#### DOI: 10.11931/guihaia.gxzw201803014

**引文格式:** 张克亚, 卿人韦, 柳科欢, 等. 缺氮胁迫下雨生红球藻虾青素积累过程中的基因组 MSAP 分析 [J]. 广西植物, 2018, 38(9): 1155-1163

ZHANG KY, QING RW, LIU KH, et al. Genome MSAP analysis of *Haematococcus pluvialis* astaxanthin accumulation under nitrogen depletion stress [J]. Guihaia, 2018, 38(9): 1155-1163

# 缺氮胁迫下雨生红球藻虾青素积累 过程中的基因组 MSAP 分析

张克亚, 卿人韦, 柳科欢, 刘倩倩, 侯兴国, 兰利琼\*

(四川大学 生命科学学院, 生物资源与生态环境教育部重点实验室, 成都 610065)

摘 要:虾青素具有多种生物学活性,雨生红球藻为天然虾青素的最佳来源,缺氮胁迫会导致雨生红球藻积累虾青素。为了解缺氮条件下雨生红球藻虾青素积累的分子机制,该研究通过对雨生红球藻进行缺氮胁迫,结合 MSAP 法,研究了雨生红球藻在缺氮胁迫下虾青素积累过程中基因组甲基化水平的变化,结果表明:缺氮胁迫 0~72 h 期间,雨生红球藻生长速度减慢,而虾青素积累主要发生在缺氮处理 12~24 h 期间,随后积累速度减慢。同时,对缺氮胁迫 0、24、72 h 的雨生红球藻基因组 DNA 进行甲基化敏感扩增多态性分析,共得到了 291 个甲基化多态性位点,其中发生甲基化变化的位点在 0~24 h 和 24~72 h 分别占总位点的 29.90%和 53.95%。在缺氮胁迫 24 h 处 DNA 半甲基化率最大(为 12.71%),全甲基化率最低(为 26.80%); 缺氮胁迫 72 h 处 DNA 全甲基化率最高(为 28.52%),半甲基化率最低(为 1.72%)。这表明 DNA 甲基化调节方式的改变是虾青素积累过程中的一种重要调控模式。

关键词:藻类学,缺氮胁迫,雨生红球藻,虾青素,甲基化变化

中图分类号: 0948 文献标识码: A 文章编号: 1000-3142(2018)09-1155-09

# Genome MSAP analysis of *Haematococcus pluvialis* astaxanthin accumulation under nitrogen depletion stress

ZHANG Keya, QING Renwei, LIU Kehuan, LIU Qianqian, HOU Xingguo, LAN Liqiong\*

( Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education,

College of Life Sciences, Sichuan University, Chengdu 610065, China)

**Abstract:** Haematococcus pluvialis is the best resource for natural astaxanthin, which has multiple biological functions. Nitrogen depletion can result in astaxanthin accumulation in *H. pluvialis*. In order to explore the molecular mechanism of astaxanthin accumulation in *H. pluvialis* under nitrogen depletion stress, the growth rate of the algae was found to decrease during 0-72 h, the accumulation of astaxanthin mainly occurred during 12-24 h, and then slowed

收稿日期: 2018-05-15

基金项目: 国家自然科学基金(40976092); 四川省科技厅项目(2014JY0171) [Supported by the National Natural Science Foundation of China (40976092); Program from Sichuan Department of Science and Technology (2014JY0171)]。

作者简介: 张克亚(1991-),女,四川内江市人,硕士研究生,主要从事藻类学研究,(E-mail)keya\_2016@ 163.com。

<sup>\*</sup>通信作者: 兰利琼,博士,教授,主要从事藻类学研究,(E-mail)lanlq@scu.edu.cn。

down. MSAP analysis of stress time point at 0, 24 and 72 h got 291 methylation polymorphism loci, among which 29.90% of 0-24 h methylation loci and 53.95% of 24-72 h methylation loci changed. After 24 h of nitrogen depletion stress, the DNA semi-methylation rate was the highest (12.71%), and the full-methylation rate got the lowest (26.80%). On the contrary, full-methylation rate was the highest (28.52%) and the semi-methylation rate was the lowest (1.72%) after 72 h stress. DNA methylation changes appeared to be a vital regulation for astaxanthin accumulation.

**Key words:** phycology, nitrogen depletion stress, *Haematococcus pluvialis*, astaxanthin, methylation change

雨生红球藻(Haematococcus pluvialis)是一种 淡水生长的单细胞绿藻,属于绿藻门绿藻纲团藻 目红球藻科红球藻属。在不利环境中(如强光、高 盐、高温、营养盐缺乏),会形成较大的厚壁孢子积 累虾青素,并失去鞭毛成为不动细胞(段良飞等, 2017)。虾青素(astaxanthin)是一种属于叶黄素类 (xanthophylls)的类胡萝卜素,呈深粉红色,化学结 构类似于 β-胡萝卜素 (Martinez-Delgado et al, 2017),广泛存在于虾、蟹、鱼以及某些鸟类的羽毛 中,除具有着色功能外,还有很强的抗氧化、清除 自由基等方面的能力,能保护细胞免受氧化损伤。 虾青素有三种立体异构体,即 3S,3'S;3R,3'R; 3R,3'S(分别为左旋、右旋、内消旋)(Ambati et al, 2014)。雨生红球藻(*H. pluvialis*)中多为(3S,3'S) 异构体(Wan et al, 2015)。Liu et al(2016)研究表 明,虾青素三种立体异构体的抗氧化活性依次为 (3S,3'S)>(3R,3'R)>(3R,3'S)。目前,自然界 中天然的虾青素主要存在于某些藻类、酵母和细 菌中,其中雨生红球藻是天然虾青素的最佳来源 (赵晓燕等,2016)。虾青素因其具有高效生物学 活性,而成为近年来国内外的研究热点。

基因组 DNA 甲基化能维持植物基因组功能稳定以帮助植物抵抗逆境(马浪浪等,2013),还能调节植物的正常生长发育、改变植物春化作用,促进开花,引起转基因沉默等(黄禄君等,2009)。甲基化敏感扩增多态性(methylation sensitive amplified polymorphism, MSAP)是在扩增片段长度多态性(amplified fragment length polymorphism, AFLP)的基础上发展而来(Vos et al,1995),利用同裂酶 $Hpa \, \mathbb{I} \, / Msp \, \mathbb{I} \,$ 对识别序列 CCGG 的甲基化敏感性不同,产生不同的 DNA 切割片段来揭示甲基化位点(李娜等,2012)。由于该法成本低、灵敏度高,不受基因组序列的限制,检测位点多并能同时分

析多个样品(熊肖等,2017),目前已越来越多地应 用于检测植物基因组 DNA 甲基化水平,在植物表 观遗传学的研究中具有良好的应用前景。现今对 雨生红球藻的研究致力于其高效培养(Jaime Fábregas et al, 2001; Zhang et al, 2014; 陈兴才等, 2005),虾青素的积累和提取条件探究(段良飞等, 2017;李小慧等, 2015) 以及虾青素积累结构—— 质体球滴的观察与质体球滴结构蛋白的基因克隆 等(范勇等,2012),对缺氮条件下雨生红球藻虾青 素积累过程中的基因组 MSAP 分析尚未见报道, 而这些研究对揭示雨生红球藻在缺氮条件下虾青 素积累的具体机制具有重大意义。本研究通过对 雨生红球藻进行缺氮胁迫,结合 MSAP 法,探究雨 生红球藻在缺氮胁迫下虾青素积累过程中的基因 组甲基化水平变化,初步揭示雨生红球藻对缺氮 胁迫的适应机制,对深入研究氮胁迫下雨生红球 藻虾青素积累机理提供一定的理论基础,并丰富 藻类在表观遗传学上的研究内容。

# 1 材料与方法

#### 1.1 材料

雨生红球藻(Haematococcus pluvialis)藻种,由四川大学生命科学学院藻类实验室培养并保存。

#### 1.2 方法

1.2.1 培养方法 采用 BBM 培养基,培养方式为通气( $V_{\text{空气}}:V_{\text{CO}_2}$ =98:2),温度(22±1)℃,光暗周期 12 h:12 h,光照强度 900~1 100 lx。正式实验前先进行预培养:将处于对数生长期的藻按1:10比例接种,通气培养至对数生长期。正式实验时按1:6 的比例转至1 L 三角瓶内培养,待培养至对数生长期后,将藻离心收集,藻泥全部转移至等体积新配的 BBM 缺氮培养基中进行胁迫,对照组

用 BBM 全培养基进行正常培养。

1.2.2 细胞计数及显微观察 将对照组和缺氮胁 迫组的雨生红球藻在培养至 0、12、24、48、72 h 时 分别取样,用显微镜观察藻细胞形态并用血球计数板测定藻细胞数目。

1.2.3 虾青素含量测定 将对照组和缺氮胁迫组 的雨生红球藻在培养至 0、12、24、48、72 h 时分别 取样,进行虾青素含量测定。采用改进的美国 Cvanotech 公司的方法(陈晓飞和严小军,2007):藻 泥于 15 mL 离心管中烘干后,加入 1 g 石英砂和 5 mL DMSO,45~50 ℃水浴 30 min,此期间每 5 min 涡旋振荡 30 s(共 6 次)。3 500 r·min<sup>-1</sup>下离心 5 min 使细胞物质沉淀,上清转入 10 mL 容量瓶中。 往离心管中加入 1 mL 丙酮, 涡旋振荡 30 s。3 500 r·min<sup>-1</sup>下离心 5 min 使细胞物质沉淀,将上清液 转入 10 mL 容量瓶中, 丙酮至少抽提 3 次, 直到上 清液基本无色(吸光值小于0.05)。用丙酮定容至 10 mL,将容量瓶上下颠倒混匀,吸取 5~10 mL 放 入离心管,3 500 r·min-1下离心 5 min 以除去前面 步骤中带入的颗粒物。474 nm 波长下测定最大吸 光值(丙酮作空白对照)。若吸光值大于1.25,则 必须对样品用丙酮稀释后再测,稀释倍数一般为 1:5~1:10。每组3个重复。计算公式如下:

类胡萝卜素质量 $(mg) = \frac{最大吸光值 A}{250} \times 10 \text{ mL}$ 

(丙酮)×稀释倍数;

虾青素含量= $\frac{\text{类胡卜素(mg)}}{\text{样品质量(mg)}} \times 80\%$ 。

1.2.4 MSAP 分析 将缺氮处理 0 h(胁迫处理前,作为对照)、24、72 h 的雨生红球藻用 Ezup 柱式植物基因组 DNA 试剂盒[生工生物工程(上海)股份有限公司]进行 DNA 提取,参照 Xiong et al(1999)的方法改进后进行酶切、连接、预扩增、选择性扩增及电泳。 MSAP 分析所采用的接头序列、预扩增引物及选择性扩增引物序列见表 1。接头和引物均由生工生物工程(上海)股份有限公司合成,限制性内切酶购自 Thermo 公司, T<sub>4</sub> DNA Ligase 购自TaKaRa 公司, PCR mix 购自成都擎科梓熙生物技术有限公司。

对提取的 DNA 分别进行 EcoR I/Hpa Ⅱ 和

EcoR I/Msp I 2 个组合酶切。酶切总反应体系 20 μL: EcoR I 10 U, Hpa II & Msp I 10 U, 10×Tango buffer 4 μL, DNA 样品 300 ng, ddH<sub>2</sub>O 补足 20 μL<sub>0</sub> 37 ℃酶切 10 h。酶切反应结束后,用 1%琼脂糖凝 胶电泳检测酶切效果。接着进行接头连接,连接 体系总共 20 μL:酶切产物 10 μL, EcoR I 接头(5 μmol·L<sup>-1</sup>)与 *Hpa* Ⅱ (*Msp* I)接头(50 μmol·L<sup>-1</sup>) 各 1 μL, T<sub>4</sub> DNA Ligase 350 U, 10×T<sub>4</sub> DNA Ligase buffer 2 μL, ddH, O 补足 20 μL。16 ℃连接 12 h。 连接产物稀释 10 倍后进行预扩增。预扩增体系 20 μL,包括预扩增引物 E0(10 μmol·L<sup>-1</sup>)1 μL, H/M0(10 μmol·L<sup>-1</sup>)1 μL,连接产物 10 倍稀释液 5 μL, 2×PCR mix 10 μL, 双蒸水补足 20 μL。扩增 程序为 94 ℃ 4 min;94 ℃ 30 s,56 ℃ 1 min,72 ℃ 1 min, 30 个循环; 72 ℃延伸 10 min。反应结束后, 将预扩增产物稀释 30 倍进行选择性扩增。选择 性扩增体系 20 μL,包括 EcoR I 选择性扩增引物 (10 μmol·L<sup>-1</sup>)1 μL, H/M 选择性扩增引物(10 μmol·L<sup>-1</sup>)1 μL,预扩增产物 30 倍稀释液 5 μL,2× PCR mix 10 μL, ddH, O 补足 20 μL。扩增程序为 94 ℃ 5 min,94 ℃ 30 s,65 ℃ (每个循环降 0.7 ℃) 30 s,72 ℃ 1 min,共 12 个循环;94 ℃ 30 s,56 ℃ 30 s,72 ℃ 1 min,共 25 个循环;72 ℃ 10 min。选 择性扩增产物经变性后,取2~3 μL 进行6%变性 聚丙烯酰胺凝胶电泳,电泳结束后按高东等 (2009)的方法改进后进行银染,拍照并保存结果。 电泳结果中,将 Hpa Ⅱ/Msp I 酶切产物的条带进 行标记,无条带记为"0",有条带记为"1"。统计 各类型条带数目,用 Excel 2013 进行结果分析。

# 2 结果与分析

# 2.1 雨生红球藻在缺氮胁迫下的生长曲线与显微观察

雨生红球藻在正常 BBM 和缺氮的 BBM 培养基中的生长情况如图 1 所示。整个过程中,正常培养条件的雨生红球藻生长状态良好,至 72 h 时,细胞数量每毫升已达 13.2×10<sup>5</sup>个;而缺氮组的红球藻生长速度下降,生长减慢,到末期(72 h),细胞数量每毫升为 8.7×10<sup>5</sup>个,为对照组的 0.66 倍。

| 表 1     | MSAP 所用的接头及引物               |
|---------|-----------------------------|
| Table 1 | Adapter and primer for MSAI |

| 引物类型<br>Type of primer               |       | 引物名称以及序列(5'-3')<br>Name and seqence of primer(5'-3') |                                                  |  |
|--------------------------------------|-------|------------------------------------------------------|--------------------------------------------------|--|
|                                      |       | EcoR I(E)                                            | Hpa Ⅱ/Msp I(H/M)                                 |  |
| 接头<br>Adapter                        |       | EA1: CTCGTAGACTGCGTACC<br>EA2: AATTGGTACGCAGTCTAC    | H/M1: GATCATGAGTCCTGCT<br>H/M2: CGAGCAGGACTCATGA |  |
| 预扩增引物<br>Pre-amplified primer        |       | E0: GACTGCGTACCAATTC                                 | H/MO: ATCATGAGTCCTGCTCGC                         |  |
| 选择性扩增引物对组合                           | No.1  | $GACTGCGTACCAATTC \boldsymbol{AGC}$                  | ATCATGAGTCCTGCTCGG <b>TCCA</b>                   |  |
| Selective amplification primer group | No.2  | GACTGCGTACCAATTC <b>AGA</b>                          | ATCATGAGTCCTGCTCGG <b>TAG</b>                    |  |
|                                      | No.3  | GACTGCGTACCAATTC <b>AAA</b>                          | ATCATGAGTCCTGCTCGG <b>TAG</b>                    |  |
|                                      | No.4  | ${\sf GACTGCGTACCAATTC} {\bf AAC}$                   | ATCATGAGTCCTGCTCGG <b>TAG</b>                    |  |
|                                      | No.5  | GACTGCGTACCAATTC <b>AAG</b>                          | ATCATGAGTCCTGCTCGG <b>TAG</b>                    |  |
|                                      | No.6  | GACTGCGTACCAATTC <b>AAT</b>                          | ATCATGAGTCCTGCTCGG <b>TAG</b>                    |  |
|                                      | No.7  | GACTGCGTACCAATTC <b>AAC</b>                          | ATCATGAGTCCTGCTCGG <b>TAC</b>                    |  |
|                                      | No.8  | GACTGCGTACCAATTC <b>AAG</b>                          | ATCATGAGTCCTGCTCGG <b>TAC</b>                    |  |
|                                      | No.9  | GACTGCGTACCAATTC <b>AGC</b>                          | ATCATGAGTCCTGCTCGG <b>TAC</b>                    |  |
|                                      | No.10 | GACTGCGTACCAATTC <b>AAC</b>                          | ATCATGAGTCCTGCTCGG <b>TTG</b>                    |  |
|                                      | No.11 | GACTGCGTACCAATTC <b>AGG</b>                          | ATCATGAGTCCTGCTCGG <b>TTG</b>                    |  |

显微观察结果如图 2 所示。在缺氮胁迫 0~24 h 期间,雨生红球藻外观变化不显著,至胁迫 72 h 时,显微镜下可见藻细胞内部已有少量虾青素积累。

#### 2.2 虾青素含量变化

图 3 为缺氮过程中虾青素含量变化情况。由图 3 可见,缺氮组的虾青素含量在整个实验过程中一直高于对照组,且缺氮组在胁迫处理 12~24 h阶段虾青素含量急剧增加,为增幅最大的时段。此后,缺氮组虾青素含量上升减慢,趋于稳定。缺氮组与对照组在胁迫 72 h 处差异最大,此时缺氮组的虾青素含量为对照组的 2.64 倍。

#### 2.3 缺氮胁迫下雨生红球藻 DNA 的 MSAP 分析

将 11 对选择性扩增引物组合进行雨生红球藻 DNA 样品的全基因组甲基化分析(图 4)。对上述 胶图进行条带统计后,按 Tang et al(2014)的方法 进行分类,具体分类如表 2 所示。甲基化一共有 四种类型:(I) Hpa II 和 Msp I 处均有带(1,1),即 没有发生甲基化;(II) Hpa II 无带, Msp I 有带

(0,1),为内部胞嘧啶发生全甲基化;(Ⅲ) Hpa Ⅱ 有带, Msp I 无带(1,0),为外侧胞嘧啶半甲基化;(Ⅳ) Hpa Ⅱ 和 Msp I 处均无带(0,0),为超甲基化位点。经统计后,得到各类条带数目如图 5 所示。共得到1 265个条带,从这些条带中得到 291个甲基化多态性位点。I 类(未发生甲基化)数目最多,在缺氮处理 0、24、72 h 时分别为 194、176、203个;Ⅱ类在缺氮处理的三个时间点变化不大;Ⅲ类在缺氮胁迫 24 h 和 72 h 时减少了 86.49%,变化显著;Ⅳ类较稳定,在缺氮处理 72 h 时达 64个,在三个时间点中数目最多。

对所得条带进行甲基化率分析,统计时将 II 与 IV 类型视作全甲基化,总甲基化率 =  $[(II + III + IV)/(I+II + III + IV)] \times 100\%$ ,全甲基化率 =  $[(III + III + IV)] \times 100\%$ ,半甲基化率 =  $[(III)/(I+II + III + IV)] \times 100\%$ ,所得结果见表 3。表 3 结果表明,缺氮处理 24 h 的总甲基化位点数最多  $(115 \, \text{个})$ ,总甲基化率最高 (39.52%);缺氮

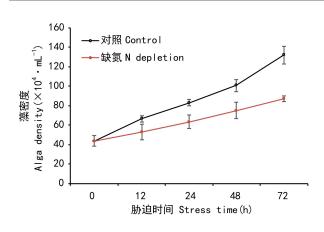
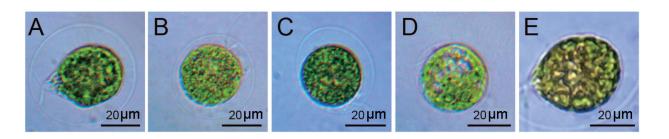




图 1 雨生红球藻生长曲线 Fig. 1 Growth curve of *Haematococcus pluvialis* 

处理 72 h 的总甲基化位点最少(88 个),总甲基化率最低(30.24%),显示在处理 24~72 h 期间,基因组总甲基化率下调了 23.48%。全甲基化位点数在缺氮处理 0、24、72 h 之间差异不大,全甲基化率在 26%~28%。半甲基化位点数在缺氮处理 0、24、72 h 分别为 16、37、5 个,显示在缺氮 24 h 处半甲基 化率 最 大 (12.71%),比 0 h 处 上 升 了 131.25%,而比 72 h 处下降了 86.47%,变化显著。

对胞嘧啶发生甲基化和去甲基化变化的位点 模式进行统计(表4)。通过表4分析发现,缺氮胁 迫下的胞嘧啶甲基化和去甲基化变化共包括三种 模式:(1)甲基化位点无变化。在缺氮处理0~24 h和24~72 h期间,甲基化位点无变化的数目分别



注: **A.** 缺氮 0 h; **B.** 缺氮 12 h; **C.** 缺氮 24 h; **D.** 缺氮 48 h; **E.** 缺氮 72 h<sub>o</sub>

Note: After 0 h (**A**), 12 h (**B**), 24 h (**C**), 48 h (**D**) and 72 h (**E**) of nitrogen depletion stress.

### 图 2 雨生红球藻缺氮胁迫下显微观察

Fig. 2 Microscopy of Haematococcus pluvialis under nitrogen depletion stress

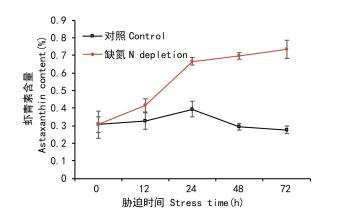
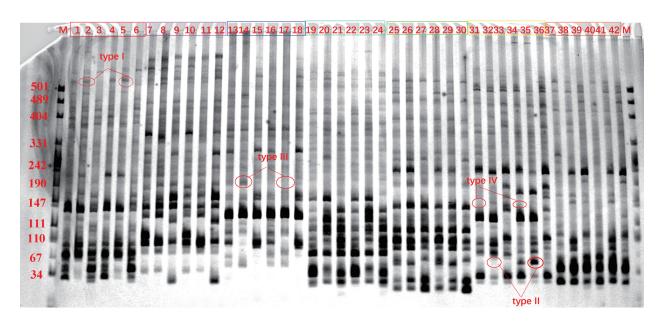




图 3 虾青素含量变化 Fig. 3 Changes of astaxanthin

为 204 和 134 个,各占总甲基化位点的 70.10%和 46.05%。(2)位点发生甲基化。缺氮处理 0~24 h 期间发生甲基化的位点有 46 个,占总甲基化位点的 15.81%;缺氮处理 24~72 h 期间发生甲基化的位点有 73 个,占 25.09%。(3)位点发生去甲基化。缺氮处理 0~24 h 期间发生去甲基化的位点有 41 个,占14.09%;缺氮处理 24~72 h 期间发生去甲基化的位点有 84 个,占 28.87%。结果显示,291 个多态性位点在 0~24 h 期间有 87 个发生了甲基化或去甲基化变化,占 29.90%;24~72 h 期间发生甲基化或去甲基化变化的位点有 157 个,占53.95%。可见,在缺氮处理过程中基因组 DNA 同时发生甲基化和去甲基化,且在后期(24~72 h)发生该变化的位点数更多。



注: M. Marker。图中以6个泳道为一组,组内引物组合相同,并且组内前三个样为缺氮处理0、24、72 h 的雨生红球藻细胞 DNA 通过 *Hpa* Ⅱ 酶切,后三个样为缺氮处理0、24、72 h 的藻细胞 DNA 经 *Msp* I 酶切。

Note: M. Marker. Every six lanes were one group. In each group, the first three samples were *Hpa* II digested genome DNA from stress period 0, 24 and 72 h, respectively; and the last three samples were *Msp* I digested genome DNA from stress period 0, 24 and 72 h, respectively.

图 4 缺氮处理 0、24、72 h 雨生红球藻 DNA 的 MSAP 图谱示例

Fig. 4 MSAP bands for Haematococcus pluvialis under nitrogen depletion environment for 0, 24 and 72 h

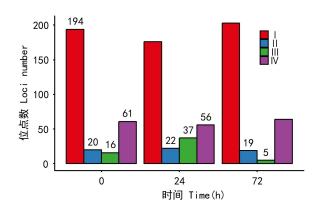

表 2 甲基化条带情况分类

Table 2 Methylation band classification

| $\mathit{Hpa}$ $\Pi$ | Msp I | 类型<br>Type                         |
|----------------------|-------|------------------------------------|
| 1                    | 1     | I (非甲基化)<br>I(No methylation)      |
| 0                    | 1     | Ⅱ (全甲基化)<br>Ⅱ(Full-methylation)    |
| 1                    | 0     | Ⅲ(半甲基化)<br>Ⅲ(Semi-methylation)     |
| 0                    | 0     | IV (超甲基化)<br>IV(Hyper-methylation) |



氮元素是植物生长发育和发育过程中必不可少且需求量最大的元素,对细胞的构成、分裂、生长都有着重要作用,被称为"生命元素"(陈雅君等,2013)。氮元素是影响多种微藻生长和脂质积累最重要的元素(Griffiths & Harrison,2009)。本



注: I、II、III、IV 对应文中的四种甲基化类型。 Note: I, II, III and IV stands for methylation type I, II, III and IV, respectively.

图 5 不同甲基化类型位点数 Fig. 5 Loci number of different methylation patterns

研究中,缺氮条件下的红球藻生长速度减慢,这与 庄惠如等(2000)研究中"在接种后3d,缺氮处理 组生长明显延缓"的现象一致。黄水英等(2009)

表 3 甲基化率情况

Table 3 Methylation rate

| 项目<br>Item                                 | 位点数及其占比<br>Number and proportion of loci |       |       |  |
|--------------------------------------------|------------------------------------------|-------|-------|--|
| nem                                        | 0 h                                      | 24 h  | 72 h  |  |
| 总扩增位点                                      | 291                                      | 291   | 291   |  |
| Total amplified loci number                |                                          |       |       |  |
| 总甲基化位点                                     | 97                                       | 115   | 88    |  |
| Total methylated loci number( II + III + I | V)                                       |       |       |  |
| 全甲基化位点                                     | 81                                       | 78    | 83    |  |
| Full-methylated loci number( II +IV)       |                                          |       |       |  |
| 总甲基化率                                      | 33.33                                    | 39.52 | 30.24 |  |
| Methylation rate (%)                       |                                          |       |       |  |
| 全甲基化率                                      | 27.84                                    | 26.80 | 28.52 |  |
| Full-methylation rate (%)                  |                                          |       |       |  |
| 半甲基化率                                      | 5.50                                     | 12.71 | 1.72  |  |
| Semi-methylation rate (%)                  |                                          |       |       |  |

发现,缺氮条件下雨生红球藻积累虾青素的同时并未大量形成孢子,而是在游动细胞阶段积累虾青素,这与本研究缺氮处理 72 h 时显微观察到的雨生红球藻细胞并未形成厚壁孢子吻合。

缺氮胁迫下,雨生红球藻生长减慢,但虾青素含量却一直增加,表明缺氮有助于虾青素的合成,这与庄惠如等(2000)和 Borowitzka et al(1991)研究结果一致,其机制可能是因为缺氮胁迫引起细胞内活性氧水平增加(Mendesferreira et al,2010),形成氧化胁迫,藻细胞快速、大量合成虾青素等抗氧化物质清除细胞内的活性氧(王潮岗等,2012),维持细胞内活性氧的动态平衡。此外,缺氮还会增加某些绿藻的脂质体含量(Hirooka et al,2014),

表 4 甲基化模式变化

Table 4 Methylation pattern changes

| 编号<br>Number | 类型改变<br>Type change | 模式变化<br>Pattern change | 位点数<br>Loci number |         | 百分比<br>Percentage |                |
|--------------|---------------------|------------------------|--------------------|---------|-------------------|----------------|
|              |                     |                        | 0~24 h             | 24~72 h | 0~24 h<br>(%)     | 24~72 h<br>(%) |
| 1            | I->I                | 无变化<br>No change       | 153                | 125     | 52.577 319 59     | 42.955 326 5   |
| 2            | I−> II              | 甲基化<br>Methylated      | 6                  | 8       | 2.061 855 67      | 2.749 140 89   |
| 3            | I−>∭                | 甲基化<br>Methylated      | 15                 | 3       | 5.154 639 175     | 1.030 927 84   |
| 4            | I->IV               | 甲基化<br>Methylated      | 20                 | 40      | 6.872 852 234     | 13.745 704 5   |
| 5            | II ->I              | 去甲基化<br>Demethylated   | 9                  | 10      | 3.092 783 505     | 3.436 426 12   |
| 6            | Ⅱ -> Ⅱ              | 无变化<br>No change       | 8                  | 3       | 2.749 140 893     | 1.030 927 84   |
| 7            | Ⅱ ->IV              | 甲基化<br>Methylated      | 3                  | 9       | 1.030 927 835     | 3.092 783 51   |
| 8            | III −>I             | 去甲基化<br>Demethylated   | 2                  | 23      | 0.687 285 223     | 7.903 780 07   |
| 9            | Ⅲ->Ⅲ                | 无变化<br>No change       | 12                 | 1       | 4.123 711 34      | 0.343 642 61   |
| 10           | <b>Ⅲ</b> −>IV       | 甲基化<br>Methylated      | 2                  | 10      | 0.687 285 223     | 3.436 426 12   |
| 11           | IV->I               | 去甲基化<br>Demethylated   | 12                 | 45      | 4.123 711 34      | 15.463 917 5   |
| 12           | IV−> <b>I</b> I     | 去甲基化<br>Demethylated   | 8                  | 5       | 2.749 140 893     | 1.718 213 06   |
| 13           | IV−>∭               | 去甲基化<br>Demethylated   | 10                 | 1       | 3.436 426 117     | 0.343 642 61   |
| 14           | IV->IV              | 无变化<br>No change       | 31                 | 5       | 10.652 920 96     | 1.718 213 06   |
| 15           | Ⅲ->Ⅱ                | 甲基化<br>Methylated      | _                  | 3       | _                 | 1.030 927 84   |
| 总计<br>Total  |                     | <u> </u>               | 291                | 291     | 100               | 100            |

注: "->"表示从前者转变为后者。"-"表示没有数据。

Note: "->" represent changes from the former to the latter. "-" represent no data.

而脂质体正是虾青素在雨生红球藻细胞质中储存的场所(Makio,2003),这也是缺氮胁迫导致虾青素积累的原因之一。

MSAP 结果显示,四种甲基化类型中,I类(未发生甲基化)条带数最多,其次为 IV 类(超甲基化)。分析发现,在缺氮处理 24 h 处半甲基化率最高(达 12.71%),全甲基化率最低(为 26.80%),而缺氮 12~24 h 期间虾青素含量急剧增加,表明缺氮初期,虾青素积累可能主要以基因组 DNA 半甲基化调节为主。缺氮处理 72 h 时,虾青素仍在积累,但积累速度缓慢,此时基因组 DNA 全甲基化率最高,推测此时主要以全甲基化调节为主。

DNA 甲基化与去甲基化可以调节基因的表 达,此过程中可能将外源 DNA 沉默,以保持基因 组的完整,使植物体正常生长代谢,更好地适应外 界环境(刘冰,2013)。通常,基因发生甲基化会抑 制表达,发生去甲基化会增加转录水平,促进基因 表达(Ik et al, 1997)。本研究中, 为适应缺氮胁 迫,藻细胞 DNA 在 0~24 h 期间发生甲基化的位 点多于去甲基化位点,表明激活表达的基因(如虾 青素合成途径中相关基因)少于被抑制的基因,缺 氮胁迫更多地抑制了基因的表达。王小利等 (2015)发现,经缺氮处理后高羊茅甲基化率高于 去甲基化率,表明高羊茅适应缺氮胁迫时,除激活 抗逆基因的表达外,更涉及沉默部分基因的表达。 本研究缺氮胁迫 24~72 h 期间,发生去甲基化的 位点多于甲基化位点,以去甲基化为主,此时虾青 素积累速度缓慢,可能随虾青素不断积累,相关基 因陆续启动,发生去甲基化而被激活。可见,缺氮 胁迫下的虾青素积累与基因组 DNA 甲基化相关, 通过甲基化和去甲基化的方式调控基因的表达, 从而影响虾青素的合成。

## 参考文献:

- AMBATI RR, PHANG SM, RAVI S, et al, 2014. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review [J]. Mar Drugs, 12(1): 128-52.
- BOROWITZKA MA, HUISMAN JM, OSBORN A, 1991. Culture of the astaxanthin-producing green alga

- Haematococcus pluvialis. 1. Effects of nutrients on growth and cell type [J]. J Appl Phycol, 3(4): 295–304.
- CHEN XC, HUANG WG, OUYANG Q, 2005. The study of culture conditions of *Haematoccus pluvialis* and its astaxanthin accumulation [J]. J Fuzhou Univ (Nat Sci Ed), 33(2):259-263. [陈兴才, 黄伟光, 欧阳琴, 2005. 雨生红球藻的培养及虾青素累积条件的探讨[J]. 福州大学学报(自然科学版), 33(2):259-263.]
- CHEN XF, YAN XJ, 2007. Comparative analysis of quantitation of astaxathin in *Haematococcus pluvialis* [J]. J Ningbo Univ (Nat Sci Eng), 20(4): 441-445. [陈晓飞, 严小军, 2007. 红球藻虾青素含量测定方法的探讨 [J]. 宁波大学学报(理工版), 20(4): 441-445.]
- CHEN YJ, YAN QW, ZHANG L, et al, 2013. Research progress on nitrogen and plant growth [J]. J NE Agric Univ, 44 (4):144-148. [陈雅君, 闫庆伟, 张璐, 等, 2013. 氮素与植物生长相关研究进展 [J]. 东北农业大学学报, 44(4):144-148.]
- DUAN LF, GUAN B, KONG Q, et al, 2017. Effects of different culture modes oc green growth and astaxanthin accumulation by *Haematococcus pluvialis* [J]. Trans Oceanol Limnol, 1:73–79. [段良飞,管斌,孔青,等, 2017. 不同培养模式对雨生红球藻细胞绿色生长以及虾青素积累的影响 [J]. 海洋湖沼通报, 1:73–79.]
- FAN Y, YU GX, WANG LN, et al, 2012. Cloning and prokaryotic expression of the plastoglobules protein gene from Haematoccus pluvialis [J]. Acta Hydrobiol Sin, 36(4): 640-645. [范勇, 于广欣, 汪乐霓, 等, 2012. 雨生红球 藻质体球滴结构蛋白基因的克隆与原核表达 [J]. 水生 生物学报, 36(4):640-645.]
- GAO D, DU F, ZHU YY, 2009. Low-background and high-resolution contracted silver-stained method in polyacrylamide gels electrophoresis [J]. Hereditas, 31(6):668-673. [高东, 杜飞, 朱有勇, 2009. 低背景、高分辨率 PAGE 简易银染法 [J]. 遗传, 31(6):668-673.]
- GRIFFITHS MJ, HARRISON STL, 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production [J]. J Appl Phycol, 21(5): 493-507.
- HIROOKA S, HIGUCHI S, UZUKA A, et al, 2014. Acidophilic green alga *Pseudochlorella* sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH [J]. PLoS ONE, 9(9): e107702.
- HUANG LJ, LI Y, FU Y, 2009. Advance in plant DNA methylation and its biological significance [J]. J Baoding Univ, 22 (4):70-72. [黄禄君, 李云, 付毓, 2009. DNA 甲基化及 其植物生物学意义研究进展 [J]. 保定学院学报, 22(4):70-72.]
- HUANG SY, QI AX, LI Z, et al, 2009. Initial studies on the effects of stress conditions on astaxanthin accumulation of *Haematococcus pluvialis* [J]. Stud Mar Sin, 49: 144 150. [黄水英, 齐安翔, 李哲, 等, 2009. 几种胁迫方式 对雨生红球藻积累虾青素影响的初步研究[J]. 海洋科

- 学集刊, 49:144-150.]
- IK AK, KOUKALOVA B, OPATRN Z, 1997. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress [J]. Theor Appl Genet, 95(1-2): 301-306.
- JAIME FÁBREGAS, ANA OTERO, ANA MASEDA, et al, 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis [J]. J Biotechnol, 89; 65–71.
- LI N, ZHANG Y, XIE LN, et al, 2012. Research progress in DNA methylation in plants [J]. Plant Physiol J, 48(11):1027-1036. [李娜, 张旸, 解莉楠, 等, 2012. 植物 DNA 甲基化研究进展 [J]. 植物生理学报, 48(11):1027-1036.]
- LI XH, ZOU N, SUN DH, et al, 2015. Optimization of productional astaxanthin extraction process from *Haematococcus pluvialis* [J]. J Anhui Agric, 43(15):23-24. [李小慧, 邹宁, 孙东红, 等, 2015. 雨生红球藻中虾青素的提取工艺优化 [J]. 安徽农业科学, 43(15):23-24.]
- LIU B, 2013. Methylation sensitive amplification polymorphism (MSAP) analysis of mainly cultivated oyster mushsoom [D]. Wuhan: Huazhong Agricultural University. [刘冰, 2013. 平菇主栽品种 DNA 甲基化敏感扩增多态性 (MSAP)分析 [D]. 武汉: 华中农业大学.]
- LIU X, LUO Q, RAKARIYATHAM K, et al, 2016. Antioxidation and anti-ageing activities of different stereoisomeric astaxanthin *in vitro* and *in vivo* [J]. J Funct Foods, 25: 50-61.
- MA LL, JIANG Z, HUANG XB, et al, 2013. Research progress of DNA methylation on plant regulation [J]. Chin Biotechnol, 33(9):101-110. [马浪浪, 江舟, 黄小波,等, 2013. 植物 DNA 甲基化调控研究进展 [J]. 中国生物工程杂志, 33(9):101-110.]
- MAKIO KOBAYASHI, 2003. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga *Haematococcus pluvialis* [J]. Biotechnol Bioproc E, 8: 322–330.
- MARTINEZ-DELGADO AA, KHANDUAL S, VILLANUEVA-RODRIGUEZ SJ, 2017. Chemical stability of astaxanthin integrated into a food matrix: effects of food processing and methods for preservation [J]. Food Chem, 225: 23-30.
- MENDESFERREIRA A, SAMPAIOMARQUES B, BARBOSA C, et al, 2010. Accumulation of non-superoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by saccharomyces cerevisiae [J]. Appl Environ Microbiol, 76(24): 7918–7924.
- TANG XM, TAO X, WANG Y, et al, 2014. Analysis of DNA methylation of perennial ryegrass under drought using the

- methylation-sensitive amplification polymorphism (MSAP) technique [J]. Mol Genet Genom, 289(6): 1075-1084.
- VOS P, HONGERS R, BLEEKER M, et al, 1995. AFLP: a new technique for DNA fingerprinting [J]. Nucl Acid Res, 23(21): 4407-4414.
- WAN M, ZHANG Z, WANG J, et al, 2015. Sequential heterotrophy-dilution-photoinduction cultivation of *Haematococcus pluvialis* for efficient production of astaxanthin [ J ]. Bioresour Technol, 198; 557.
- WANG CG, HAN S, CHEN ZQ, et al, 2012. The scavenging of reactive oxygen species with antioxidant systems in *Haemato-coccus pluvialis* [J]. Acta Hydrobiol Sin, 36(4):804-808. [王潮岗, 韩燊, 陈甄倩, 等, 2012. 雨生红球藻抗氧化系统对活性氧的清除机制[J]. 水生生物学报, 36(4):804-808.]
- WANG XL, WANG Q, SHU JH, et al, 2015. Analysis of nitrogen stress on DNA methylation by MSAP in tall fescue [J]. Genom Appl Biol, 34(11): 2362-2371. [王小利, 王茜, 舒键虹, 等, 2015. 氮胁迫下高羊茅基因组 DNA 甲基化的 MSAP 分析 [J]. 基因组学与应用生物学, 34(11):2362-2371.]
- XIONG LZ, XU CG, SAGHAI MAROOF MA, et al, 1999. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique [J]. Mol Gen Genet, 261(3):439-446.
- XIONG X, LI B, GONG Q, et al, 2017. Analysis of methylation sensitive amplification polymorphsim genome DNA methylation in different barely tissues during development [J]. J Yangtze Univ (Nat Sci Ed), 14(10):29-42. [熊肖, 李博, 龚强, 等, 2017. 大麦不同组织成熟过程中 DNA 甲基化的 MSAP 分析 [J]. 长江大学学报(自然科学版), 14(10):29-42.]
- ZHAO XY, ZHU HT, BI YP, et al, 2016. Research of astaxanthin in the *Haematococcus pluvialis* [J]. Food Res Dev, 37(4):191-194. [赵晓燕,朱海涛,毕玉平,等, 2016. 雨生红球藻中虾青素的研究进展[J]. 食品研究与开发, 37(4):191-194.]
- ZHUANG HR, SHI QQ, LU HS, et al, 2000. The effect of nutritional stresses on accumulation of astaxanthin in *Haematococcus pluvialis* [J]. Acta Hydrobiol Sin, 24(3):208-212. [庄惠如,施巧琴,卢海声,等, 2000. 营养胁迫对雨生红球藻虾青素积累的影响[J]. 水生生物学报, 24(3):208-212.]