en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周韩洁(1997-),硕士研究生,主要从事植物分类与生物地理学研究,(E-mail)zhouhanjie@mail.kib.ac.cn。

通讯作者:

李嵘,博士,研究员,主要从事植物分类与生物地理学研究,(E-mail)lirong@mail.kib.ac.cn。

中图分类号:Q949

文献标识码:A

文章编号:1000-3142(2022)10-1694-09

DOI:10.11931/guihaia.gxzw202111072

参考文献
APG IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV [J]. Bot J Linn Soc, 181(1): 1-20.
参考文献
AN ZS, KUTZBACH JE, PRELL WL, et al. , 2001. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times [J]. Nature, 411(6833): 62-66.
参考文献
BRANDT JS, RADELOFF V, ALLENDORF T, et al. , 2019. Effects of ecotourism on forest loss in the Himalayan biodiversity hotspot based on counterfactual analyses [J]. Conserv Biol, 33(6): 1318-1328.
参考文献
BROOKS TM, MITTERMEIER RA, DA FONSECA GAB, et al. , 2006. Global biodiversity conservation priorities [J]. Science, 313(5783): 58-61.
参考文献
BROWN JH, 2014. Why are there so many species in the tropics? [J]. J Biogeogr, 41(1): 8-22.
参考文献
CAI HY, LYU L, SHRESTHA N, et al. , 2021. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning [J]. Divers Distrib, 27(1): 179-194.
参考文献
CHEN WH, SHUI YM, YANG JB, et al. , 2014. Taxonomic status, phylogenetic affinities and genetic diversity of a presumed extinct genus, Paraisometrum W. T. Wang (Gesneriaceae) from the karst regions of southwest China [J]. PLoS ONE, 9(9): e107967.
参考文献
CRISP MD, LAFFAN S, LINDER HP, et al. , 2001. Endemism in the Australian flora [J]. J Biogeogr, 28(2): 183-198.
参考文献
DING WN, REE RH, SPICER RA, et al. , 2020. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora [J]. Science, 369(6503): 578-581.
参考文献
ESRI, 2011. ArcGIS Desktop: Release 10 [CP/OL]. Redlands, CA: Environmental Systems Research Institute. https: //www. arcgis. com.
参考文献
FAITH DP, 1992. Conservation evaluation and phylogenetic diversity [J]. Biol Conserv, 61(1): 1-10.
参考文献
FOREST F, GRENYER R, ROUGET M, et al. , 2007. Preserving the evolutionary potential of floras in biodiversity hotspots [J]. Nature, 445(7129): 757-760.
参考文献
FORESTER DJ, MACHLIST GE, 1996. Modeling human factors that affect the loss of biodiversity [J]. Conserv Biol, 10(4): 1253-1263.
参考文献
FRITZ SA, RAHBEK C, 2012. Global patterns of amphibian phylogenetic diversity [J]. J Biogeogr, 39(8): 1373-1382.
参考文献
GASTON KJ, 2000. Global patterns in biodiversity [J]. Nature, 405(6783): 220-227.
参考文献
HAN CY, TAO LD, SUN WB, 2020. Distribution and conservation status of Magnolia ovoidea (Magnoliaceae): a critically endangered species in Yunnan, China [J]. Oryx, 54(4): 466-469.
参考文献
HARRISON SP, YU G, TAKAHARA H, et al. , 2001. Diversity of temperate plants in East Asia [J]. Nature, 413(6852): 129-130.
参考文献
HUANG JH, HUANG JH, LU XH, et al. , 2016. Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning [J]. Sci Rep, 6: 33913.
参考文献
HUANG JH, ZHANG JL, YANG Y, et al. , 2013. Advances in methods for measuring patterns of endemic plant diversity [J]. Biodivers Sci, 21(1): 99-110. [黄继红, 张金龙, 杨永, 等, 2013. 特有植物多样性分布格局测度方法的新进展 [J]. 生物多样性, 21(1): 99-110. ]
参考文献
JIN Y, QIAN H, 2019. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants [J]. Ecography, 42(8): 1353-1359.
参考文献
KEMBEL SW, COWAN PD, HELMUS MR, et al. , 2010. Picante: R tools for integrating phylogenies and ecology [J]. Bioinformatics, 26(11): 1463-1464.
参考文献
KOUGIOUMOUTZIS K, KOKKORIS IP, PANITSA M, et al. , 2021. Plant endemism centers and biodiversity hotspots in Greece [J]. Biology, 10(2): 72.
参考文献
KREFT H, JETZ W, 2007. Global patterns and determinants of vascular plant diversity [J]. Proc Natl Acad Sci USA, 104(14): 5925-5930.
参考文献
LI CJ, CHEN YL, YANG FM, et al. , 2020. Population structure and regeneration dynamics of Firmiana major, a dominant but endangered tree species [J]. For Ecol Manag, 462: 117993.
参考文献
LI JJ, FANG XM, 1999. Uplift of the Tibetan Plateau and environmental changes [J]. Chin Sci Bull, 44(23): 2117-2124.
参考文献
LI R, KRAFT NJB, YU HY, et al. , 2015. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia [J]. Conserv Biol, 29(6): 1552-1562.
参考文献
LI R, WEN J, 2014. Phylogeny and biogeography of Asian Schefflera (Araliaceae) based on nuclear and plastid DNA sequence data [J]. J Syst Evol, 52(4): 431-449.
参考文献
LI R, YUE J, 2020. A phylogenetic perspective on the evolutionary processes of floristic assemblages within a biodiversity hotspot in eastern Asia [J]. J Syst Evol, 58(4): 413-422.
参考文献
LI XW, 1985. Floristic study of Yunnan Province [J]. Acta Bot Yunnan, 7(4): 361-371. [李锡文, 1985. 云南植物区系 [J]. 云南植物研究, 7(4): 361-371. ]
参考文献
LI XW, 1994. Two big biodiversity centers of Chinese endemic genera of seed plants and their characteristics in Yunnan Province [J]. Acta Bot Yunnan, 16(3): 221-227. [李锡文, 1994. 中国特有种子植物属在云南的两大生物多样性中心及其特征 [J]. 云南植物研究, 16(3): 221-227. ]
参考文献
LU LM, MAO LF, YANG T, et al. , 2018. Evolutionary history of the angiosperm flora of China [J]. Nature, 554(7691): 234-238.
参考文献
MANCHESTER SR, CHEN ZD, LU AM, et al. , 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere [J]. J Syst Evol, 47(1): 1-42.
参考文献
MILLER RM, RODRÍGUEZ JP, ANISKOWICZ-FOWLER T, et al. , 2007. National threatened species listing based on IUCN criteria and regional guidelines: current status and future perspectives [J]. Conserv Biol, 21(3): 684-696.
参考文献
MISHLER BD, GURALNICK R, SOLTIS PS, et al. , 2020. Spatial phylogenetics of the North American flora [J]. J Syst Evol, 58(4): 393-405.
参考文献
MISHLER BD, KNERR N, GONZÁLEZ-OROZCO CE, et al. , 2014. Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian Acacia [J]. Nat Commun, 5: 4473.
参考文献
MORLON H, SCHWILK DW, BRYANT JA, et al. , 2011. Spatial patterns of phylogenetic diversity [J]. Ecol Lett, 14(2): 141-149.
参考文献
MORUETA-HOLME N, ENGEMANN K, SANDOVAL-ACUÑA P, et al. , 2015. Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt [J]. Proc Natl Acad Sci USA, 112(41): 12741-12745.
参考文献
MYERS N, MITTERMEIER RA, MITTERMEIER CG, et al. , 2000. Biodiversity hotspots for conservation priorities [J]. Nature, 403(6772): 853-858.
参考文献
ORME CDL, DAVIES RG, BURGESS M, et al. , 2005. Global hotspots of species richness are not congruent with endemism or threat [J]. Nature, 436(7053): 1016-1019.
参考文献
PIMM SL, JENKINS CN, ABELL R, et al. , 2014. The biodiversity of species and their rates of extinction, distribution, and protection [J]. Science, 344(6187): 1246752. DOI: 10. 1126/science. 1246752.
参考文献
QIAN H, 2018. Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropical elevational gradient in South America [J]. J Plant Ecol, 11(3): 394-400.
参考文献
QIN HN, YANG Y, DONG SY, et al. , 2017. Threatened species list of China’s higher plants [J]. Biodivers Sci, 25(7): 696-744. [覃海宁, 杨永, 董仕勇, 等, 2017. 中国高等植物受威胁物种名录 [J]. 生物多样性, 25(7): 696-744. ]
参考文献
QUINTERO I, JETZ W, 2018. Global elevational diversity and diversification of birds [J]. Nature, 555(7695): 246-250.
参考文献
RAHBEK C, BORREGAARD MK, COLWELL RK, et al. , 2019. Humboldt’s enigma: What causes global patterns of mountain biodiversity? [J]. Science, 365(6458): 1108-1113.
参考文献
SMITH SA, BROWN JW, 2018. Constructing a broadly inclusive seed plant phylogeny [J]. Am J Bot, 105(3): 302-314.
参考文献
SUN WB, LIU DT, ZHANG P, 2021. Conservation research of plant species with extremely small populations (PSESP): Progress and future direction [J]. Guihaia, 41(10): 1605-1617. [孙卫邦, 刘德团, 张品, 2021. 极小种群野生植物保护研究进展与未来工作的思考 [J]. 广西植物, 41(10): 1605-1617. ]
参考文献
TANG G, ZHANG MG, LIU C, et al. , 2014. Phylogenetic support for the Tropical Niche Conservatism Hypothesis despite the absence of a clear latitudinal species richness gradient in Yunnan's woody flora [J]. Biogeosci Disc, 11(5): 7055-7077.
参考文献
THOMAS CD, CAMERON A, GREEN RE, et al. , 2004. Extinction risk from climate change [J]. Nature, 427(6970): 145-148.
参考文献
WANG B, CHEN G, LI C, et al. , 2017. Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae), a plant species with extremely small populations (PSESP) endemic to South Yunnan of China [J]. Plant Divers, 39(1): 52-59.
参考文献
WANG Y, 2006. Yunnan mountain climate [M]. Kunming: Yunnan Science and Technology Press. [王宇, 2006. 云南山地气候 [M]. 昆明: 云南科技出版社. ]
参考文献
WEBB CO, 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees [J]. Am Nat, 156(2): 145-155.
参考文献
WU ZY, 1977—2006. Flora Yunnanica [M]. Beijing: Science Press. [吴征镒, 1977—2006. 云南植物志 [M]. 北京: 科学出版社. ]
参考文献
WU ZY, RAVEN PH, HONG DY, 1994—2012. Flora of China [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press.
参考文献
WU ZY, ZHU YC, JIANG HQ, 1987. Vegetation of Yunnan [M]. Beijing: Science Press. [吴征镒, 朱彦丞, 姜汉桥, 1987. 云南植被 [M]. 北京: 科学出版社. ]
参考文献
XING YW, REE RH, 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot [J]. Proc Natl Acad Sci USA, 114(17): E3444-E3451.
参考文献
YANG YG, 1990. Comprehensive physical regionalization in Yunnan [M]. Beijing: Higher Education Press. [杨一光, 1990. 云南省综合自然区划 [M]. 北京: 高等教育出版社. ]
参考文献
YAO X, SONG Y, YANG JB, et al. , 2021. Phylogeny and biogeography of the hollies (Ilex L. , Aquifoliaceae) [J]. J Syst Evol, 59(1): 73-82.
参考文献
ZHANG JW, NIE ZL, WEN J, et al. , 2011. Molecular phylogeny and biogeography of three closely related genera, Soroseris, Stebbinsia, and Syncalathium (Asteraceae, Cichorieae), endemic to the Tibetan Plateau, SW China [J]. Taxon, 60(1): 15-26.
参考文献
ZHANG X, LANDIS JB, SUN YX, et al. , 2021. Macroevolutionary pattern of Saussurea (Asteraceae) provides insights into the drivers of radiating diversification [J]. Proc Roy Soc B-Biol Sci, 288(1962): 20211575.
参考文献
ZHANG XM, QIN HT, XIE WJ, et al. , 2020. Comparative population genetic analyses suggest hybrid origin of Rhododendron pubicostatum, an endangered plant species with extremely small populations endemic to Yunnan, China [J]. Plant Divers, 42(4): 312-318.
参考文献
ZHANG YB, MA KP, 2008. Geographic distribution patterns and status assessment of threatened plants in China [J]. Biodivers Conserv, 17(7): 1783-1798.
参考文献
ZHU H, 2013. The floras of southern and tropical southeastern Yunnan have been shaped by divergent geological histories [J]. PLoS ONE, 8(5): e64213.
参考文献
ZHU H, 2016. A biogeographical comparison between Yunnan, southwest China, and Taiwan, southeast China, with implications for the evolutionary history of the east Asian flora [J]. Ann Mol Bot Gard, 101(4): 750-771.
参考文献
ZHU H, 2017. A biogeographical study on tropical flora of southern China [J]. Ecol Evol, 7(23): 10398-10408.
参考文献
ZHU H, 2021. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China [J]. Chin J Plant Ecol, 45(3): 224-241. [朱华, 2021. 云南常绿阔叶林的植被地理研究 [J]. 植物生态学报, 45(3): 224-241. ]
目录contents

    摘要

    全球气候变化与人为活动等因素导致的生物多样性丧失,引起了全球各界对生物多样性保护的高度关注。传统生物多样性保护主要对物种、特有种、受威胁物种的种类组成及其分布模式开展研究,忽视了进化历史在生物多样性保护中的作用。云南是全球生物多样性热点地区的交汇区,生物多样性的保护历来受到广泛关注,为了更好地探讨云南生物多样性的保护措施,该研究以云南被子植物菊类分支物种为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,识别生物多样性的重点保护区域。结果表明:云南被子植物菊类分支的物种、特有种及受威胁物种的物种密度与系统发育多样性均显著正相关;通过零模型分析发现,由南向北标准化系统发育多样性逐渐降低;云南南部、东南部、西北部是云南被子植物菊类分支的重点保护区域,加强这些区域的保护,将最大化地保护生物多样性的进化历史和进化潜能。由此可见,融合进化历史信息的植物多样性格局分析不仅有助于更加深入地理解植物多样性的形成与演变,也为生物多样性保护策略的制定提供更多的思路。

    Abstract

    Biodiversity conservation has attracted much attention around the world due to species extinction risks resulting from global climate change, human activities and so on. Traditional attempts to biodiversity conservation typically focus on the analyses of taxonomic composition and its distribution pattern of species, endemic species and threatened species, and ignore the rich context that evolutionary history can provide. As the intersection area of global biodiversity hotspots, the biodiversity conservation in Yunnan has been widely concerned. To better protect biodiversity in Yunnan, we combine data on the distributions and phylogenetic relationships of species from asterides in Yunnan angiosperms flora, explore how taxonomic composition (including species, endemic species and threatened species) and phylogenetic diversity vary across the different geographic regions in this area. And then integrating the distribution of nature protected areas with data of taxonomic and phylogenetic composition, we identify the key areas for biodiversity conservation. The results were as follows: Phylogenetic diversity was well correlated with taxonomic richness for species, endemic species and threatened species among the geographic regions; Using null model analyses, we found the standardized effect size of the phylogenetic diversity decreased gradually in Yunnan from south to north; We suggest that the southern, southeastern and northwestern Yunnan should be the biodiversity priority areas since they may help maximize the protection of evolutionary history and potential for Yunnan angiosperm flora. It can been seen that the integration of phylogenetic information can help us to better understand the formation and development of plant diversity, and provide more clues for the formulation of biodiversity protection strategies.

  • 生物多样性是区域内所有物种的自然组合,它与人类的衣食住行紧密关联。不同的区域,由于地质历史、生态环境、经济发展等因素的不同,生物多样性的种类和组成大相径庭,如约占陆地面积四分之一的山地包含世界一半以上的物种,热带地区拥有异常丰富的物种多样性(Brown,2014;Rahbek et al.,2019;Kougioumoutzis et al.,2021)。对这类现象形成原因的解释,是生态学和生物地理学研究的核心问题,也是保护生物学关注的重要议题(Gaston,2000;Kreft &;Jetz,2007;Quintero &;Jetz,2018)。

  • 关于生物多样性分布格局的研究,最早可追溯至德国地理学家Humboldt探讨植物多样性随纬度和海拔梯度的变化(Morueta-Holme et al.,2015)。之后,利用物种丰富度指标,Kreft和Jetz(2007)研究了维管束植物的全球分布格局,结果表明物种多样性由赤道向两极逐渐递减。近年来,DNA测序技术的发展和区域性生命之树的构建,为从进化历史的角度探讨生物多样性的分布格局及其形成原因提供了新的方法和途径(Lu et al.,2018;Qian,2018;Mishler et al.,2020)。系统发育多样性(phylogenetic diversity,PD)是生物多样性进化历史研究中最常用的指标,它是区域内系统发育树上所有物种的枝长之和(Faith,1992)。Forest等(2007)研究南非好望角植物区系时,最早将系统发育的指标纳入生物多样性研究;在中国,Lu等(2018)从进化历史的角度,对中国被子植物多样性的时空格局进行研究,结果表明中国东西部植物区系的系统发育组成不一致,东部系统发育多样性相对较高,西部系统发育组成相对较低。特有种(endemic species)是局限分布于特定区域内的物种,直接反映物种组成在空间上的变化,对揭示区域生物多样性的分布格局和形成演变起着重要的作用(Crisp et al.,2001;黄继红等,2013)。Mishler等(2014)基于对澳大利亚金合欢属(Acacia)特有种的研究,识别出该属在澳洲的新特有和古特有中心,以此推断不同区域生物多样性的进化历程不同。另外,特有种本身所具有的典型性和代表性,使其倍受保护生物学家青睐,被广泛应用于生物多样性热点地区及优先保护区的识别(Brooks et al.,2006;Huang et al.,2016)。如保护国际(Conservation International)根据不同地区特有种的分析识别出全球36个生物多样性热点地区。此外,由于全球气候变化、人为活动等因素的影响,生物多样性面临严重的威胁(Thomas et al.,2004;Brandt et al.,2019)。为全面评估生物多样性的受威胁状态,世界自然保护联盟(IUCN)对物种的濒危程度进行了划分(Miller et al.,2007)。通过研究濒危物种的分布格局可为探讨生物多样性对未来气候变化的响应及开展生物多样性保护提供重要支撑(Pimm et al.,2014)。如Zhang和Ma(2008)通过对中国受威胁植物的保护空缺进行分析,识别出12个优先保护的区域,以此为新时期生物多样性保护方案的制定提供新的依据。

  • 随着数据资料的积累和开放共享,从多角度探讨生物多样性的分布格局为全方位理解生物多样性的形成及保护提供了重要线索。然而,Orme等(2005)在研究全球鸟类的物种、特有种、受威胁物种丰富度的分布格局时发现,在不同的研究视角下,生物多样性的分布模式并不完全吻合。因此,有必要选取不同的类群,从不同方面开展共同研究,以期全面认识生物多样性的分布格局和形成原因,从而为生物多样性保护策略的制定提供更精准的信息。

  • 云南是中国植物物种、特有种及受威胁物种数量最为丰富的区域(李锡文,1985,1994;Wu et al.,1994—2012;Huang et al.,2016),位于全球生物多样性热点地区喜马拉雅、印度-缅甸、中国西南山地的交汇区(Myers et al.,2000)。云南被子植物谱系组成多样,包含木兰分支(magnoliids)、单子叶分支(monocots)、菊类分支(asterids)和蔷薇分支(rosids)等多个重要演化支系(APG IV,2016)。其中,菊类分支是云南植物区系组成中种类最为丰富、分布最为广泛的演化支,包括唇形目(Lamiales)、杜鹃花目(Ericales)、菊目(Asterales)、龙胆目(Gentianales)等13个目,种类组成约占云南被子植物多样性的25%(吴征镒,1977—2006)。所含种数较多的科有菊科(Asteraceae)、唇形科(Lamiaceae)、杜鹃花科(Ericaceae)等,所含种数较多的属有杜鹃花属(Rhododendron)、马先蒿属(Pedicularis)、报春花属(Primula)等。云南被子植物菊类分支植物涵盖乔木、灌木、草本、藤本、寄生、腐生等多种生活型(吴征镒,1977—2006)。菊类分支中山茶科的木荷属(Schima)、山茶属(Camellia),杜鹃花科的杜鹃属(Rhododendron),冬青科的冬青属(Ilex)等多是云南植被构成中的主要建群种(李锡文,1985;朱华,2021)。本研究以云南被子植物菊类分支为研究对象,基于物种间的演化关系,结合其地理分布信息,从进化历史的角度探讨物种、特有种及受威胁物种的分布格局,旨在回答以下科学问题:(1)云南被子植物菊类分支的物种、特有种、受威胁物种的物种多样性与系统发育多样性是否具有相同的分布格局;(2)云南被子植物菊类分支多样性分布格局的形成原因是什么。

  • 1 材料与方法

  • 1.1 研究地区

  • 云南地处中国西南,位于97°31′39″—106°11′47″ E、 21°8′32″—29°15′8″ N。晚第三纪末至第四纪初以来的大规模山体隆升和深刻的高原解体,导致境内河谷深嵌、地势高耸,整体呈西北向东南倾斜(杨一光,1990)。因受印度洋西南季风及太平洋东南季风的影响,气候具有干湿季分明、降水丰沛、年温差小、日温差大等特点(王宇,2006)。正是这种复杂的地形地貌加之丰厚的水热条件,造就了云南丰富多样的植物区系种类(吴征镒等,1987)。

  • 1.2 数据来源

  • 以《云南植物志》和《云南省生物物种名录(2016版)》为蓝本,根据被子植物系统发育分类系统界定的科属范畴(APG IV,2016),利用Flora of China、The Plant List、Plants of The World、CVH、NSII等物种名称及标本信息库,修订物种名称、确认物种县域分布,排除外来种和栽培种,构建精准的云南野生被子植物菊类分支物种数据库。

  • 依据物种地理分布信息,将仅在云南省内分布的物种称为云南特有种,而将局限分布于某一特定县域内的物种称为狭域特有种。

  • 依据《中国高等植物红色名录》(覃海宁等,2017),整理云南被子植物菊类分支中的极危物种(critically endangered,CR)、濒危物种(endangered,EN)和易危物种(vulnerable,VU),并将其统称为受威胁物种。

  • 1.3 系统发育树构建

  • 将来自GenBank的DNA数据和Open Tree of Life相结合得到的GBOTB系统发育树作为骨架树(Smith &;Brown,2018),利用R 3.6.2软件中的V. PhyloMaker程序包(Jin &;Qian,2019),以云南被子植物菊类分支物种数据库中的所有植物作为物种库,构建基于全部物种的系统发育树。对GBOTO中未涵盖的属或种,使用V. PhyloMaker中的Scenario 3方法,根据其所在科或属的系统位置添加到相应的科或属中(Jin &;Qian,2019)。

  • 1.4 生物多样性测量

  • 利用物种丰富度和系统发育多样性量化云南不同县域被子植物菊类分支的物种、特有种/狭域特有种、受威胁物种的物种组成和系统发育组成。

  • 物种丰富度(species richness,SR)为各县域内的物种绝对数量。考虑到不同县域面积对SR的影响,使用物种密度(species density,SD)量化物种组成,计算公式如下(Li et al.,2015)。

  • SD=SRlnA

  • 式中: SR为县域物种丰富度,即为所有物种的总和;A为县域面积。

  • 系统发育多样性是县域内所有物种在有根系统发育树上的枝长总和(Faith,1992)。以往研究表明SR与PD相关性较高(Morlon et al.,2011;Fritz &;Rahbek,2012),为消除SR对PD的影响,使用标准化系统发育多样性(the standardized effect size of the phylogenetic diversity,ses. PD)度量系统发育组成,计算公式如下(Cai et al.,2021):

  • ses. PD=PDobserved -PDrandomized /sdPDrandomized

  • 式中:PD observed是县域物种的系统发育多样性;PD randomized表示随机过程产生的县域物种系统发育多样性;sdPD randomized表示县域物种的系统发育多样性方差。如果ses.PD值为负,则表示该区域系统发育组成多样性相对较低;反之,如果ses.PD值为正,则表示该地区系统发育组成多样性相对较高(Webb,2000)。上述分析利用R 3.6.2软件中的picante程序包完成(Kembel et al.,2010)。

  • 1.5 区域受威胁状况度量

  • 使用受威胁指数(threatened index,TI)和加权指数(weighted index,WI)度量云南不同县域被子植物菊类分支的受威胁程度,计算公式如下。

  • TI=SRtSR; WI=GESR

  • 式中:SRt为县域内受威胁物种的丰富度,即极危、濒危和易危物种的数量总和;SR为县域物种丰富度,即为所有物种的总和;GE为受威胁物种的分值,根据物种受威胁等级,赋予极危3分、濒危2分、易危1分。

  • 1.6 生物多样性保护区域识别

  • 采用Pearson相关分析检测物种密度与系统发育多样性的相关性。使用地理信息系统ArcGIS 10(ESRI,2011)将物种、特有种/狭域特有种、受威胁物种的物种密度、系统发育多样性及区域受威胁状况与自然保护地的空间分布进行叠加,识别云南被子植物菊类分支的重点保护区域。

  • 2 结果与分析

  • 2.1 云南被子植物菊类分支的多样性格局

  • 根据被子植物系统发育分类系统的统计,云南被子植物菊类分支计有62科711属4 462种和变种。其中,云南特有种1 080种和变种,县域狭域特有种474种,受威胁物种315种(极危40种、濒危91种、易危184种)。

  • 云南被子植物菊类分支的物种、特有种/狭域特有种、受威胁物种的物种密度与系统发育多样性均呈显著正相关(图1),且云南南部和西北部具有最高的物种密度和系统发育多样性(图2)。去除物种多样性对系统发育多样性的影响后,由南向北,标准化系统发育多样性逐渐递减(图3)。

  • 2.2 云南被子植物菊类分支的区域受威胁状况

  • Pearson相关性分析表明受威胁指数与加权指数显著正相关(r =0.91,P <0.001),且二者的分布格局均显示云南被子植物菊类分支物种受威胁状况最为严重的区域为云南西北部与西部的迪庆藏族自治州、怒江傈僳族自治州、大理白族自治州、丽江市、保山市及东南部的红河哈尼族彝族自治州和文山壮族苗族自治州与南部的西双版纳傣族自治州境内的多个县域(图4)。

  • 2.3 云南被子植物菊类分支的重点保护区域

  • 根据云南被子植物菊类分支的物种密度、系统发育多样性及区域受威胁状况与自然保护地的叠加分析,云南被子植物菊类分支多样性的重点保护区域主要位于云南南部西双版纳傣族自治州、东南部红河哈尼族彝族自治州和文山壮族苗族自治州及西北部迪庆藏族自治州、怒江傈僳族自治州、大理白族自治州、丽江市境内各县,尤其云南南部的景洪、勐海、勐腊,东南部的屏边、西畴及西北部的大理、丽江、中甸、贡山等县域(图5)。

  • 3 讨论与结论

  • 3.1 云南被子植物菊类分支的多样性演变历史

  • 本研究表明云南被子植物菊类分支的物种密度与系统发育多样性显著正相关,这与传统研究结果一致(Tang et al.,2014;Li &;Yue,2020)。然而,使用零模型(null model)保持县域物种多样性不变的情况下,随机产生的县域系统发育多样性与观察县域系统发育多样性的比较发现,物种密度或系统发育多样性丰富的区域并不一定具有多样的进化组成,由南向北,标准化系统发育多样性逐渐降低,即组成云南南部被子植物菊类分支的谱系多样性较高,而北部(特别是西北部)被子植物菊类分支的谱系多样性较低。究其原因,与地质历史和植物多样性的形成演变有关。云南西北部地处喜马拉雅山的东缘,自第三纪以来,由于印度板块与欧亚板块的碰撞,加之江河深切,致使该区域产生了复杂多样的生境类型(Li &;Fang,1999;An et al.,2001),成为绢毛菊属(Soroseris)、风毛菊属(Saussurea)等诸多新生类群的发源地(Zhang et al.,2011;Zhang et al.,2021),而这些新生类群大都起源于相同的支系,如菊科(Asteraceae),从而导致该地区被子植物菊类分支的物种组成多样性较高,系统发育组成多样性较低。而云南南部为低海拔山地,地质地史上长期与热带东南亚紧密联系,主要受热带气候的影响,该地区由于相对稳定的地质构造和气候环境,加之未受第四纪冰期-间冰期的影响(Harrison et al.,2001;Zhu,2013),既为珙桐属(Davidia)、栌菊木属(Nouelia)等诸多第三纪孑遗植物提供了长期稳定的栖息地(Manchester et al.,2009),也为冬青属(Ilex)、亚洲鹅掌柴属(Asia Schefflera)、马铃苣苔属(Oreocharis)等类群的生存繁衍提供了优良的条件(Chen et al.,2014;Li &;Wen,2014;Yao et al.,2021),而这些类群大都来自于不同的进化谱系,如冬青科(Aquifoliaceae)、五加科(Araliacae)、苦苣苔科(Gesneriaceae)等。因此,云南南部被子植物菊类分支的物种组成和系统发育组成多样性都较高。

  • 图1 云南被子植物菊类分支的物种密度与系统发育多样性的相关性

  • Fig.1 Relationships between species density and phylogenetic diversity of asterids in Yunnan angiosperms flora

  • 3.2 云南被子植物菊类分支的生物多样性保护

  • 受威胁指数与加权指数的联合分析显示,云南南部、东南部及西部的受威胁物种数量及受威胁程度最高。已有研究表明,随着社会经济的发展,以及人为活动,如大规模工程建设项目实施导致的生境丧失、野生种质资源过度利用引起的生物种群减少等,是植物受威胁的重要因素之一(Forester &;Machlist,1996;Brandt et al.,2019)。如Han等(2020)对卵果木莲(Manglietia ovoidea)及Li等(2020)对云南梧桐(Firmiana major)的研究发现,它们目前的种群数量稀少、分布零散,且大都生长在路边、耕地旁等人为干扰严重的区域,栖息地丧失是这类物种生存面临的最大威胁。除人为客观因素之外,植物自身的因素,如繁殖障碍、近交衰退、萌发率低等也是植物受威胁的重要原因(孙卫邦等,2021)。如毛果木莲(Manglietia ventii)在进化过程中,由于花粉产量有限,无法满足生殖需要,导致种群数量减少,物种受到威胁(Wang et al.,2017);Zhang等(2020)对自然杂交种毛脉杜鹃(Rhododendron pubicostatum)的繁殖生物学研究表明,由于亲本间的基因渐渗,引起近交衰退,从而导致物种生存受到威胁。

  • 图2 云南被子植物菊类分支的多样性格局

  • Fig.2 Diversity patterns of asterids in Yunnan angiosperms flora

  • 图3 云南被子植物菊类分支的标准化系统发育多样性

  • Fig.3 The standardized effect size of the phylogenetic diversity patterns of asterids in Yunnan angiosperms flora

  • 物种密度、系统发育多样性及区域受威胁状况与自然保护地的空间分析表明,云南南部、东南部及西北部是云南被子植物菊类分支的重点保护区域。这些区域不但物种、特有种/狭域特有种的物种丰富度和系统发育多样性较高,而且受威胁物种的种类和系统发育多样性及区域受威胁程度也较高。因此,为应对全球变化和人为活动等引起的生物大灭绝,加强对云南南部、东南部及西北部生物多样性的保护显得尤为重要。具体对云南南部、东南部来说,被子植物菊类分支的谱系多样性最为丰富,也是进化组成最为多样的区域(Zhu,2016,2017)。因此,加强云南南部、东南部被子植物菊类分支生物多样性的保护,不但可以保护丰富的物种、特有种及受威胁物种的多样性,还可以最大化地保护多样的植物区系进化历史。而对于云南西北部来说,虽然被子植物菊类分支的谱系多样性最低,但这些谱系集中了大量的新生类群,这些新生类群往往是未来进化的主力(Xing &;Ree,2017;Ding et al.,2020)。因此,加强云南西北部被子植物菊类分支生物多样性的保护,不但可以保护丰富的物种、特有种及受威胁物种的多样性,还可以最大化地保护植物多样性的进化潜能。然而,从现有自然保护地的分布来看,并未覆盖所有的重点保护区域,为了更加合理和全方位地保护植物多样性(包括进化历史和进化潜能的保护),建议适当扩大现有自然保护地的面积,优化现有自然保护地的规划和布局。

  • 图4 云南不同县域被子植物菊类分支的受威胁状况

  • Fig.4 Regional threatened status of asterids in Yunnan angiosperms flora

  • 图5 云南被子植物菊类分支的重点保护区域

  • Fig.5 Key protected areas of asterids for Yunnan angiosperms flora

  • 致谢 中国科学院昆明植物研究所信息中心提供本研究所需的基础数据。

  • 参考文献

    • APG IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV [J]. Bot J Linn Soc, 181(1): 1-20.

    • AN ZS, KUTZBACH JE, PRELL WL, et al. , 2001. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times [J]. Nature, 411(6833): 62-66.

    • BRANDT JS, RADELOFF V, ALLENDORF T, et al. , 2019. Effects of ecotourism on forest loss in the Himalayan biodiversity hotspot based on counterfactual analyses [J]. Conserv Biol, 33(6): 1318-1328.

    • BROOKS TM, MITTERMEIER RA, DA FONSECA GAB, et al. , 2006. Global biodiversity conservation priorities [J]. Science, 313(5783): 58-61.

    • BROWN JH, 2014. Why are there so many species in the tropics? [J]. J Biogeogr, 41(1): 8-22.

    • CAI HY, LYU L, SHRESTHA N, et al. , 2021. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning [J]. Divers Distrib, 27(1): 179-194.

    • CHEN WH, SHUI YM, YANG JB, et al. , 2014. Taxonomic status, phylogenetic affinities and genetic diversity of a presumed extinct genus, Paraisometrum W. T. Wang (Gesneriaceae) from the karst regions of southwest China [J]. PLoS ONE, 9(9): e107967.

    • CRISP MD, LAFFAN S, LINDER HP, et al. , 2001. Endemism in the Australian flora [J]. J Biogeogr, 28(2): 183-198.

    • DING WN, REE RH, SPICER RA, et al. , 2020. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora [J]. Science, 369(6503): 578-581.

    • ESRI, 2011. ArcGIS Desktop: Release 10 [CP/OL]. Redlands, CA: Environmental Systems Research Institute. https: //www. arcgis. com.

    • FAITH DP, 1992. Conservation evaluation and phylogenetic diversity [J]. Biol Conserv, 61(1): 1-10.

    • FOREST F, GRENYER R, ROUGET M, et al. , 2007. Preserving the evolutionary potential of floras in biodiversity hotspots [J]. Nature, 445(7129): 757-760.

    • FORESTER DJ, MACHLIST GE, 1996. Modeling human factors that affect the loss of biodiversity [J]. Conserv Biol, 10(4): 1253-1263.

    • FRITZ SA, RAHBEK C, 2012. Global patterns of amphibian phylogenetic diversity [J]. J Biogeogr, 39(8): 1373-1382.

    • GASTON KJ, 2000. Global patterns in biodiversity [J]. Nature, 405(6783): 220-227.

    • HAN CY, TAO LD, SUN WB, 2020. Distribution and conservation status of Magnolia ovoidea (Magnoliaceae): a critically endangered species in Yunnan, China [J]. Oryx, 54(4): 466-469.

    • HARRISON SP, YU G, TAKAHARA H, et al. , 2001. Diversity of temperate plants in East Asia [J]. Nature, 413(6852): 129-130.

    • HUANG JH, HUANG JH, LU XH, et al. , 2016. Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning [J]. Sci Rep, 6: 33913.

    • HUANG JH, ZHANG JL, YANG Y, et al. , 2013. Advances in methods for measuring patterns of endemic plant diversity [J]. Biodivers Sci, 21(1): 99-110. [黄继红, 张金龙, 杨永, 等, 2013. 特有植物多样性分布格局测度方法的新进展 [J]. 生物多样性, 21(1): 99-110. ]

    • JIN Y, QIAN H, 2019. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants [J]. Ecography, 42(8): 1353-1359.

    • KEMBEL SW, COWAN PD, HELMUS MR, et al. , 2010. Picante: R tools for integrating phylogenies and ecology [J]. Bioinformatics, 26(11): 1463-1464.

    • KOUGIOUMOUTZIS K, KOKKORIS IP, PANITSA M, et al. , 2021. Plant endemism centers and biodiversity hotspots in Greece [J]. Biology, 10(2): 72.

    • KREFT H, JETZ W, 2007. Global patterns and determinants of vascular plant diversity [J]. Proc Natl Acad Sci USA, 104(14): 5925-5930.

    • LI CJ, CHEN YL, YANG FM, et al. , 2020. Population structure and regeneration dynamics of Firmiana major, a dominant but endangered tree species [J]. For Ecol Manag, 462: 117993.

    • LI JJ, FANG XM, 1999. Uplift of the Tibetan Plateau and environmental changes [J]. Chin Sci Bull, 44(23): 2117-2124.

    • LI R, KRAFT NJB, YU HY, et al. , 2015. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia [J]. Conserv Biol, 29(6): 1552-1562.

    • LI R, WEN J, 2014. Phylogeny and biogeography of Asian Schefflera (Araliaceae) based on nuclear and plastid DNA sequence data [J]. J Syst Evol, 52(4): 431-449.

    • LI R, YUE J, 2020. A phylogenetic perspective on the evolutionary processes of floristic assemblages within a biodiversity hotspot in eastern Asia [J]. J Syst Evol, 58(4): 413-422.

    • LI XW, 1985. Floristic study of Yunnan Province [J]. Acta Bot Yunnan, 7(4): 361-371. [李锡文, 1985. 云南植物区系 [J]. 云南植物研究, 7(4): 361-371. ]

    • LI XW, 1994. Two big biodiversity centers of Chinese endemic genera of seed plants and their characteristics in Yunnan Province [J]. Acta Bot Yunnan, 16(3): 221-227. [李锡文, 1994. 中国特有种子植物属在云南的两大生物多样性中心及其特征 [J]. 云南植物研究, 16(3): 221-227. ]

    • LU LM, MAO LF, YANG T, et al. , 2018. Evolutionary history of the angiosperm flora of China [J]. Nature, 554(7691): 234-238.

    • MANCHESTER SR, CHEN ZD, LU AM, et al. , 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere [J]. J Syst Evol, 47(1): 1-42.

    • MILLER RM, RODRÍGUEZ JP, ANISKOWICZ-FOWLER T, et al. , 2007. National threatened species listing based on IUCN criteria and regional guidelines: current status and future perspectives [J]. Conserv Biol, 21(3): 684-696.

    • MISHLER BD, GURALNICK R, SOLTIS PS, et al. , 2020. Spatial phylogenetics of the North American flora [J]. J Syst Evol, 58(4): 393-405.

    • MISHLER BD, KNERR N, GONZÁLEZ-OROZCO CE, et al. , 2014. Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian Acacia [J]. Nat Commun, 5: 4473.

    • MORLON H, SCHWILK DW, BRYANT JA, et al. , 2011. Spatial patterns of phylogenetic diversity [J]. Ecol Lett, 14(2): 141-149.

    • MORUETA-HOLME N, ENGEMANN K, SANDOVAL-ACUÑA P, et al. , 2015. Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt [J]. Proc Natl Acad Sci USA, 112(41): 12741-12745.

    • MYERS N, MITTERMEIER RA, MITTERMEIER CG, et al. , 2000. Biodiversity hotspots for conservation priorities [J]. Nature, 403(6772): 853-858.

    • ORME CDL, DAVIES RG, BURGESS M, et al. , 2005. Global hotspots of species richness are not congruent with endemism or threat [J]. Nature, 436(7053): 1016-1019.

    • PIMM SL, JENKINS CN, ABELL R, et al. , 2014. The biodiversity of species and their rates of extinction, distribution, and protection [J]. Science, 344(6187): 1246752. DOI: 10. 1126/science. 1246752.

    • QIAN H, 2018. Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropical elevational gradient in South America [J]. J Plant Ecol, 11(3): 394-400.

    • QIN HN, YANG Y, DONG SY, et al. , 2017. Threatened species list of China’s higher plants [J]. Biodivers Sci, 25(7): 696-744. [覃海宁, 杨永, 董仕勇, 等, 2017. 中国高等植物受威胁物种名录 [J]. 生物多样性, 25(7): 696-744. ]

    • QUINTERO I, JETZ W, 2018. Global elevational diversity and diversification of birds [J]. Nature, 555(7695): 246-250.

    • RAHBEK C, BORREGAARD MK, COLWELL RK, et al. , 2019. Humboldt’s enigma: What causes global patterns of mountain biodiversity? [J]. Science, 365(6458): 1108-1113.

    • SMITH SA, BROWN JW, 2018. Constructing a broadly inclusive seed plant phylogeny [J]. Am J Bot, 105(3): 302-314.

    • SUN WB, LIU DT, ZHANG P, 2021. Conservation research of plant species with extremely small populations (PSESP): Progress and future direction [J]. Guihaia, 41(10): 1605-1617. [孙卫邦, 刘德团, 张品, 2021. 极小种群野生植物保护研究进展与未来工作的思考 [J]. 广西植物, 41(10): 1605-1617. ]

    • TANG G, ZHANG MG, LIU C, et al. , 2014. Phylogenetic support for the Tropical Niche Conservatism Hypothesis despite the absence of a clear latitudinal species richness gradient in Yunnan's woody flora [J]. Biogeosci Disc, 11(5): 7055-7077.

    • THOMAS CD, CAMERON A, GREEN RE, et al. , 2004. Extinction risk from climate change [J]. Nature, 427(6970): 145-148.

    • WANG B, CHEN G, LI C, et al. , 2017. Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae), a plant species with extremely small populations (PSESP) endemic to South Yunnan of China [J]. Plant Divers, 39(1): 52-59.

    • WANG Y, 2006. Yunnan mountain climate [M]. Kunming: Yunnan Science and Technology Press. [王宇, 2006. 云南山地气候 [M]. 昆明: 云南科技出版社. ]

    • WEBB CO, 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees [J]. Am Nat, 156(2): 145-155.

    • WU ZY, 1977—2006. Flora Yunnanica [M]. Beijing: Science Press. [吴征镒, 1977—2006. 云南植物志 [M]. 北京: 科学出版社. ]

    • WU ZY, RAVEN PH, HONG DY, 1994—2012. Flora of China [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press.

    • WU ZY, ZHU YC, JIANG HQ, 1987. Vegetation of Yunnan [M]. Beijing: Science Press. [吴征镒, 朱彦丞, 姜汉桥, 1987. 云南植被 [M]. 北京: 科学出版社. ]

    • XING YW, REE RH, 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot [J]. Proc Natl Acad Sci USA, 114(17): E3444-E3451.

    • YANG YG, 1990. Comprehensive physical regionalization in Yunnan [M]. Beijing: Higher Education Press. [杨一光, 1990. 云南省综合自然区划 [M]. 北京: 高等教育出版社. ]

    • YAO X, SONG Y, YANG JB, et al. , 2021. Phylogeny and biogeography of the hollies (Ilex L. , Aquifoliaceae) [J]. J Syst Evol, 59(1): 73-82.

    • ZHANG JW, NIE ZL, WEN J, et al. , 2011. Molecular phylogeny and biogeography of three closely related genera, Soroseris, Stebbinsia, and Syncalathium (Asteraceae, Cichorieae), endemic to the Tibetan Plateau, SW China [J]. Taxon, 60(1): 15-26.

    • ZHANG X, LANDIS JB, SUN YX, et al. , 2021. Macroevolutionary pattern of Saussurea (Asteraceae) provides insights into the drivers of radiating diversification [J]. Proc Roy Soc B-Biol Sci, 288(1962): 20211575.

    • ZHANG XM, QIN HT, XIE WJ, et al. , 2020. Comparative population genetic analyses suggest hybrid origin of Rhododendron pubicostatum, an endangered plant species with extremely small populations endemic to Yunnan, China [J]. Plant Divers, 42(4): 312-318.

    • ZHANG YB, MA KP, 2008. Geographic distribution patterns and status assessment of threatened plants in China [J]. Biodivers Conserv, 17(7): 1783-1798.

    • ZHU H, 2013. The floras of southern and tropical southeastern Yunnan have been shaped by divergent geological histories [J]. PLoS ONE, 8(5): e64213.

    • ZHU H, 2016. A biogeographical comparison between Yunnan, southwest China, and Taiwan, southeast China, with implications for the evolutionary history of the east Asian flora [J]. Ann Mol Bot Gard, 101(4): 750-771.

    • ZHU H, 2017. A biogeographical study on tropical flora of southern China [J]. Ecol Evol, 7(23): 10398-10408.

    • ZHU H, 2021. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China [J]. Chin J Plant Ecol, 45(3): 224-241. [朱华, 2021. 云南常绿阔叶林的植被地理研究 [J]. 植物生态学报, 45(3): 224-241. ]

  • 参考文献

    • APG IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV [J]. Bot J Linn Soc, 181(1): 1-20.

    • AN ZS, KUTZBACH JE, PRELL WL, et al. , 2001. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times [J]. Nature, 411(6833): 62-66.

    • BRANDT JS, RADELOFF V, ALLENDORF T, et al. , 2019. Effects of ecotourism on forest loss in the Himalayan biodiversity hotspot based on counterfactual analyses [J]. Conserv Biol, 33(6): 1318-1328.

    • BROOKS TM, MITTERMEIER RA, DA FONSECA GAB, et al. , 2006. Global biodiversity conservation priorities [J]. Science, 313(5783): 58-61.

    • BROWN JH, 2014. Why are there so many species in the tropics? [J]. J Biogeogr, 41(1): 8-22.

    • CAI HY, LYU L, SHRESTHA N, et al. , 2021. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning [J]. Divers Distrib, 27(1): 179-194.

    • CHEN WH, SHUI YM, YANG JB, et al. , 2014. Taxonomic status, phylogenetic affinities and genetic diversity of a presumed extinct genus, Paraisometrum W. T. Wang (Gesneriaceae) from the karst regions of southwest China [J]. PLoS ONE, 9(9): e107967.

    • CRISP MD, LAFFAN S, LINDER HP, et al. , 2001. Endemism in the Australian flora [J]. J Biogeogr, 28(2): 183-198.

    • DING WN, REE RH, SPICER RA, et al. , 2020. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora [J]. Science, 369(6503): 578-581.

    • ESRI, 2011. ArcGIS Desktop: Release 10 [CP/OL]. Redlands, CA: Environmental Systems Research Institute. https: //www. arcgis. com.

    • FAITH DP, 1992. Conservation evaluation and phylogenetic diversity [J]. Biol Conserv, 61(1): 1-10.

    • FOREST F, GRENYER R, ROUGET M, et al. , 2007. Preserving the evolutionary potential of floras in biodiversity hotspots [J]. Nature, 445(7129): 757-760.

    • FORESTER DJ, MACHLIST GE, 1996. Modeling human factors that affect the loss of biodiversity [J]. Conserv Biol, 10(4): 1253-1263.

    • FRITZ SA, RAHBEK C, 2012. Global patterns of amphibian phylogenetic diversity [J]. J Biogeogr, 39(8): 1373-1382.

    • GASTON KJ, 2000. Global patterns in biodiversity [J]. Nature, 405(6783): 220-227.

    • HAN CY, TAO LD, SUN WB, 2020. Distribution and conservation status of Magnolia ovoidea (Magnoliaceae): a critically endangered species in Yunnan, China [J]. Oryx, 54(4): 466-469.

    • HARRISON SP, YU G, TAKAHARA H, et al. , 2001. Diversity of temperate plants in East Asia [J]. Nature, 413(6852): 129-130.

    • HUANG JH, HUANG JH, LU XH, et al. , 2016. Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning [J]. Sci Rep, 6: 33913.

    • HUANG JH, ZHANG JL, YANG Y, et al. , 2013. Advances in methods for measuring patterns of endemic plant diversity [J]. Biodivers Sci, 21(1): 99-110. [黄继红, 张金龙, 杨永, 等, 2013. 特有植物多样性分布格局测度方法的新进展 [J]. 生物多样性, 21(1): 99-110. ]

    • JIN Y, QIAN H, 2019. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants [J]. Ecography, 42(8): 1353-1359.

    • KEMBEL SW, COWAN PD, HELMUS MR, et al. , 2010. Picante: R tools for integrating phylogenies and ecology [J]. Bioinformatics, 26(11): 1463-1464.

    • KOUGIOUMOUTZIS K, KOKKORIS IP, PANITSA M, et al. , 2021. Plant endemism centers and biodiversity hotspots in Greece [J]. Biology, 10(2): 72.

    • KREFT H, JETZ W, 2007. Global patterns and determinants of vascular plant diversity [J]. Proc Natl Acad Sci USA, 104(14): 5925-5930.

    • LI CJ, CHEN YL, YANG FM, et al. , 2020. Population structure and regeneration dynamics of Firmiana major, a dominant but endangered tree species [J]. For Ecol Manag, 462: 117993.

    • LI JJ, FANG XM, 1999. Uplift of the Tibetan Plateau and environmental changes [J]. Chin Sci Bull, 44(23): 2117-2124.

    • LI R, KRAFT NJB, YU HY, et al. , 2015. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia [J]. Conserv Biol, 29(6): 1552-1562.

    • LI R, WEN J, 2014. Phylogeny and biogeography of Asian Schefflera (Araliaceae) based on nuclear and plastid DNA sequence data [J]. J Syst Evol, 52(4): 431-449.

    • LI R, YUE J, 2020. A phylogenetic perspective on the evolutionary processes of floristic assemblages within a biodiversity hotspot in eastern Asia [J]. J Syst Evol, 58(4): 413-422.

    • LI XW, 1985. Floristic study of Yunnan Province [J]. Acta Bot Yunnan, 7(4): 361-371. [李锡文, 1985. 云南植物区系 [J]. 云南植物研究, 7(4): 361-371. ]

    • LI XW, 1994. Two big biodiversity centers of Chinese endemic genera of seed plants and their characteristics in Yunnan Province [J]. Acta Bot Yunnan, 16(3): 221-227. [李锡文, 1994. 中国特有种子植物属在云南的两大生物多样性中心及其特征 [J]. 云南植物研究, 16(3): 221-227. ]

    • LU LM, MAO LF, YANG T, et al. , 2018. Evolutionary history of the angiosperm flora of China [J]. Nature, 554(7691): 234-238.

    • MANCHESTER SR, CHEN ZD, LU AM, et al. , 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere [J]. J Syst Evol, 47(1): 1-42.

    • MILLER RM, RODRÍGUEZ JP, ANISKOWICZ-FOWLER T, et al. , 2007. National threatened species listing based on IUCN criteria and regional guidelines: current status and future perspectives [J]. Conserv Biol, 21(3): 684-696.

    • MISHLER BD, GURALNICK R, SOLTIS PS, et al. , 2020. Spatial phylogenetics of the North American flora [J]. J Syst Evol, 58(4): 393-405.

    • MISHLER BD, KNERR N, GONZÁLEZ-OROZCO CE, et al. , 2014. Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian Acacia [J]. Nat Commun, 5: 4473.

    • MORLON H, SCHWILK DW, BRYANT JA, et al. , 2011. Spatial patterns of phylogenetic diversity [J]. Ecol Lett, 14(2): 141-149.

    • MORUETA-HOLME N, ENGEMANN K, SANDOVAL-ACUÑA P, et al. , 2015. Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt [J]. Proc Natl Acad Sci USA, 112(41): 12741-12745.

    • MYERS N, MITTERMEIER RA, MITTERMEIER CG, et al. , 2000. Biodiversity hotspots for conservation priorities [J]. Nature, 403(6772): 853-858.

    • ORME CDL, DAVIES RG, BURGESS M, et al. , 2005. Global hotspots of species richness are not congruent with endemism or threat [J]. Nature, 436(7053): 1016-1019.

    • PIMM SL, JENKINS CN, ABELL R, et al. , 2014. The biodiversity of species and their rates of extinction, distribution, and protection [J]. Science, 344(6187): 1246752. DOI: 10. 1126/science. 1246752.

    • QIAN H, 2018. Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropical elevational gradient in South America [J]. J Plant Ecol, 11(3): 394-400.

    • QIN HN, YANG Y, DONG SY, et al. , 2017. Threatened species list of China’s higher plants [J]. Biodivers Sci, 25(7): 696-744. [覃海宁, 杨永, 董仕勇, 等, 2017. 中国高等植物受威胁物种名录 [J]. 生物多样性, 25(7): 696-744. ]

    • QUINTERO I, JETZ W, 2018. Global elevational diversity and diversification of birds [J]. Nature, 555(7695): 246-250.

    • RAHBEK C, BORREGAARD MK, COLWELL RK, et al. , 2019. Humboldt’s enigma: What causes global patterns of mountain biodiversity? [J]. Science, 365(6458): 1108-1113.

    • SMITH SA, BROWN JW, 2018. Constructing a broadly inclusive seed plant phylogeny [J]. Am J Bot, 105(3): 302-314.

    • SUN WB, LIU DT, ZHANG P, 2021. Conservation research of plant species with extremely small populations (PSESP): Progress and future direction [J]. Guihaia, 41(10): 1605-1617. [孙卫邦, 刘德团, 张品, 2021. 极小种群野生植物保护研究进展与未来工作的思考 [J]. 广西植物, 41(10): 1605-1617. ]

    • TANG G, ZHANG MG, LIU C, et al. , 2014. Phylogenetic support for the Tropical Niche Conservatism Hypothesis despite the absence of a clear latitudinal species richness gradient in Yunnan's woody flora [J]. Biogeosci Disc, 11(5): 7055-7077.

    • THOMAS CD, CAMERON A, GREEN RE, et al. , 2004. Extinction risk from climate change [J]. Nature, 427(6970): 145-148.

    • WANG B, CHEN G, LI C, et al. , 2017. Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae), a plant species with extremely small populations (PSESP) endemic to South Yunnan of China [J]. Plant Divers, 39(1): 52-59.

    • WANG Y, 2006. Yunnan mountain climate [M]. Kunming: Yunnan Science and Technology Press. [王宇, 2006. 云南山地气候 [M]. 昆明: 云南科技出版社. ]

    • WEBB CO, 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees [J]. Am Nat, 156(2): 145-155.

    • WU ZY, 1977—2006. Flora Yunnanica [M]. Beijing: Science Press. [吴征镒, 1977—2006. 云南植物志 [M]. 北京: 科学出版社. ]

    • WU ZY, RAVEN PH, HONG DY, 1994—2012. Flora of China [M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press.

    • WU ZY, ZHU YC, JIANG HQ, 1987. Vegetation of Yunnan [M]. Beijing: Science Press. [吴征镒, 朱彦丞, 姜汉桥, 1987. 云南植被 [M]. 北京: 科学出版社. ]

    • XING YW, REE RH, 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot [J]. Proc Natl Acad Sci USA, 114(17): E3444-E3451.

    • YANG YG, 1990. Comprehensive physical regionalization in Yunnan [M]. Beijing: Higher Education Press. [杨一光, 1990. 云南省综合自然区划 [M]. 北京: 高等教育出版社. ]

    • YAO X, SONG Y, YANG JB, et al. , 2021. Phylogeny and biogeography of the hollies (Ilex L. , Aquifoliaceae) [J]. J Syst Evol, 59(1): 73-82.

    • ZHANG JW, NIE ZL, WEN J, et al. , 2011. Molecular phylogeny and biogeography of three closely related genera, Soroseris, Stebbinsia, and Syncalathium (Asteraceae, Cichorieae), endemic to the Tibetan Plateau, SW China [J]. Taxon, 60(1): 15-26.

    • ZHANG X, LANDIS JB, SUN YX, et al. , 2021. Macroevolutionary pattern of Saussurea (Asteraceae) provides insights into the drivers of radiating diversification [J]. Proc Roy Soc B-Biol Sci, 288(1962): 20211575.

    • ZHANG XM, QIN HT, XIE WJ, et al. , 2020. Comparative population genetic analyses suggest hybrid origin of Rhododendron pubicostatum, an endangered plant species with extremely small populations endemic to Yunnan, China [J]. Plant Divers, 42(4): 312-318.

    • ZHANG YB, MA KP, 2008. Geographic distribution patterns and status assessment of threatened plants in China [J]. Biodivers Conserv, 17(7): 1783-1798.

    • ZHU H, 2013. The floras of southern and tropical southeastern Yunnan have been shaped by divergent geological histories [J]. PLoS ONE, 8(5): e64213.

    • ZHU H, 2016. A biogeographical comparison between Yunnan, southwest China, and Taiwan, southeast China, with implications for the evolutionary history of the east Asian flora [J]. Ann Mol Bot Gard, 101(4): 750-771.

    • ZHU H, 2017. A biogeographical study on tropical flora of southern China [J]. Ecol Evol, 7(23): 10398-10408.

    • ZHU H, 2021. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China [J]. Chin J Plant Ecol, 45(3): 224-241. [朱华, 2021. 云南常绿阔叶林的植被地理研究 [J]. 植物生态学报, 45(3): 224-241. ]