三种紫金牛属植物的核型研究

张美云¹,廖 亮¹,李同建¹,易官美²,刘中来¹,徐玲玲¹*,张大明¹ (1.江西九江学院生命科学学院,江西九江 332000, 2.江西省、中国科学院庐山植物园,江西庐山 332900)

搞 宴: 对紫金牛属三种植物进行了核型分析,其中朱砂根染色体数目 2n=46、核型 2n=46=42m+2sm+2st 和紫金牛核型 2n=92=58m+24sm+10st 为首次报道;虎舌红核型公式为 2n=44=40m+2sm+2st。核型分析结果显示,紫金牛属植物存在染色体数目非整倍体变异及多倍化的进化方式。

关键词:染色体数目;核型;朱砂根;虎舌红;紫金牛

中国分类号: Q942 文献标识码: A 文章编号: 1000-3142(2009)05-0592-03

Karyotypes of three species in Ardisia

ZHANG Mei-Yun¹, LIAO Liang¹, LI Tong-Jian¹, YI Guan-Mei², LIU Zhong-Lai¹, XU Ling-Ling¹*, ZHANG Da-Ming¹

(1. College of Life Science, Jiujiang University, Jiujiang 332000, China, 2. Lushan Botanical Garden, Chinese Academy of Sciences, Lushan 332900, China)

Abstract: Karyological stuidies were carried out in three species of Ardisia from China. The chromosome numbers 2n=46, karyotype 2n=46=42m+2sm+2st of A. crenata and the karyotype 2n=92=58m+24sm+10st of A. japonica were reported here for the first time. The karyotype formula of A. mamillata were 2n=44=40m+2sm+2st. The karyotype analysis showed that there were aneuploid variation of chromosome number and polyploidization evolution in Ardisia. Key words; chromosome numbers; karyotype; Ardisia crenata; Ardisia mamillata; Ardisia japonica

紫金牛属(Ardisia)约300种,分布于热带美洲,太平洋诸岛,印度半岛东部及亚洲东部至南部,少数分布于大洋洲,我国68种,12变种,分布于长江流域以南各地(陈介,1979)。本属植物多供药用,对跌打、风湿、痨咳及各种炎症有良效;有的果可食,种子可榨油,叶可作野菜;多数可作园林植物。目前对本属的研究大多是在药学和园林等方面,由于其染色体小而数目多,细胞学研究较少,大约有9种植物曾做过染色体计数,其染色体数目有 n=23 和24;2n=24、46、48、92 和96 的报道(Darlington等,1945; Chuang等,1963; Faure,1968; Bawa,1973; Mooer,1977; Bedi等,1980; Bir等,1983; Godbltt,1990; Sarkar,1992; Tanaka,1997; Koyama,1998; Wu等,2000;张长芹等,2006),其中只有1种植物做过核型报道(张长芹等,2006)。本文对该属的朱

砂根(A. crenata)、虎舌红(A. mamillata)和紫金牛(A. japonica)三种植物进行了核型报道,为紫金牛属的系统发育研究及资源利用提供细胞学资料。

1 材料和方法

实验材料朱砂根采自江西庐山,虎舌红和紫金牛采自江西大余,凭证标本存于庐山植物园。取生长旺盛的根尖,室温下经 0.1%秋水仙素预处理 2~3 h后,用卡诺氏液(无水乙醇:冰醋酸=3:1)固定 24 h,70%乙醇液保存备用,制片前用蒸馏水洗 2~3次,每次 5 min,1 mol/L 盐酸 60 ℃解离 11 min。卡宝品红染色,常规压片,光学显微镜下观察,选择分裂相良好的细胞照相并测量。体细胞中期染色体核型分析采用李懋学等(1985)的标准,核

收稿日期: 2008-05-28 修回日期: 2008-12-14

基金项目: 国家自然科学基金(30860027)[Supported by the National Natural Science Foundation of China(30860027)]

作者简介:张美云(1982-),女,河南新乡人,硕士生,主要从事植物分子细胞学研究。

^{*}通讯作者(Author for correspondence, E-mail; LingL239@163, com)

型类型按 Stebbins(1971)的划分,核型不对称性系数计算用 Arano(1963)的方法。染色体计数选取 30 个细胞,核型分析时取 5 个染色体分散良好的细胞照片用游标卡尺进行测量,换算,取平均值。

2 结果与讨论

实验结果见图 1 和表 1。

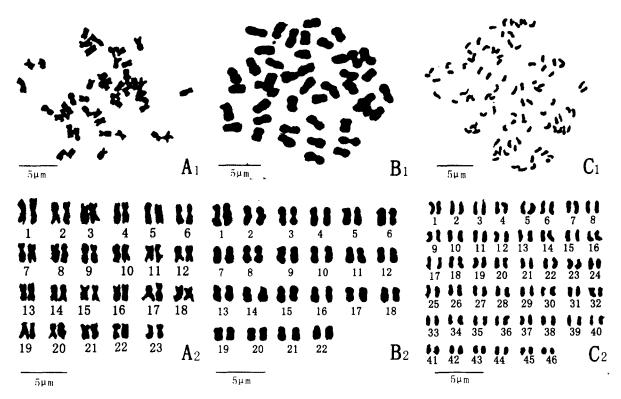


图 1 三种紫金牛属植物的中期染色体形态与核型图

Fig. 1 The metaphase chromosomes and karyotypes in three species of Ardisia

1. 中期染色体; 2. 核型; A. 朱砂根; B. 虎舌红; C. 紫金牛。

1. metaphase chromosomes; 2. karyotypes; A. A. crenata; B. A. mamillata; C. A. japonica.

朱砂根产于我国西藏东南部至台湾和日本,湖北至海南岛和南亚等地区,为民间常用的中草药(陈介,1979)。其染色体数目为 2n=46,核型公式 2n=46=42m+2sm+2st 为首次报道。核型类型为 2A型,核型不对称系数为 57.59%。

虎舌红产于我国长江以南地区,越南也有分布。 江西居群的染色体数目为 2n=44,核型公式为 2n= 44=40m+2sm+2st,与张长芹等(2006)报道的云 南居群染色体数目相同,核型基本相似,张长芹等报 道的核型多一对 sm 型染色体(其误将臂比为 1.58 的 m 型染色体归为 sm 型染色体)。两个居群的核 型的主要差异在第 22 对染色体,江西居群为 st 型, 云南居群为 t 型。两者核型类型均为 2B 型,核型不 对称系数前者为 59.99%,后者为 57.70%。朱砂根 与虎舌红同属圆齿组(陈介,1979),比较两者的核 型,虎舌红少一对 m 型染色体。 紫金牛产陕西及长江流域以南各省区,朝鲜和日本均有分布(陈介,1979)。江西居群的染色体数目为 2n=92 和日本居群报道的数目一致(Koyama & Kokubugata,1998),核型公式 2n=92=58m+24sm+10st 为首次报道。核型类型属 2A 型,核型不对称系数为 61.29%。

从已报道过紫金牛属植物的染色体数目来看, 紫金牛属除了存在染色体数目非整倍体变异,同时 也存在多倍体的进化。由于目前紫金牛属染色体数 目资料缺乏,其染色体基数难以确定。

上述三种紫金牛属植物中,朱砂根和虎舌红隶属圆齿组,而紫金牛隶属锯齿组。圆齿组和锯齿组核型比较,圆齿组含更多的 m 型染色体,而锯齿组含较多的 sm 型和 st 型染色体。圆齿组(sect. Crispardisia)核型不对称性系数为 57.59%~57.70%,而锯齿组(sect. Bladhia)核型不对称性系

表 1 三种紫金牛属植物的染色体参数表

Table 1 The parameters of chromosomes in three species of Ardisia

类群 Taxon	染色体编号 Chro. No.	长臂 L	短臂 S	相对长度 RL	臂比 AR	类型 PC	类群 Taxon	染色体编号 Chro. No.	长臂 L	短臂 S	相对长度 RL	臂比 AR	类型 PC
Ardisia	1	3. 18	2, 65	5. 83	1. 20	m	A, japonica	1	1.59	1, 26	2.85	1, 26	m
crenata	2	2, 96	2.35	5. 31	1. 26	m		2	2. 13	0.59	2,72	3, 61	st
	3	2.83	2. 11	4.94	1.34	m		3	2.09	0, 57	2.66	3. 67	st
	4	2.98	1.88	4.86	1.59	m		4	1, 47	1. 15	2, 62	1.28	m
	5	2, 69	2. 15	4, 84	1, 25	m		5	1.69	0.85	2.54	1.99	sm
	6	2.84	1.91	4.75	1.49	m		6	1, 43	1.11	2.54	1. 29	m
	7	2, 91	1.77	4.68	1.64	m		7	1, 41	1.12	2.53	1, 26	m
	8	2.98	1.57	4.55	1.89	sm		8	1.46	1.06	2.52	1.38	m
	9	2.57	1.91	4.48	1.34	m		9	1.52	1.00	2,52	1.52	m
	10	2.24	2.04	4. 28	1.10	m		10	1.33	1. 17	2.50	1.14	m
	11	2.31	1.90	4.21	1. 22	m		11	1.48	1.02	2.50	1.45	m
	12	2, 31	1,90	4.21	1, 22	m		12	1,96	0.52	2.48	3,77	st
	13	2.37	1.75	4.12	1.36	m		13	1, 29	1.13	2.42	1.14	m
	14	2.39	1.72	4, 11	1.39	m		14	1.59	0.83	2, 42	1.92	sm
	15	2.09	2.00	4.09	1.05	m		15	1.85	0.55	2.40	3.36	st
	16	2.10	1.98	4.08	1.06	m	ł	16	1, 25	1.07	2.32	1.17	m
	17	2.28	1.79	4.07	1.27	m		17	1.15	1.11	2.26	1.04	m
	18	2. 23	1.83	4.06	1.21	m		18	1.13	1.11	2.24	1.02	m
	19	3, 10	0.87	3, 97	3.57	st		19	1.15	1.07	2.22	1.07	m
	20	2.17	1.66	3, 83	1.31	m		20	1.25	0.97	2.22	1.29	m
	21	2, 11	1.64	3.75	1.28	m		21	1.49	0.73	2, 22	2.04	sm
	22	2.11	1.58	3.69	1.34	m		22	1.63	0.59	2, 22	2,76	sm
	23	1.82	1.47	3. 29	1, 24	m		23	1.37	0.84	2.21	1.63	m
A. mamillata	1	3. 37	2.63	6.00	1.28	m		24	1.73	0.45	2. 18	3.84	st
	2	3, 33	2.06	5.39	1,62	m		25	1, 15	1.01	2.16	1.14	m
	3	2.89	2.32	5, 21	1.25	m		26	1. 17	0.97	2, 14	1.21	m
	4	2.77	2.28	5.05	1.21	m		27	1, 13	0.99	2, 12	1.14	m
	5	3.01	1.92	4.93	1.57	m		. 28	1, 17	0.93	2.10	1. 26	m
	6	2, 57	2.32	4, 89	1, 11	m		29	1.09	0.97	2.06	1, 12	m
	7	2.77	2.08	4, 85	1, 33	m	ļ	30	1.09	0.97	2.06	1. 12	m
	8	2.57	2. 24	4. 81	1.14	m		31	1, 11	0.95	2,06	1. 17	m
	9	2.81	1.94	4.75	1.45	m		32	1. 15	0.91	2.06	1. 26	m
	10	2.54	2. 13	4.67	1.19	m		33	1, 36	0.64	2.00	2.13	sm
	11	2.79	1.78	4.56	1, 57	m		34	1.09	0.87	1.96	1.25	m
	12	2.46	1.98	4.44	1.24	m		35	1.09	0.85	1.94	1. 28	m
	13	2.54	1.86	4.40	1.37	m		36	1. 29	0.61	1.90	2.11	sm
	14	2.30	2.00	4.30	1.15	m		37	1. 27	0.61	1, 88	2.08	sm
	15	2, 75	1.55	4.30	1.77	sm		38	1.31	0.57	1.88	2, 30	sm
	16		1.86	4, 28	1.30	m		39		0.63	1.86	1.95	sm
	17		1, 94	4, 26	1. 20	m		40		0.87	1.82	1.09	m
	18		1.94	4, 16	1, 14	m		41		0.74	1,76	1, 38	m
	19		1.92	4.04	1. 10	m		42	1, 16		1.68	2, 23	sm
	20	2.08	1.84	3, 92	1. 13	m	1	43	1.07	0.57	1.64	1. 88	sm
	21		1.66	3. 86	1. 33	m		44	0.96	0.65	1, 61	1. 48	m
	22		0.53	2, 95	4.56	st	1	45	0.96	0.61	1.57	1.57	m
	22	4, 46	0.00	Д, ЭО	4.00	a.		46	1.03		1.43	2. 58	sm

数为 61.29,锯齿组的倍性更高,其核型不对称性更强,说明多倍化可能带来更多的核型不对称性变异。

参考文献:

陈介. 1979. 中国植物志(第 58 卷)[M]. 北京:科学出版社,35-42 Arano H. 1963. Cytological studies in subfamily carduoideae (Compositae) of Japan IX. The karyotype analysis and phylogenetic considerations on *Pertya* and *Ainsliea*(2)[J]. Bot Mag Tokyo, 76:32-39

Bawa KS. 1973. Chromosome numbers of tree species of a lowland tropical community[J]. J Arnold Arboretum, 54:422-434

Bedi YS, Bir SS, Gill BS. 1980. Chromosome number reports LX-VII[J]. Taxon, 29:353-355

Bir SS, Chattha GS. 1983, SOCGI plant chromosome number re-(下转第 586 页 Continue on page 586) 担孢子: 椭圆形, 无色, 薄壁, 具明显小刺, 在梅氏试剂中具强烈的淀粉质反应, 在棉蓝试剂中无嗜蓝反应, 大小为(2.8~)2.9~3.9(~4.2) μ m×2~2.6(~3.2) μ m, 平均长为 3.23 μ m, 平均宽为 2.18 μ m, 平均长宽比为 1.46(测量于一个标本的 30 个孢子)。

腐朽类型:白色腐朽。

2.2 研究标本

中国,广西壮族自治区,崇左市,龙州县,弄岗国家 自然保护区,阔叶树腐木上,3 Ⅵ 2007 周绪申 28,41。

3 讨论

日本芮氏孔菌区别于其它种类的特征是,子实体盖状,盖面具环纹,孔口较小(每 1 mm 为 6~8个),孢子较小(2.9~3.9 μm×2~2.6 μm)。日本芮氏孔菌与姬氏芮氏孔菌 Wrightoporia gillesii A. David & Rajchenb 比较相似,共同特征是子实体为盖状,具较小的孔口,但后者菌管中的生殖菌丝既有简单分隔又有锁状联合,骨架菌丝只在管口处有弱的淀粉质反应(Dai,1995; Núñez & Ryvarden,1999)。卷盖芮氏孔菌 Wrightoporia perplexa Ryvarden 也具盖状子实体,但其生殖菌丝具简单分

隔,菌管中骨架菌丝具弱拟糊精反应,而在菌肉中骨架菌丝具弱的淀粉质反应,孢子在梅氏试剂中无反应(Ryvarden,1989)。具盖状子实体的种类还有蹄形芮氏孔菌 Wrightoporia unguli formis Y. C. Dai & B. K. Cui,但是后者的子实体较大,蹄状,长可达 12 cm,宽 9 cm,厚 16 cm,孢子明显大($4.3 \sim 5.1 \text{ } \mu \text{m} \times 3.8 \sim 4.3 \text{ } \mu \text{m}$, Dai & Cui, 2006)。

参考文献:

- Cui BK, Dai YC. 2006. Wrightoporia (Basidiomycota, Aphyllophorales) in China[J]. Nova Hedwigia, 83:159-166
- Dai YC. 1995. A new species of Wrightoporia (Basidiomycetes) from China[J]. Karstenia, 35:85-89
- Dai YC, Cui BK. 2006. Two new species of Wrightoporia (Basid-iomycota, Aphyllophorales) from southern China[J]. Mycotax-on, 96:199-206
- Dai YC, Niemelä T. 1997. Changbai wood-rotting fungi 6. Study on Antrodiella, two new species and notes on some other species [J]. Mycotaxon, 64:67-81
- Núñez M, Ryvarden L. 1999. New and interesting polypores from Japan[J]. Fungal Diversity, 3:107-121
- Núñez M, Ryvarden L. 2001. East Asian Polypores 2[J]. Synop-sis Fungorum, 14:170-522
- Ryvarden L. 1989. Wrightoporia perplexa nov. sp. (Polyporace-ae)[J]. Opera Botanica, 100; 225-227

(上接第 594 页 Continue from page 594)

ports-I[J]. J Cytology Genetics, 18:56-58

- Chuang TI, Chao CY, Hu WWL, et al. 1963. Chromosome numbers of the vascular plants of Taiwan[J]. Taiwania, 1:51-66
- Darlington CD, Wylie AP. 1945. Chromosome Atlas of Flowering Plants[M]. Printed in Great Britain, 223-224
- Faure P. 1968. Contribution a I' etude caryo-taxinomique des Myrsinaceae et des Theophrastaceae [J]. Mem Mus Nat Hist Nat SerB, 18, 37-58
- Godbltt P. 1990. Index to plant chromosome numbers 1975 1987[M]. St. Louis: Missouri Botanical Garden
- Koyama H, Kokubugata G. 1998. Entity of Aridis Montana[J]. Mem Natn Sci Mus 31:123-134
- Li MX(李懋学), Chen RY(陈瑞阳). 1985. A suggestion on the standardization of karyotype analysis in plants(关于植物核型分析的标准化问题)[J]. J Wuhan Bot Res(武汉植物学研究), 3 (4):297-302

- Moore RJ. 1977. Index to chromosome for 1965-1974[M]. Utrecht; (s, n,)
- Sarkar AK. 1992. An interesting observation on the karyotype studies of the parasite, Macrosolen cochinchinensis, growing on different hosts[J]. Proceedings of the Indian Science Congress Association, 79(3; W1):124-125
- Stebbins GL. 1971. Chromosomal Evolution in Higher Plants [M]. London: Edward Arnold LTD, 87-89
- Tanaka R. 1997. Recent karyotype studies[M]//Ogawa K (eds). Plant Cytology. Tokyo; Asakura Shoten, 293—326(in Japanese)
- Wu ZY, Raven. PH. 2000. Flora of China illustrations. Vol. 15 [M]. St. Louis; Missouri Botanical Garden Press, 28
- Zhang LQ(张长芹), Sun BL(孙宝玲), Huang Y(黄媛), et al. 2006. Chromosome number and karyotype of Ardisia mamillata (Myrsinaceae)(红毛毡的染色体数目及核型报道)[J]. Acta Bot Yunnan(云南植物研究), 28(1); 41-42