叶型小、叶质差和产量低等现象(袁颖,2018)。此外,适宜的硝态氮施用量还是桑树幼苗在逆境下维持高产优质的关键(逄好胜等,2014)。但是,桑树栽培在实际生产中仍处于粗放管理阶段,农民为提高产量盲目施用氮肥的状况普遍存在。过量施用氮肥不但会导致严重的浪费,而且还会产生严重的环境问题。许楠等(2012)研究表明桑树是一种偏硝性的植物。因此,定量研究桑树幼苗在不同硝态氮浓度下的供需关系就能避免硝酸盐供应的不足和过量,从而科学管理桑树幼苗的硝酸盐供应。基于以上目的,本研究以桑树幼苗为研究对象,依托人工气候温室进行幼苗培育,采用溶液培养的方法,通过测定桑树幼苗在不同硝态氮浓度下的生长情况、碳氮含量与稳定氮同位素值,拟探讨以下问题:(1)不同硝态氮浓度下桑树幼苗的生理响应;(2)硝态氮供应与桑树幼苗无机氮需求的关系;(3)桑树幼苗在不同硝态氮浓度下的碳氮耦合关系。通过对以上问题的阐述,以期实现科学施用氮肥和为我国西南部喀斯特地区桑树栽培管理提供理论依据。

  • 1 材料与方法

  • 1.1 试验材料培养和处理

  • 试验在温室内进行,选取若干健康、饱满、大小一致的桑树种子(强桑1号,种子公司购买)浸种后播撒于12孔育苗穴盘中,在穴盘中放置清水以保持培养基质湿润,幼苗萌发后改用1/8霍格兰(Hoagland)营养液培养,播种60 d后选取萌发且长势良好的16颗幼苗移栽到育苗盆中水培培养,培养液为1/4霍格兰营养液,23 d后选取其中长势一致的9颗桑树幼苗采用改进的1/2霍格兰营养液进行培养,进行正式试验,每组3盆,共3组,改进的1/2霍格兰营养液成分为1 mmol·L-1 MgSO4·7H2O、0.125 mmol·L-1 KH2PO4、2.5 mmol·L-1 KCl、4 mmol·L-1 CaCl2、0.1875 mmol·L-1 K2SO4、50 μmol·L-1 Fe(Na)EDTA、25 μmol·L-1 H3BO3、2 μmol·L-1 MnSO4·1H2O、2 μmol·L-1 ZnSO4·7H2O、0.1 μmol·L-1 CuSO4·5H2O、0.04 μmol·L-1 CoCl2·6H2O和0.1 μmol·L-1 Na2MoO4·2H2O。δ15N值为22.35‰的硝酸钠提供唯一氮源。整个处理持续20 d,处理期间每2 d更换一次处理液,每次每株桑树更换500 mL处理液以保持氮源环境相对恒定。

  • 根据喀斯特地区土壤中硝态氮含量远小于10 mmol·L-1且硝态氮存在异质性分布的实际情况,本试验设置3个硝态氮浓度梯度,分别为0.5、2.0、8.0 mmol·L-1,其中0.5 mmol·L-1的硝态氮处理模拟喀斯特低氮水平,2.0 mmol·L-1的硝态氮处理模拟喀斯特中氮水平,8.0 mmol·L-1的硝态氮处理模拟喀斯特高氮水平。光照周期为12 h,光照强度为(500±25)μmol·m-2·s-1,光照时温度为(25±2)℃,晚上的温度为(19±2)℃,相对湿度为55%~60%,培养液的pH值为7.5±0.1。

  • 1.2 测定方法

  • 1.2.1 植株生长参数测定

  • 在试验处理开始前选取长势一致的3株桑树幼苗,分别测定其叶、茎和根的干重,取其叶、茎和根干重的平均值作为整个试验处理中桑树幼苗叶、茎和根的初始干重。相应地,这3株桑树幼苗叶、茎和根的碳氮含量的平均值近似为整个试验处理中桑树幼苗叶、茎和根的初始碳氮含量;这3株桑树幼苗叶、茎和根的稳定氮同位素值的平均值近似为整个试验处理中桑树幼苗叶、茎和根的初始稳定氮同位素值。

  • 根据试验设计,在试验处理的最后一天将植株分为叶、茎和根三部分,分别用电子天平称量鲜重后,放置于鼓风干燥箱内108℃下杀青40 min,80℃烘干至恒重,称量干重;将叶、茎和根分别研磨成粉末,供后续测量碳氮含量和稳定氮同位素值。

  • 1.2.2 叶绿素含量和光合参数测定

  • 根据试验设计,在试验处理的最后一天,使用SPAD-502Plus叶绿素仪测定桑树幼苗由上至下第二片完全展开绿叶的SPAD值(代表叶绿素含量值)。采用便携式光合仪Li-6800(LI-COR,Lincoln,NE,USA)测量净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和胞间CO2浓度(Ci)。选用6800-01A荧光叶室,在测量过程中使用CO2小钢瓶维持CO2浓度为400 μmol·mol-1,控制气体流速为500 mmol·s-1,光合有效辐射为500 μmol·m-2·s-1,叶温为27℃。

  • 1.2.3 光合氮利用效率

  • 光合氮利用效率(photosynthetic nitrogen use efficiency,PNUE)是净光合速率与叶片氮含量的比值(Poorter &Evans,1998),通过以下公式计算。

  • PUNE =Pn/CN
    (1)
  • 式中: Pn为叶片的净光合速率; CN是叶片的氮含量。

  • 1.2.4 碳氮元素含量测定与碳氮积累量计算

  • 使用元素分析仪(vario MACRO cube,Germany)测定桑树幼苗叶、茎和根的总碳含量和总氮含量,其总碳含量和总氮含量表示为叶片干重的质量百分比。

  • 氮积累量(nitrogen accumulation amount,NAA)通过以下公式计算。

  • NAA=DWleaf 1×Nleaf 1+DWstem 1×Nstem 1+DWmoot 1×Nrot 1 -DWlefi 0×Nleaf 0+DWstem 0×Nstem 0+DWroot 0×Nrow t 0
    (2)
  • 式中: DWleaf 1DWstem 1DWroot 1分别为试验处理结束后的叶、茎和根的干重; Nleaf 1Nstem 1Nroot 1分别是通过元素分析仪测定的试验处理结束后的叶、茎和根的氮含量;DWleaf 0DWstem 0DWroot 0分别为试验处理开始前的叶、茎和根的干重; Nleaf 0Nstem 0Nroot 0分别是通过元素分析仪测定的试验处理开始前的叶、茎和根的氮含量; NAA的标准误通过误差传递公式求得。

  • 碳积累量(carbon accumulation amount,CAA)通过以下公式计算。

  • CAA=DWleaf 1 ×Cleaf 1 +DWstem 1 ×Cstem 1 +DWroot 1 ×Cruot 1 -DWleaf 0×Cleaf 0+DWsem 0×Cstem 0+DWroont 0×Cruot 0
    (3)
  • 式中: Cleaf 1Cstem 1Croot 1分别是通过元素分析仪测定的试验处理结束后的叶、茎和根的碳含量; Cleaf 0Cstem 0Croot 0分别是通过元素分析仪测定的试验处理开始前的叶、茎和根的碳含量; CAA的标准误通过误差传递公式求得。

  • 1.2.5 稳定氮同位素测定

  • 植物样品的稳定氮同位素值(δ15N)使用气体同位素质谱仪(MAT-253,Germany)测定。MAT-253的测定精度为 0.2‰。测定稳定氮同位素时,用IAEA N1、IAEA N2 和 IAEA NO3 进行仪器校正。稳定氮同位素值通过以下公式计算。

  • δ15N(%)=Rsample /Rstandard -1×1000
    (4)
  • 式中: Rsample是桑树幼苗15N/14N的同位素比值; Rstandard为标准物质(大气中的N215N/14N的同位素比值。

  • 测定桑树幼苗叶、茎和根的稳定氮同位素值后,桑树幼苗整个植株尺度的稳定氮同位素值(δ15Nwhole-plant)即可通过以下公式计算(Robinson et al.,2000; Wang et al.,2016)。

  • δ15Nwhole-plant (%0)=mleaf ×δ15Nleaf +mstem ×δ15Nstem +mroot ×δ15Nroot /mleaf +mstem +mroot
    (5)
  • 式中: mleafmstemmroot分别是桑树幼苗叶、茎和根的含氮总量(g),叶片含氮总量为叶片干重与叶片氮含量的乘积,茎部含氮总量为茎部干重与茎部氮含量的乘积,根部含氮总量为根部干重与根部氮含量的乘积; δ15Nleaf、δ15Nstem和δ15Nroot分别是桑树幼苗叶、茎和根的稳定氮同位素值。

  • 计算出桑树幼苗试验处理前后的整个植株尺度的稳定氮同位素值后,基于同位素质量平衡方程(Hayes,2004),即可计算出桑树幼苗在整个试验处理期的氮同化产物的稳定氮同位素值(δ15Nassimilates),氮同化产物的稳定氮同位素值通过以下公式计算。

  • δ15Nassimilutes (%)=m1×δ15Nwhile plamu 1 -m0×δ15Nwhale plumt 0/m1-m0=m11×δ15N11+ms1×δ15Ns1+mr1×δ15Nr1-m10×δ15N10-ms0×δ15Ns0-mr0×δ15Nr0/m1-m0
    (6)
  • 式中: δ15Nwhole-plant1 和δ15Nwhole-plant0 分别是桑树幼苗试验处理后和试验处理前的整个植株尺度的稳定氮同位素值;m1m0分别是桑树幼苗试验处理后和试验处理前的整个植株的含氮总量,整个植株的含氮总量为叶片含氮总量、茎部含氮总量与根部含量总量的总和; δ15Nl1、δ15Ns 1和δ15Nr 1 分别是桑树幼苗试验处理后叶、茎和根的稳定氮同位素值; ml1ms 1mr 1分别是桑树幼苗试验处理后叶、茎和根的含氮总量; δ15Nl 0、δ15Ns 0和δ15Nr 0分别是桑树幼苗试验处理前叶、茎和根的稳定氮同位素值; ml 0ms 0mr 0分别是桑树幼苗试验处理前叶、茎和根的含氮总量; δ15Nassimilates的标准误通过误差传递公式求得。

  • 桑树幼苗硝态氮同化产物的稳定氮同位素分馏值(Δ15Nassimilates)通过以下公式计算(Evans et al.,1996)。

  • Δ15Nuxsimilates (%)=δ15Nsulbtrate -Δ15Naxeimilates
    (7)
  • 式中: δ15Nsubstrate值为22.35‰; Δ15Nassimilates的标准误通过误差传递公式求得。

  • 1.2.6 数据处理与分析

  • 所有测量的数据均用平均值±标准误(x-±sx-)表示,使用DPS统计软件对数据进行单因子显著性差异分析(Tukey’s test, P<0.05)。文中的图用Origin软件绘制(2019b版本)。

  • 2 结果与分析

  • 2.1 不同硝态氮浓度对桑树幼苗生长的影响

  • 硝态氮的供应量对桑树幼苗的生长具有显著的影响(表1)。增加硝态氮的供应量有助于改善桑树幼苗的生长情况。桑树幼苗在硝态氮浓度为2.0 mmol·L-1时的植株干重显著高于0.5 mmol·L-1时。当硝态氮浓度达到8.0 mmol·L-1时,桑树幼苗的植株干重也是显著高于0.5 mmol·L-1时,但与硝态氮浓度为2.0 mmol·L-1时相比无显著性差异。这表明适当增加硝态氮浓度对桑树幼苗的生长起到促进作用,但超过一定浓度后,增加硝态氮浓度带来的生长促进作用就不再显著。

  • 2.2 不同硝态氮浓度对桑树幼苗光合作用参数和叶绿素含量的影响

  • 光合作用对植物生长至关重要。由表2可知,桑树幼苗的净光合速率在硝态氮浓度为2.0 mmol·L-1和8.0 mmol·L-1时显著高于0.5 mmol·L-1时,但是当硝态氮浓度升高为8.0 mmol·L-1时的净光合速率相对于2.0 mmol·L-1却轻微下降,这表明硝态氮的供应达到一定水平后,继续增加硝态氮的供应量对植物光合作用的促进作用有限;增加硝态氮的浓度有助于桑树叶绿素的生物合成,桑树幼苗在硝态氮浓度为2.0 mmol·L-1和8.0 mmol·L-1时的叶绿素含量均显著高于硝态氮浓度0.5 mmol·L-1时,但是桑树幼苗的叶绿素含量在硝态氮浓度为2.0 mmol·L-1和8.0 mmol·L-1时无显著变化。

  • 2.3 不同硝态氮浓度对桑树幼苗碳氮含量与碳氮积累量的影响

  • 由图1可知,相较于碳含量,不同硝态氮浓度处理对桑树幼苗的氮含量产生了更显著的影响。在不同硝态氮浓度处理下,桑树幼苗除0.5 mmol·L-1下叶片的碳含量显著低于2.0 mmol·L-1和8.0 mmol·L-1外,3个硝态氮浓度下桑树幼苗的茎和根的碳含量均没有产生显著性差异,但是施氮显著增加了桑树幼苗叶、茎和根的氮含量,并随着硝态氮浓度的升高而升高;整体来看,碳元素较为均匀地分布在桑树幼苗的叶、茎和根中,而氮元素主要集中在桑树幼苗的叶部。

  • 表1 不同硝态氮浓度对桑树幼苗生长的影响

  • Table1 Effects of different nitrate nitrogen concentrations on the growth of Morus alba seedlings

  • 注:表中数据为平均值±标准误(n=3),每行中不同字母表示具有显著性差异(Tukey’s test,P<0.05)。下同。

  • Note: Each value represents the x-±sx- (n=3) . Values signed with different letters in each line indicate significant differences by Tukey’s test (P<0.05) . The same below.

  • 表2 不同硝态氮浓度对桑树幼苗光合作用参数和叶绿素含量的影响

  • Table2 Effects of different nitrate nitrogen concentrations on photosynthetic parameters and chlorophyll contents of Morus alba seedlings

  • 试验处理期结束后桑树幼苗碳、氮积累量计算结果如图2所示,桑树幼苗的碳积累量随硝态氮浓度的升高呈先升高后趋于稳定的趋势。硝态氮浓度为2.0 mmol· L-1时的碳积累量较0.5 mmol·L-1时有明显提升,但2.0 mmol·L-1和8.0 mmol·L-1硝态氮供应下的碳积累量无明显变化。桑树幼苗的氮积累量则随着硝态氮浓度的升高一直升高。这说明在一定范围内增施氮肥能够促进植株碳的同化,但是碳同化不会随着氮肥施用量的增加而持续增加,增施氮肥对植株生物量的促进作用是有限的。

  • 2.4 不同硝态氮浓度对桑树幼苗光合氮利用效率的影响

  • 由图3可知,桑树幼苗在硝态氮浓度为0.5 mmol·L-1和2.0 mmol·L-1时获得了较大的光合氮利用效率,过量的硝态氮供应(8.0 mmol·L-1)反而降低了桑树幼苗的光合氮利用效率。这表明在一定范围内增加无机氮的施用量不会降低桑树幼苗的光合氮利用效率,但过量施用无机氮会造成无机氮的浪费。

  • 2.5 不同硝态氮浓度对桑树幼苗植株氮同化产物δ15N值与Δ15N值的影响

  • 由图4:A可知,不同硝态氮浓度处理下的桑树幼苗氮同化产物的稳定氮同位素值均小于氮源(硝酸钠)的稳定氮同位素值,这表明桑树幼苗在同化硝态氮时均发生了稳定氮同位素分馏。桑树幼苗植株氮同化产物的δ15N值呈先增大后减小的趋势,在2.0 mmol·L-1硝态氮浓度时达到最大,而在8.0 mmol·L-1硝态氮浓度时出现降低;相应地,桑树幼苗植株氮同化产物的Δ15N值则呈先减小再增大的趋势,在2.0 mmol·L-1硝态氮浓度时的植株Δ15N值最小,当硝态氮浓度增加到8.0 mmol·L-1时,氮同位素分馏值增大。

  • 3 讨论与结论

  • 氮素运筹是调控作物生长发育、改善光合特性、提高产量的一项重要措施,研究表明作物生长及其产量与其氮素的供给关系密切(Cui &Lee,2002),适当增加氮肥可明显促进桑树生长 (许楠等,2012)。硝态氮是植物吸收利用的最主要的无机氮,前期研究表明,桑树是一种偏硝性的植物(许楠等,2012)。因此,本试验研究了硝态氮浓度对桑树幼苗生长的影响。结果表明,适当增加硝态氮的浓度对桑树幼苗的生长起到显著的促进作用,这可能归功于2.0 mmol·L-1的无机氮供应显著促进了叶绿素的生物合成,进而显著提高了桑树幼苗的净光合速率。然而,更多的硝态氮供应(8.0 mmol·L-1)并没有导致桑树幼苗的线性增长,这可能是因为此时的硝态氮供应已经超过了桑树幼苗的无机氮需求。桑树幼苗在硝态氮浓度为2.0 mmol·L-1和8.0 mmol·L-1时的叶绿素含量和净光合速率均无显著性差异,这表明增施硝态氮导致的光合促进作用存在饱和浓度。此外,更多的硝态氮供应意味着增强的氮同化,这就会导致光合产物的大量消耗(Geng et al.,2010),进而不利于生物量的积累。

  • 图1 不同硝态氮浓度对桑树幼苗叶、茎、根碳含量(A)与氮含量(B)的影响

  • Fig.1 Effects of different nitrate nitrogen concentrations on carbon contents ( A) and nitrogen contents ( B) of leaf, stem and root of Morus alba seedlings

  • 图2 不同硝态氮浓度对桑树幼苗碳积累量(A)与氮积累量(B)的影响

  • Fig.2 Effects of different nitrate nitrogen concentrations on carbon accumulation amounts ( A) and nitrogen accumulation amounts ( B) of Morus alba seedlings

  • 图3 不同硝态氮浓度对桑树幼苗光合氮利用效率(PNUE)的影响

  • Fig.3 Effects of different nitrate nitrogen concentrations on photosynthetic nitrogen use efficiency (PNUE) of Morus alba seedlings

  • 通常情况下,高等植物的氮含量占干重的1.5%~5.0%(Novoa &Loomis,1981),并且增加植物的无机氮供给有利于提高植物的氮含量(Gulmon &Chu,1981)。在本试验中,我们发现增加硝态氮的浓度确实显著提高了桑树叶、茎和根的氮含量。相应地,桑树幼苗的氮积累量也就随之增加。然而,桑树幼苗虽然在硝态氮浓度为8.0 mmol·L-1时获得最大氮积累量,但是相较于硝态氮浓度为2.0 mmol·L-1时,硝态氮供应浓度提高了4倍,氮积累量仅提高了1.54倍;而硝态氮浓度从0.5 mmol·L-1增加到2.0 mmol·L-1时,硝态氮供应浓度同样提高了4倍,氮积累量却提高了2倍。这表明桑树幼苗在硝态氮浓度为2.0 mmol·L-1时有相对更强的氮获取能力。硝酸还原酶作为一种诱导酶,虽然增加硝态氮的供应量能提高硝酸还原酶的活力从而促进桑树幼苗对NO3-的吸收和同化(Kaiser &Huber,2001; Black et al.,2002),但是植物同化NO3-是一个主动耗能过程(Tsay et al.,1993),过程中植物会利用本身相当一部分的碳源和能量储备(Huppe &Turpin,1994)。通常,植物每同化一分子硝酸盐需要消耗20分子ATP(Salsac et al.,1987),氮积累量越多意味着消耗的能量就越多。本研究中的净光合速率数据显示,净光合速率在硝态氮浓度为2.0 mmol·L-1与8.0 mmol·L-1时并无显著性差异,相较于2.0 mmol·L-1,8.0 mmol·L-1的硝态氮供应对桑树幼苗的光合作用不再继续产生促进作用。光合作用为植物提供生长所需的物质和能量(Walters et al.,1993),而硝酸盐的同化则依赖于光合作用产生的能量和还原力(Larsson et al.,1985)。因此,桑树幼苗在8.0 mmol·L-1的硝态氮浓度下的最大氮积累量意味着大量能量的消耗,这就导致了桑树幼苗在8.0 mmol·L-1硝态氮浓度下的碳积累量较2.0 mmol·L-1几乎没有增加。然而,当硝态氮浓度在0.5~2.0 mmol·L-1时,增加硝态氮的供应量能实现桑树幼苗碳积累量和氮积累量的同步增加。桑树幼苗的碳积累量在2.0 mmol·L-1硝态氮浓度下的显著增加应该是光合作用增强的结果,本研究结果显示桑树幼苗在2.0 mmol·L-1硝态氮浓度下的净光合速率显著高于0.5 mmol·L-1时的净光合速率。总体而言,合适的无机氮供应量有助于增强植物的碳氮代谢,而过量的无机氮供应仅有助于增强植物氮代谢,对碳代谢的促进作用不大。因此,通过大量施用氮肥来增产并不科学。

  • 随着硝酸盐供应量的增加,叶片中硝酸还原酶的活力不断增强(Kaiser &Huber,2001; Black et al.,2002),桑树幼苗的氮积累量不断增多。通常,高硝酸还原酶活性对应高的同化产物δ15N值(Pate et al.,1993),然而,桑树幼苗的硝态氮同化产物的δ15N值并没有随着硝态氮浓度的增加而线性增大。桑树幼苗的硝态氮同化产物的δ15N值在硝态氮浓度为2.0 mmol·L-1时达到最大,而在8.0 mmol·L-1时出现降低,这表明氮同化产物的δ15N值不只与硝酸还原酶活力有关。桑树幼苗的硝态氮同化产物的δ15N值在硝态氮浓度为8.0 mmol·L-1时出现降低可能与还原力供应不足有关(Mariotti et al.,1982),因为硝态氮浓度从2.0 mmol·L-1增加到8.0 mmol·L-1时,光合氮利用效率降低了26.4%,这间接表明还原力的供应受到了限制。基于桑树幼苗氮同化产物的δ15N值,通过方程(7),即可计算出桑树幼苗在不同硝态氮浓度下整个植株同化硝态氮发生的稳定氮同位素分馏值(Δ15N值)。稳定氮同位素分馏值能指示外界氮供应与植物氮需求之间的关系(Pritchard &Guy,2005;Kalcsits et al.,2014),通常情况下,氮同位素分馏值越小,则外界的氮供应量越接近植物的氮需求量(即无机氮的供需平衡),而氮同位素分馏值越大,则表明外界的氮供应量低于或超过了植物的氮需求量。本研究结果表明,桑树幼苗在硝态氮浓度为2.0 mmol·L-1时的Δ15N值达到最小,并且8.0 mmol·L-1时的Δ15N值明显大于2.0 mmol·L-1时。由此可知,8.0 mmol·L-1的硝态氮供应明显超过了桑树幼苗的无机氮需求,在0.5、2.0、8.0 mmol·L-1 3个硝态氮水平中,当硝态氮浓度为2.0 mmol·L-1时桑树幼苗的无机氮供需明显最优,即供需接近平衡。

  • 图4 不同硝态氮浓度对桑树幼苗植株氮同化产物δ15N值(A)与Δ15N值(B)的影响

  • Fig.4 Effects of different nitrate nitrogen concentrations on δ15N ( A) and Δ15N ( B) values of N assimilates in the whole Morus alba seedlings

  • 综上所述,基于稳定氮同位素技术,植株在不同硝态氮浓度下的氮同化产物的稳定氮同位素分馏值能够被量化,进而可以通过稳定氮同位素分馏值的大小来判断植物的无机氮供需是否平衡。确保植物的无机氮供需平衡能够避免氮肥的浪费和不足。桑树幼苗在硝态氮浓度为2.0 mmol·L-1时供需接近平衡,这就意味着此时的植物体内的碳氮代谢能够有效协调,进而实现了碳氮同化产物的同步增长。

  • 参考文献

    • BLACK BL, FUCHIGAMI LH, COLEMAN GD, 2002. Partitioning of nitrate assimilation among leaves, stems and roots of poplar [J]. Tree Physiol, 22(10): 717-724.

    • BUSCH FA, SAGE RF, FARQUHAR GD, 2018. Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway [J]. Nat Plants, 4(1): 46-54.

    • CUI RX, LEE BW, 2002. Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice [J]. Korean J Crop Sci, 47(5): 390-394.

    • EVANS RD, BLOOM AJ, SUKRAPANNA SS, et al. , 1996. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition [J]. Plant Cell Environ, 19(11): 1317-1323.

    • GENG LI, GAO HY, LIU P, et al. , 2010. Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage [J]. Plant Nutr Fert Sci, 16(3): 536-542.

    • GULMON SL, CHU CC, 1981. The effects of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the chaparral shrub, Diplacus aurantiacus [J]. Oecologia, 49(2): 207-212.

    • HAYES JM, 2004. An introduction to isotopic calculations [EB/OL]. https: //www. whoi. edu/cms/files/jhayes/2005/9/IsoCalcs30Sept04_5184. pdf.

    • HUANG F, ZHANG CL, XIE YC, et al. , 2015. Inorganic carbon flux and its source in the karst catchment of Maocun, Guilin, China [J]. Environ Earth Sci, 74(2): 1079-1089.

    • HUPPE HC, TURPIN DH, 1994. Integration of carbon and nitrogen metabolism in plant and algal cells [J]. Ann Rev Biol, 45(1): 577-607.

    • HU Y, GUY RD, SOOLANAYAKANAHALLY RY, 2022. Nitrogen isotope discrimination in open-pollinated and hybrid canola suggests indirect selection for enhanced ammonium utilization [J]. Front Plant Sci, 13: 1024080.

    • HU Y, GUY RD, 2020. Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics [J]. Plant Cell Environ, 43(9): 2112-2123.

    • KAISER WM, HUBER SC, 2001. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers [J]. J Exp Bot, 52(363): 1981-1989.

    • KALCSITS LA, GUY RD, 2013. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana [J]. Physiol Plantarum, 149(2): 249-259.

    • KALCSITS LA, BUSCHHAUS HA, GUY RD, 2014. Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants [J]. Physiol Plant, 151(3): 293-304.

    • LARSSON M, OLSSON T, LARSSON CM, 1985. Distribution of reducing power between photosynthetic carbon and nitrogen assimilation in Scenedesmus [J]. Planta, 164(2): 246-253.

    • MARIOTTI A, MARIOTTI F, CHAMPIGNY ML, et al. , 1982. Nitrogen isotope fractionation associated with nitrate reductase activity and uptake of NO3- by pearl millet [J]. Plant Physiol, 69(4): 880-884.

    • MIAO YF, LI SX, XU XF, et al. , 2014. Responses of winter wheat to ammonium and nitrate nitrogen [J]. Acta Pedol Sin, 51(3): 564-574. [苗艳芳, 李生秀, 徐晓峰, 等, 2014. 冬小麦对铵态氮和硝态氮的响应 [J]. 土壤学报, 51(3): 564-574. ]

    • NOVOA R, LOOMIS RS, 1981. Nitrogen and plant production [J]. Plant Soil, 58(1/2/3): 177-204.

    • PATE JS, STEWART GR, UNKOVICH M, 1993. 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of component species [J]. Plant Cell Environ, 16(4): 365-373.

    • PANG HS, ZHANG HH, TIAN Y, et al. , 2014. Effects of NO3--N on growth and photosynthetic characteristics of mulberry seedlings under Na2CO3 stress [J]. Pratacul Sci, 31(8): 1515-1522. [逄好胜, 张会慧, 田野, 等, 2014. 硝态氮对Na2CO3胁迫下桑树幼苗生长和光合特性的影响 [J]. 草业科学, 31(8): 1515-1522. ]

    • POORTER H, EVANS JR, 1998. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area [J]. Oecologia, 116(1): 26-37.

    • PRITCHARD ES, GUY RD, 2005. Nitrogen isotope discrimination in white spruce fed with low concentrations of ammonium and nitrate [J]. Trees, 19(1): 89-98.

    • ROBINSON D, HANDLEY LL, SCRIMGEOUR CM, et al. , 2000. Using stable isotope natural abundances (δ15N and δ13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch. ) genotypes [J]. J Exp Bot, 51(342): 41-50.

    • SALSAC L, CHAILLOU S, MOROT GJF, et al. , 1987. Nitrate and ammonium nutrition in plants [J]. Plant Physiol Biochem, 25(6): 805-812.

    • TSAY YF, SCHROEDER JI, FELDMANN KA, et al. , 1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter [J]. Cell, 72(5): 705-713.

    • WALTERS MB, KRUGER EL, REICH PB, 1993. Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings: species, light environment and ontogenetic considerations [J]. Oecologia, 96(2): 219-231.

    • WAN YJ, JU XT, INGWERSEN J, et al. , 2009. Gross nitrogen transformations and related nitrous oxide emissions in an intensively used calcareous soil [J]. Soil Sci Soc Am J, 73(1): 102-112.

    • WANG H, HU GQ, LOU YH, et al. , 2016. Responses of natural 15N abundance in cauliflower (Brassica oleracea L. var. botrytis) and soil to the application of organic and chemical fertilizers [J]. Can J Plant Sci, 96(5): 819-827.

    • WANG M, SHEN QR, XU GH, et al. , 2014. New insight into the strategy for nitrogen metabolism in plant cells [J]. Int Rev Cell Mol Biol, 310: 1-37.

    • WANG MY, SIDDIQI MY, RUTH TJ, et al. , 1993. Ammonium uptake by rice roots (II. kinetics of 13NH4+ influx across the plasmalemma) [J]. Plant Physiol, 103(4): 1259-1267.

    • WEN BB, XIAO W, MU Q, et al. , 2020. How does nitrate regulate plant senescence? [J]. Plant Physiol Biochem, 157: 60-69.

    • XU N, ZHANG HH, ZHU WX, et al. , 2012. Effects of nitrogen form on seedling growth and its photosynthetic characteristics of forage mulberry [J]. Pratacul Sci, 29(10): 1574-1580. [许楠, 张会慧, 朱文旭, 等, 2012. 氮素形态对饲料桑树幼苗生长和光合特性的影响 [J]. 草业科学, 29(10): 1574-1580. ]

    • YUAN Y, 2018. The role of nitrogen, phosphorus and potassium in mulberry production [J]. Newsl Sericul Tea, (1): 13-15. [袁颖, 2018. 氮、磷、钾在桑树生产中的作用 [J]. 蚕桑茶叶通讯, (1): 13-15. ]

    • ZHANG KY, WU YY, LI HT, et al, 2022. Effect of inorganic nitrogen supply on the salt-tolerance of Brassica napus plantlets in vitro [J]. Guihaia, 42(3): 422-428. [张开艳, 吴沿友, 李海涛, 等, 2022. 无机氮供应对甘蓝型油菜组培苗盐耐受能力的影响 [J]. 广西植物, 42(3): 422-428. ]

    • ZHAO PX, 2019. Chinese mulberry culture with a long history [J]. Rural · Agriculture · Farmers(Version A), (9): 55-58. [赵佩霞, 2019. 源远流长的中华桑文化 [J]. 农村·农业·农民(A版), (9): 55-58. ]

  • 参考文献

    • BLACK BL, FUCHIGAMI LH, COLEMAN GD, 2002. Partitioning of nitrate assimilation among leaves, stems and roots of poplar [J]. Tree Physiol, 22(10): 717-724.

    • BUSCH FA, SAGE RF, FARQUHAR GD, 2018. Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway [J]. Nat Plants, 4(1): 46-54.

    • CUI RX, LEE BW, 2002. Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice [J]. Korean J Crop Sci, 47(5): 390-394.

    • EVANS RD, BLOOM AJ, SUKRAPANNA SS, et al. , 1996. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition [J]. Plant Cell Environ, 19(11): 1317-1323.

    • GENG LI, GAO HY, LIU P, et al. , 2010. Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage [J]. Plant Nutr Fert Sci, 16(3): 536-542.

    • GULMON SL, CHU CC, 1981. The effects of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the chaparral shrub, Diplacus aurantiacus [J]. Oecologia, 49(2): 207-212.

    • HAYES JM, 2004. An introduction to isotopic calculations [EB/OL]. https: //www. whoi. edu/cms/files/jhayes/2005/9/IsoCalcs30Sept04_5184. pdf.

    • HUANG F, ZHANG CL, XIE YC, et al. , 2015. Inorganic carbon flux and its source in the karst catchment of Maocun, Guilin, China [J]. Environ Earth Sci, 74(2): 1079-1089.

    • HUPPE HC, TURPIN DH, 1994. Integration of carbon and nitrogen metabolism in plant and algal cells [J]. Ann Rev Biol, 45(1): 577-607.

    • HU Y, GUY RD, SOOLANAYAKANAHALLY RY, 2022. Nitrogen isotope discrimination in open-pollinated and hybrid canola suggests indirect selection for enhanced ammonium utilization [J]. Front Plant Sci, 13: 1024080.

    • HU Y, GUY RD, 2020. Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics [J]. Plant Cell Environ, 43(9): 2112-2123.

    • KAISER WM, HUBER SC, 2001. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers [J]. J Exp Bot, 52(363): 1981-1989.

    • KALCSITS LA, GUY RD, 2013. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana [J]. Physiol Plantarum, 149(2): 249-259.

    • KALCSITS LA, BUSCHHAUS HA, GUY RD, 2014. Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants [J]. Physiol Plant, 151(3): 293-304.

    • LARSSON M, OLSSON T, LARSSON CM, 1985. Distribution of reducing power between photosynthetic carbon and nitrogen assimilation in Scenedesmus [J]. Planta, 164(2): 246-253.

    • MARIOTTI A, MARIOTTI F, CHAMPIGNY ML, et al. , 1982. Nitrogen isotope fractionation associated with nitrate reductase activity and uptake of NO3- by pearl millet [J]. Plant Physiol, 69(4): 880-884.

    • MIAO YF, LI SX, XU XF, et al. , 2014. Responses of winter wheat to ammonium and nitrate nitrogen [J]. Acta Pedol Sin, 51(3): 564-574. [苗艳芳, 李生秀, 徐晓峰, 等, 2014. 冬小麦对铵态氮和硝态氮的响应 [J]. 土壤学报, 51(3): 564-574. ]

    • NOVOA R, LOOMIS RS, 1981. Nitrogen and plant production [J]. Plant Soil, 58(1/2/3): 177-204.

    • PATE JS, STEWART GR, UNKOVICH M, 1993. 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of component species [J]. Plant Cell Environ, 16(4): 365-373.

    • PANG HS, ZHANG HH, TIAN Y, et al. , 2014. Effects of NO3--N on growth and photosynthetic characteristics of mulberry seedlings under Na2CO3 stress [J]. Pratacul Sci, 31(8): 1515-1522. [逄好胜, 张会慧, 田野, 等, 2014. 硝态氮对Na2CO3胁迫下桑树幼苗生长和光合特性的影响 [J]. 草业科学, 31(8): 1515-1522. ]

    • POORTER H, EVANS JR, 1998. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area [J]. Oecologia, 116(1): 26-37.

    • PRITCHARD ES, GUY RD, 2005. Nitrogen isotope discrimination in white spruce fed with low concentrations of ammonium and nitrate [J]. Trees, 19(1): 89-98.

    • ROBINSON D, HANDLEY LL, SCRIMGEOUR CM, et al. , 2000. Using stable isotope natural abundances (δ15N and δ13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch. ) genotypes [J]. J Exp Bot, 51(342): 41-50.

    • SALSAC L, CHAILLOU S, MOROT GJF, et al. , 1987. Nitrate and ammonium nutrition in plants [J]. Plant Physiol Biochem, 25(6): 805-812.

    • TSAY YF, SCHROEDER JI, FELDMANN KA, et al. , 1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter [J]. Cell, 72(5): 705-713.

    • WALTERS MB, KRUGER EL, REICH PB, 1993. Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings: species, light environment and ontogenetic considerations [J]. Oecologia, 96(2): 219-231.

    • WAN YJ, JU XT, INGWERSEN J, et al. , 2009. Gross nitrogen transformations and related nitrous oxide emissions in an intensively used calcareous soil [J]. Soil Sci Soc Am J, 73(1): 102-112.

    • WANG H, HU GQ, LOU YH, et al. , 2016. Responses of natural 15N abundance in cauliflower (Brassica oleracea L. var. botrytis) and soil to the application of organic and chemical fertilizers [J]. Can J Plant Sci, 96(5): 819-827.

    • WANG M, SHEN QR, XU GH, et al. , 2014. New insight into the strategy for nitrogen metabolism in plant cells [J]. Int Rev Cell Mol Biol, 310: 1-37.

    • WANG MY, SIDDIQI MY, RUTH TJ, et al. , 1993. Ammonium uptake by rice roots (II. kinetics of 13NH4+ influx across the plasmalemma) [J]. Plant Physiol, 103(4): 1259-1267.

    • WEN BB, XIAO W, MU Q, et al. , 2020. How does nitrate regulate plant senescence? [J]. Plant Physiol Biochem, 157: 60-69.

    • XU N, ZHANG HH, ZHU WX, et al. , 2012. Effects of nitrogen form on seedling growth and its photosynthetic characteristics of forage mulberry [J]. Pratacul Sci, 29(10): 1574-1580. [许楠, 张会慧, 朱文旭, 等, 2012. 氮素形态对饲料桑树幼苗生长和光合特性的影响 [J]. 草业科学, 29(10): 1574-1580. ]

    • YUAN Y, 2018. The role of nitrogen, phosphorus and potassium in mulberry production [J]. Newsl Sericul Tea, (1): 13-15. [袁颖, 2018. 氮、磷、钾在桑树生产中的作用 [J]. 蚕桑茶叶通讯, (1): 13-15. ]

    • ZHANG KY, WU YY, LI HT, et al, 2022. Effect of inorganic nitrogen supply on the salt-tolerance of Brassica napus plantlets in vitro [J]. Guihaia, 42(3): 422-428. [张开艳, 吴沿友, 李海涛, 等, 2022. 无机氮供应对甘蓝型油菜组培苗盐耐受能力的影响 [J]. 广西植物, 42(3): 422-428. ]

    • ZHAO PX, 2019. Chinese mulberry culture with a long history [J]. Rural · Agriculture · Farmers(Version A), (9): 55-58. [赵佩霞, 2019. 源远流长的中华桑文化 [J]. 农村·农业·农民(A版), (9): 55-58. ]