en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

顾嘉豪(1999-),硕士研究生,主要从事宏观生态学方面研究,(E-mail)1311588826@qq.com。

通讯作者:

徐晓婷,博士,副教授,主要从事宏观生态学和生物地理学研究,(E-mail)xiaotingxu@scu.edu.cn。

中图分类号:Q941

文献标识码:A

文章编号:1000-3142(2022)10-1730-10

DOI:10.11931/guihaia.gxzw202108042

参考文献
ANTONELLI A, KISSLING WD, FLANTUA S, et al. , 2018. Geological and climatic influences on mountain biodiversity [J]. Nat Geosci, 11(10): 718-725.
参考文献
ANGOSPERM PHYLOGENY GROUP, CHASE MW, CHRISTENHUSZ MJM, et al. , 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV [J]. Bot J Linn Soc, 181(1): 1-20.
参考文献
BARRACLOUGH TG, SAVOLAINEN V, 2010. Evolutionary rates and species diversity in flowering plants [J]. Evolution, 55(4): 677-683.
参考文献
BININDA-EMONDS ORP, 2004. The evolution of supertrees [J]. Trend Ecol Evol, 19(6): 315-322.
参考文献
BLOOM DD, MARTIN F, SHORT A, et al. , 2014. Cladeage and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) Lineages [J]. PLoS ONE, 9(6): e98430.
参考文献
CHANG J, RABOSKY DL, ALFARO ME, 2020. Estimating diversification rates on incompletely sampled phylogenies: theoretical concerns and practical solutions [J]. Syst Biol, 69(3): 602-611.
参考文献
EBERSBACH J, MUELLNER-RIEHL AN, MICHALAK I, et al. , 2017. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. [J]. J Biogeogr, 44(4): 900-910.
参考文献
FOLK RA, STUBBS RL, MORT ME, et al. , 2019. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation [J]. Proc Natl Acad Sci USA, 116(22): 201817999.
参考文献
GORDON AD, 1986. Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves [J]. J Classif, 3(2): 335-348.
参考文献
IGEA J, TANENTZAP AJ, 2020. Angiosperm speciation cools down in the tropics [J]. Ecol Lett, 23(4): 692-700.
参考文献
JIAN S, SOLTIS PS, GITZENDANNER MA, et al. , 2008. Resolving an ancient, rapid radiation in Saxifragales [J]. Syst Biol, 57(1): 38-57.
参考文献
LI H, WIENS JJ, 2019. Time explains regional richness patterns within clades more often than diversification rates or area [J]. Amer Nat, 193(4): 514-529.
参考文献
LIU J, LUO YH, LI DZ, et al. , 2017. Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions: retrospect and prospect [J]. Biodivers Sci, 25(2): 163-174. [刘杰, 罗亚皇, 李德铢, 等, 2017. 青藏高原及毗邻区植物多样性演化与维持机制: 进展及展望 [J]. 生物多样性, 25(2): 163-174. ]
参考文献
MACHAC A, 2020. The dynamics of bird diversity in the New World [J]. Syst Biol, 69(6): 1180-1199.
参考文献
MARIN J, HEDGES SB, 2016. Time best explains global variation in species richness of amphibians, birds and mammals [J]. J Biogeogr, 43(6): 1069-1079.
参考文献
MARIN J, RAPACCIUOLO G, COSTA GC, et al. , 2018. Evolutionary time drives global tetrapod diversity [J]. Proc Roy Soc B-Biol Sci, 285(1872): 20172378.
参考文献
MCPEEK MA, BROWN JM, 2007. Cladeage and not diversification rate explains species richness among animal taxa [J]. Amer Nat, 169(4): 97-106.
参考文献
MOODY ML, GARCIA M, 2021. Post-Oligocene diversification in Australia: Phylogeography, systematics and new species of Gonocarpus (Haloragaceae) [J]. Taxon, 70(4): 761-777.
参考文献
MOREAU CS, BELL CD, 2013. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants [J]. Evolution, 67(8): 2240-2257.
参考文献
PARADIS E, SCHLIEP K, 2019. ape 5. 0: an environment for modern phylogenetics and evolutionary analyses in R [J]. Bioinformatics, 35(3): 526-528.
参考文献
PONTARP M, BUNNEFELD L, CABRAL JS, et al. , 2018. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models [J]. Trends Ecol Evol, 34(3): 211-223.
参考文献
PYRON RA, WIENS JJ, 2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity [J]. Proc Roy Soc B: Biol Sci, 280(1770): 20131622.
参考文献
R CORE TEAM, 2021. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria [EB/OL]. URL http: //www. R-project. org/.
参考文献
RABOSKY DL, 2010. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions [J]. Ecol Lett, 12(8): 735-743.
参考文献
RABOSKY DL, ADAMS DC, 2012. Rates of morphological evolution are correlated with species richness in salamanders [J]. Evolution, 66(6): 1807-1818.
参考文献
RABOSKY DL, GRUNDLER M, ANDERSON C, et al. , 2014. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees [J]. Meth Ecol Evol, 5(7): 701-707.
参考文献
RABOSKY DL, SLATER GJ, ALFARO ME, et al. , 2012. Clade age and species richness are decoupled across the eukaryotic tree of life [J]. Plos Biol, 10(8): e1001381.
参考文献
RICKLEFS RE, RENNER SS, 1994. Species richness within families of flowering plants [J]. Evolution, 48(5): 1619-1636.
参考文献
SÁNCHEZ-REYES LL, MORLON H, MAGALLÓN S, 2017. Uncovering higher-taxon diversification dynamics from clade age and species-richness data [J]. Syst Biol, 66(3): 367-378.
参考文献
SCHOLL JP, WIENS JJ, 2016. Diversification rates and species richness across the tree of life [J]. Proc Roy Soc B: Biol Sci, 283(1838): 20161334.
参考文献
SMITH SA, DONOGHUE MJ, 2008. Rates of molecular evolution are linked to life history in flowering plants [J]. Science, 322(5898): 86-89.
参考文献
SMALL RL, CRONN RC, WENDEL JF, 2004. Use of nuclear genes for phylogeny reconstruction in plants [J]. Aust Syst Bot, 17(2): 145-170.
参考文献
SOLTIS DE, MORT ME, LATVIS M, et al. , 2013. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach [J]. Amer J Bot, 100(5): 916-929.
参考文献
STADLER T, RABOSKY DL, RICKLEFS RE, et al. , 2014. On age and species richness of higher taxa [J]. Amer Nat, 184(4): 447-455.
参考文献
STUBBS RL, FOLK RA, SOLTIS DE, et al. , 2020. Diversification in the Arctic: Biogeography and systematics of the North American Micranthes (Saxifragaceae) [J]. Syst Bot, 45(4): 802-811.
参考文献
SUN M, FOLK RA, GITZENDANNER MA, et al. , 2020. Recent accelerated diversification inrosids occurred outside the tropics [J]. Nat Comm, 11(1): 3333.
参考文献
TANG ZY, FANG JY, 2004. A review on the elevational patterns of plant species diversity [J]. Biodivers Sci, 12(1): 20-28. [唐志尧, 方精云, 2004. 植物物种多样性的垂直分布格局 [J]. 生物多样性, 12(1): 20-28. ]
参考文献
VALENTE LM, SAVOLAINEN V, MANNING JC, et al. , 2011. Explaining disparities in species richness between Mediterranean floristic regions: a case study in Gladiolus (Iridaceae) [J]. Global Ecol Biogeogr, 20(6): 881-892.
参考文献
WIENS JJ, 2011. The causes of species richness patterns across space, time, and clades and the role of “Ecological Limits” [J]. Quart Rev Biol, 86(2): 75-96.
参考文献
XU Y, 2021. Speciation patterns of Saxifraga. L based on sister species [D]. Chengdu: Sichuan University: 1-27. [徐莹, 2021. 基于姊妹对的虎耳草属物种形成模式研究 [D]. 成都: 四川大学: 1-27. ]
参考文献
XING Y, REE RH, 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot [J]. Proc Natl Acad Sci USA, 114(17): 3444.
参考文献
YAN HF, ZHANG CY, ANDERBERG AA, et al. , 2018. What explains high plant richness in East Asia? Time and diversification in the tribe Lysimachieae (Primulaceae) [J]. New Phytol, 219(1). doi: 10. 1111/nph. 15144.
参考文献
ZHANG DJ, CHEN SY, GAO QB, et al. , 2008. Circumscription and phylogeny of Saxifraga sect. Ciliatae: Evidence from nrDNA ITS sequences [J]. J Syst Evol, 46(5): 667-675.
参考文献
ZHANG JQ, MENG SY, RAO GY, 2014a. Phylogeography of Rhodiola kirilowii (Crassulaceae): A story of miocene divergence and quaternary expansion [J]. PLoS ONE, 9(11): e112923.
参考文献
ZHANG JQ, MENG SY, ALLEN GA, et al. , 2014b. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae) [J]. Mol Phylogenet Evol, 77: 147-158.
目录contents

    摘要

    不同生物类群包含的物种数目常存在巨大差异,这是生态学和生物学研究中普遍观察到的现象。然而,这一现象产生的原因仍然是未解之谜。从宏观进化的角度,进化时间假说和多样化速率假说是两个比较流行的假说。进化时间假说认为类群的演化时间越长,积累的物种丰富度越高;而多样化速率假说认为类群的净多样化速率越快,则其物种丰富度越高。为验证这两个假说,该文以一棵包含1539个物种化石定年的虎耳草目系统发育树为基础,通过宏观进化分析获取了虎耳草目内15个科的物种形成和灭绝速率,并计算了每个科的平均多样化速率。结果表明:(1) 虎耳草目的物种多样化速率有着增加的趋势,并且多样化速率的增加主要出现在温带和高山类群,如茶藨子科、景天科和芍药科等。(2) 采用系统发育广义最小二乘模型(PGLS)和线性回归模型(LM)结果表明,虎耳草目15个科的物种丰富度与科的分化时间和科内物种的最近共同祖先年龄都没有显著相关关系,而与净多样化速率显著正相关(R 2 =0.380,P <0.05)。该研究支持了多样化速率假说,认为不同科的净多样化速率的差异是导致虎耳草目科间物种数目差异的主要原因之一。全球气候变冷可能为虎耳草目中草本、落叶乔木和灌木等能够适应寒冷环境的类群提供了分布范围扩张和物种快速多样化的机会。该研究表明在温带和高山扩张类群中,物种净多样化速率可能是导致不同类群物种数目差异的主要原因。

    Abstract

    The differences in the species richness among different biological taxonomic groups often vary greatly, which is a phenomenon commonly observed in ecological and biological studies. However, the underlying mechanisms of this pattern are still in hot debate. From the perspective of macroevolution, time-for speciation hypothesis and diversification rate hypothesis are two popular hypotheses. Time-for speciation hypothesis suggesting that the time-for-speciation is the primary driver of diversity variation among groups by species accumulation along time, while diversification rate hypothesis suggesting that the groups with high species number resulted from their high net diversification rates. To test these two hypotheses, we studied species variation among 15 families of order Saxifragales based on a fossil-calibrated phylogenetic tree containing 1539 species. We obtained the rates of speciation and extinction of 15 families and calculated the average diversification rate of each family through macroevolutionary analysis. The results are as follows: (1) The species diversification rate of order Saxifragales shows an increasing trend, and the increase of diversification rate mainly occurred in temperate and alpine groups, such as Grossulariaceae, Crassulaceae and Paeoniaceae. (2) The results of phylogenetic generalized least squares (PGLS) and linear regression model (LM) show that the species richness of the 15 families is not significantly correlated with the age of family differentiation or the age of the most recent common ancestor, but it is positively correlated with the net diversification rate (R 2=0.380, P <0.05). These results support the diversification rate hypothesis, suggesting that the diversification rate is a primary evolutionary driver of the variation of species richness among families of order Saxifragales. Global cooling may provide opportunities for the expansion of distribution and rapid species diversification of herbaceous, deciduous trees and shrubs those can adapt to cold conditions. The study show that in temperate and alpine spreading groups, the net diversification rate may be the main reason for the differences in species numbers of different taxonomic groups.

  • 生物类群之间的物种总数的差异是自然界中普遍存在的现象,但是这一现象的形成机制仍然是未解之谜(Ricklefs &;Renner,1994;Barraclough &;Savolainen,2010;Rabosky,2010;Wiens,2011;Robosky &;Adams,2012;Mereau &;Bell,2013;Machac,2020;Li &;Wiens,2019)。从生物类群的宏观进化角度来看,进化时间假说(time-for speciation hypothesis)和多样化速率假说(diversification rate hypothesis)是解释类群间物种多样性差异的两个最为核心的假说(Scholl &;Wiens,2016;Li &;Wiens,2019)。进化时间假说认为,进化时间越长,物种能积累的物种多样性越高,因此进化的时间差异是导致类群间物种多样性差异的主要原因。换句话说,一个起源古老的类群,比新近起源的类群拥有更长的进化时间,因此可以积累更多的物种。多样化速率假说认为,在生物演化历史中,不同类群种化速率和灭绝速率的动态变化导致的净多样化速率差异是引起物种多样性变化的主要原因(Scholl &;Wiens,2016)。也就是说,物种形成速率高而灭绝速率低的类群具有更高的净多样化速率,因此具有更多的物种。

  • 目前,进化时间假说和多样化速率假说在物种多样性形成中的相对作用还存在很多争议(Marin et al.,2018)。进化时间假说成立的前提是演化过程中净多样化速率在不同类群之间无差异或差异极小。然而越来越多的研究发现,净多样化速率在不同类群之间有差异。特别是经历过大型灭绝事件的类群,物种数目会骤然下降,从而导致物种多样性的突然丧失,物种数目减少。例如,Rabosky 等(2012)对多细胞真核生物1 397个主要分支的研究发现,分支的分化时间,即干龄(stem age),与分支所包含的物种数之间没有显著关系,因而否定了进化时间假说。Pyron和Wiens(2013)发现,许多古老两栖动物分支具有较低的物种多样性,但是一些年轻的分支具有较多的物种。但是该研究并没有直接验证物种多样性与多样化速率之间的关系。而McPeek和Brown(2007)对不同动物类群物种多样性的研究却发现分支年龄是物种多样性的决定因素。Marin和Hedges(2016)对不同类群的冠龄(crown age)与物种丰富度关系的研究也表明两栖动物、鸟类和哺乳动物的物种丰富度与其最近共同祖先的年龄(age)显著正相关。为进一步验证进化时间和多样化速率假说,Scholl和Wiens(2016)使用生命之树(tree of life)对不同生物类群不同分类学等级的物种多样性的差异进行了研究。研究中发现,在不同的分类等级,例如,门、目和科等,物种多样性主要是由多样化速率决定,而与进化时间无显著相关关系,甚至出现负相关关系。古老的类群物种多样化速率低,而年轻类群的多样化速率高可能是导致该现象的主要原因。并且,进化时间与物种多样化速率的关系在不同分类等级和不同的生物类群中的差异可能导致不显著的物种多样化速率与物种多样性的关系。综上,进化时间假说和多样化速率假说在物种多样性形成中的作用仍然存在争议。

  • 虎耳草目(Saxifragales)包含了15个科的共约3 000个种,包括了乔木、灌木、多年生或一年生草本植物、多肉植物和水生植物等多种生活型,广泛分布于全球不同的生态系统中(Soltis et al.,2013)。虎耳草目内部科的分化时间从早白垩纪晚期至第三纪早期,且科内物种数目存在巨大差异,最大的景天科(Crassulaceae)包含了大约1 600个种,而锁阳科(Cynomoriaceae)和四心木科(Tetracarpaeaceae)、隐瓣藤科(Aphanopetalaceae)却只有不到10个物种。同时,虎耳草目的分子系统学研究基础扎实,基于301个核基因建立的系统发育骨架,确定了各科之间的系统发育关系和分化时间(Folk et al.,2019)。Folk 等(2019)还结合小片段构建了种级水平的系统发育树,物种覆盖率达当时公认物种的70%以上,为准确估计物种的多样化速率奠定了基础。因此,虎耳草目是研究科间物种丰富度差异、验证进化时间和多样化速率假说的理想类群。本研究采用系统发育广义最小二乘模型(phylogenetic generalized least squares,PGLS)分析了虎耳草目科的物种多样性与科的冠龄、干龄和多样化速率的关系,发现了物种多样性与多样化速率有显著的正相关关系,与进化时间没有显著关系,且进化时间与多样化速率的综合效应对这种物种丰富度差异有更强的解释性。本研究结果发现了多样化速率在虎耳草目物种多样性形成中的重要作用,支持了物种多样性格局的多样化速率假说,同时也支持了进化时间和多样化速率的综合效应。

  • 1 材料与方法

  • 1.1 虎耳草目系统发育树

  • 本研究采用的系统发育树主要基于Folk等(2019)发表的虎耳草目的系统发育树和徐莹等(2021)构建的虎耳草属的系统发育树。Folk等(2019)首先基于来自627个物种的301 个核基因序列,构建了虎耳草目主要分支的系统发育树并通过化石和分子钟定年确定了主要分支的分化时间。之后,基于GenBank中下载虎耳草目的核基因ITS片段和叶绿体基因组的matK等24个基因片段,建立了包含15个科1 455个物种的系统发育树。徐莹等(2021)构建的系统发育树包含了353个虎耳草属的物种,涵盖了Folk等(2019)构建的虎耳草目系统发育树中的所有虎耳草属物种,虎耳草属的分化时间也与Folk等(2019)一致。因此,本研究将两棵系统发育树进行整合,在R语言中将徐莹等(2021)构建的虎耳草属系统发育树替换了Folk等(2019)虎耳草目系统发育树中虎耳草属分支(Gordon,1986;Bininda-Emonds,2004),最终整合得到了一棵包含1 539个种的虎耳草目系统发育树,涵盖虎耳草目下全部15个科,并且各科均具有较高覆盖率(表1)。

  • 1.2 科的物种多样性

  • 科的物种多样性数目按照生物物种名录数据库(COL,https://www.catalogueoflife.org/,访问时间:2021年5月)中每个科接受的物种名称进行统计,变种和亚种等种下等级不统计,杂种不统计。由于物种多样性数目不符合正态分布,参考Rabosky 等(2012)的分析方法对科的物种多样性进行了以10为底的对数转换以改善拟合效果。

  • 1.3 科的干龄和冠龄计算

  • 冠龄与干龄是针对系统发育树中分支年龄的两个不同的概念(图1)。前者代表该类群现存物种最近共同祖先的年龄,而后者代表该类群最近共同祖先与其姊妹类群的最近共同祖先的年龄。有学者研究认为在取样较好的情况下,冠龄用来做数据统计分析更为合理,因为冠龄可以消除由于进化停滞或者灭绝事件导致的长枝的影响(Stadler et al.,2014;Sanchez-Reyes et al.,2017)。为了更加全面充分地评估进化时间与物种丰富度的关系,本研究同时分析了各个科干龄以及冠龄与其物种多样性的关系。

  • 表1 虎耳草目15个科有关数据统计

  • Table1 Relevant data statistics of 15 families of order Saxifragales

  • 为了提取不同科的冠龄和干龄,本研究利用R语言ape程辑包(Paradis &;Schliep,2019;R Core Team,2021)中getMRCA()函数从系统发育树上找到每个科内的物种对应的共同祖先的节点,该节点的年龄即为该科的冠龄,该节点的父节点即为该科的干龄。虎耳草目各个节点的年龄使用R 程序中的ape程辑包中的branching.times()函数提取。各个科的冠龄节点的编号使用ape程辑包中的getMRCA()函数提取。根据每个科的冠龄节点和干龄节点编号(nodelable),分别获取到15个科的冠龄和干龄。

  • 1.4 科的多样化速率

  • 本研究利用宏观进化贝叶斯分析法(Bayesian analysis of macroevolutionary mixtures,BAMM),使用R语言中的程辑包BAMMtools获取科的多样化速率(Rabosky et al.,2014)。马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)运行长度为1 000万代,每1 000代取样一次。运行结束后,在R语言中使用程辑包coda检查链的收敛性和有效样本(effective sampling sizes,ESS)的大小。ESS检查结果大于200,说明MCMC过程有足够的独立样本,估计的结果比较稳定。

  • 图1 干龄和冠龄的示意图(单位:百万年)

  • Fig.1 Schematic diagram of stem age and crown age (Unit: Myr)

  • 虎耳草目15个科的物种多样化速率使用BAMMtools程辑包的getCladeRates()函数提取。该方法提取了科内所有分支的枝长加权平均的种化速率(speciation rate)和灭绝速率(extinction rate)。净多样化速率等于种化速率与灭绝速率的差值。由于灭绝速率的估计存在较大的不确定性,本研究中同时分析了种化速率和净多样化速率与物种多样性的关系。

  • 此外,根据各个科是否为温带适应类群,利用ape程辑包中的drop.tip()函数将虎耳草目系统发育树拆分为两部分,即温带适应类群和常绿乔木类群[常绿乔木类群为围盘树科(Peridiscaceae)、虎皮楠科(Daphniphyllaceae)、鼠刺科(Iteaceae)和蕈树科(Altingiaceae);虎耳草目下其余11个科为温带适应类群],利用BAMMtools程辑包中的plot.bammdata()函数绘制出净多样化速率随时间的变化图像。

  • 1.5 物种多样性与多样化速率和进化时间的关系

  • 本研究使用一元线性回归模型(linear regression model,LM)和系统发育广义最小二乘模型(PGLS)对物种丰富度与多样化速率和进化时间的关系进行了分析。为验证多样化速率假说,本文同时建立了种化速率和净多样化速率与物种多样性的一元线性回归模型和PGLS模型。同时,也分别建立了冠龄和干龄与物种多样性的一元线性回归关系和PGLS模型来验证进化时间假说。由于多样化速率和进化时间可能同时对物种多样性造成影响,因此,本研究也考虑了多样化速率和进化时间的交互效应对物种多样性的影响。交互效应中,进化时间由冠龄来代表。LM使用R语言中的基础函数lm()完成。PGLS使用R程辑包中的 nlme的gls()函数完成。PGLS分析中使用了一个虎耳草目的科级系统发育树。该系统发育树是使用R语言的ape程辑包中的drop.tip()函数将物种数目超过1个的科中的物种进行去除,保证每个科只有1个代表物种。

  • 2 结果与分析

  • 2.1 虎耳草目科的干龄和冠龄与物种丰富度的关系

  • 虎耳草目15个科的干龄和冠龄变化范围差异很大。最年轻的连香树科(Cercidiphyllaceae)冠龄仅为3百万年(Myr),而最古老的围盘树科的冠龄则超过了8千万年(表1)。这充分体现了虎耳草目内部不同科在进化时间尺度上的差异性(表1)。

  • LM分析的结果表明冠龄对物种丰富度的解释率可达到0.261,但是干龄对物种丰富度的解释率只有0.164(图2)。PGLS分析的结果与LM一致,冠龄与物种丰富度的斜率为0.015,略低于干龄与物种丰富度的斜率(β=0.019)。但无论是冠龄还是干龄对物种丰富度的影响都不显著(P >0.05)。该结果说明虎耳草目内15个科的物种丰富度与科的冠龄和干龄没有显著相关性,进化时间并不是影响科之间的物种多样性差异的主要因素。

  • 2.2 虎耳草目科的物种多样化速率与物种丰富度的关系

  • 虎耳草目净多样化速率较高的科以温带和高山类群为主,集中在虎耳草目中以草本植物为主的草本分支中,例如茶藨子科(Grossulariaceae)、小二仙草科(Haloragaceae)和景天科等科的种化速率和净多样化速率都比较高(表1,图3),并且以1 500万年以来增长较为明显(图3,图4)。物种主要为常绿乔木的科的种化速率和净多样化速率相对较低(表1,图3,图4)。

  • LM和PGLS分析发现,虎耳草目科的种化速率和净多样化速率都与物种丰富度正相关(图5)。但种化速率与物种丰富度的关系在LM中显著(R2=0.280,β=7.319,P <0.05),而在PGLS模型中接近显著(β=6.425,P <0.05),而这两种方法发现净多样化速率与物种丰富度均有显著正相关性(PGLS: β=9.790,P =0.031;LM: R2=0.380,β=11.791,P <0.05)。

  • 2.3 进化时间与净多样化速率的综合效应与科物种丰富度的关系

  • 进化时间与净多样化速率对物种丰富度的共同作用在LM和PGLS模型中都显著(LM: R2 =0.603,β=0.297,P <0.05;PGLS: β=0.287,P <0.05)(图6)。LM模型中,进化时间和净多样化速率的共同作用解释了物种多样性变化的60.3%,PGLS模型的斜率也比单独使用进化时间和净多样化速率高。该结果支持了进化时间与净多样化速率的综合效应对于虎耳草目科间物种丰富度差异的影响,且比净多样化速率这一单一变量对其的影响解释率更高。

  • 3 讨论与结论

  • 在本研究中,PGLS 分析发现虎耳草目下15个科的物种多样性与净多样化速率呈显著的正相关关系,但是与科的冠龄正相关关系不显著。LM中,净多样化速率对物种丰富度的解释率达0.380。由于 Scholl和Wiens(2016)发现净多样化速率与年龄的交互作用可能是导致物种多样性差异的原因,因此本研究也检验了物种净多样化速率与冠龄的交互作用,并发现交互作用对物种丰富度的解释率达到0.603。因此,本研究认为净多样化速率的差异是主导物种多样性差异的主要因素,进化时间与多样化速率的共同作用在虎耳草目物种多样性差异中起到了次要作用。

  • 图2 虎儿草目15个科的冠龄与物种丰富度(A)及干龄与物种丰富度(B)的系统发育广义最小二乘模型(PGLS)与线性回归模型(LM)拟合

  • Fig.2 Phylogenetic generalized least squares (PGLS) and linear regression model (LM) for crown age and species richness (A) and stem age and species richness (B) of 15 families of order Saxifragales

  • 图3 虎耳草目净多样化速率-时间图

  • Fig.3 Net diversification rate-time map of order Saxifragales

  • 图4 虎耳草目中常绿乔木和温带适应类群随时间的净多样化速率变化曲线

  • Fig.4 Net diversification rate curves over time for evergreen trees and temperate adaptive taxonomic groups of order Saxifragales

  • 本研究的结果不支持进化时间假说,这与Rabosky等(2012)和Scholl和Wiens(2016)得到的结论一致,即不同类群间物种丰富度的差异并非是由进化时间的差异引起。尽管Pyron和Wiens(2013)研究发现热带两栖类物种类群之间的物种多样性差异与冠龄有显著的正相关关系,但是在该研究中也同时发现物种多样性与净多样化速率有显著的正相关关系,该研究还发现物种多样化速率与净第一性生产力和面积存在正相关关系。热带地区的科的物种的生态位演化快,种化速率高,灭绝速率低,古老类群能够保存,是该热带类群物种多样性高的重要原因。在虎耳草目中,草本和灌木等能够适应温带环境的科有着更高的物种形成速率和净多样化速率(Smith &;Donoghue,2008),数据分析也显示这可能是虎耳草目中物种丰富度与净多样化速率正相关关系形成的主要原因。Folk等(2019)对虎耳草目生态位祖先重建的结果表明景天科、虎耳草科和茶藨子科等温带适应的科的共同祖先,在8千万年前就已经能够适应较为干旱和寒冷的环境。在渐新世全球气候变冷时,这些类群的物种多样化速率就已经高于虎耳草目木本分支的蕈树科等。中新世后,随着全球气候的进一步变冷,这些温带类群的物种多样化速率快速上升。相比喜湿热环境的蕈树科、虎皮楠科等类群,虎耳草目中的草本和灌木类群对寒冷环境的良好适应可能为该类群在全球变冷背景下的快速多样化(Jian et al.,2008)提供了契机。例如,小二仙草科在始新世—渐新世的全球气候变冷和干旱化背景下,分布范围不断扩张,多样化速率经历了大幅度提升(Moody &;Garcia,2021)。

  • 图5 虎儿草目15个科的种化速率(A)和净多样化速率(B)与物种丰富度的系统发育广义最小二乘模型(PGLS)与线性回归模型(LM)拟合

  • Fig.5 Phylogenetic generalized least squares model (PGLS) and linear regression model (LM) fitted speciation rates (A) and net diversification rate (B) with the species richness of 15 families of order Saxifragales

  • 图6 虎儿草目15个科进化时间和净多样化速率的综合效应与物种丰富度的系统发育广义最小二乘模型(PGLS)与线性回归模型(LM)拟合

  • Fig.6 Phylogenetic generalized least squares model (PGLS) and linear regression model (LM) fitted the interaction effects of evolutionary time and net diversification rate with the species richness of 15 families of order Saxifragales

  • 地质历史事件不仅会重新塑造原有的地形地貌还会改变区域气候条件,从而对其间的生物演化过程产生影响(唐志尧和方精云,2004;Antonelli et al.,2018)。山脉的隆升直接导致的种群隔离分化以及间接通过生境的复杂化等导致的种群的生殖隔离和丰富的生态位促进了高山植物的快速演化,这也与虎耳草目多个科的快速物种多样化有着密切的联系(Zhang et al.,2014a;刘杰等,2017;Moody &;Garcia,2021)。山地草本类群对寒冷生境的快速适应和分化,也是中国青藏高原、北美西海岸山脉和欧洲南部阿尔卑斯山脉成为虎耳草目中高山类群物种多样性中心的重要原因之一(Zhang et al.,2008;Zhang et al.,2014b;Ebersbach et al.,2017;Xing &;Ree,2017;Stubbs et al.,2020)。随着青藏高原的隆升,许多植物类群出现了快速多样化,其中包括虎耳草目中适应寒冷的类群,虎耳草属(Saxifraga L.)、红景天属(Rhodiola L.)等类群的多样化速率快速升高(Zhang et al.,2014a;Ebersbach et al.,2017;Folk et al.,2019)。因此,虎耳草目的高山类群物种多样性快速增加,物种多样性与净多样化速率呈现正相关关系。

  • 对类蔷薇目(Rosids)的研究发现,包括虎耳草目在内的其他目的多样化速率也随着全球变冷而上升,并且多样化速率随着纬度升高而升高(Sun et al.,2020)。Igea和Tanentzap(2020)针对被子植物的研究也发现类似的现象,即植物类群在温带和寒带的多样化速率常常高于热带。这些研究的结果表明温带类群在全球变冷的过程中物种多样性在不断地积累。尽管空间上看,由于高纬度受冰期影响严重,物种多样性较低,但是从类群上看,温带类群的物种多样性的增加速率高于热带类群。因此,除了虎耳草目外,在被子植物的科中也可能存在类似的现象,即科间的物种多样性差异与净多样化速率可能存在显著的正相关关系。

  • 有研究者提出物种多样性差异很可能由多因素共同导致,因此分支年龄和多样化速率都可能在其中发挥着作用(Valente et al.,2011;Bloom et al.,2014;Yan et al.,2018)。近年来,也有学者提出该问题的讨论应当换一种思考模式,由验证哪种假说更正确转向研究这些影响因素之间的互作关系,并建立相关模型来更加数据化与统计学化地看待物种丰富度差异的形成机制(Pontarp et al.,2019)。尽管本研究中发现了净多样化速率与年龄的交互作用对物种多样性差异有很高的解释率,但是目前该结论是否适用于其他类群,还有待验证。总之,迄今为止该问题仍然留有许多值得讨论的空间,利用更为复杂的统计模型方法以及更为全面的动植物数据集去探讨该问题可能是未来科研工作者们的研究方向。

  • 核基因的同义突变率比叶绿体基因高5倍,比线粒体基因高20倍,且核基因拥有多个独立位点、双亲遗传等特征(Small et al.,2004),因此,采用核基因构建的系统发育树与以往小片段建树相比,能够更加全面和客观地反映分支的系统发育关系。本研究中使用的系统发育树是Folk等(2019)基于301个核基因构建的虎耳草目主要分支的系统发育树及分支时间的基础上,结合叶绿体基因组小片段和ITS序列所构建。本研究结果中各个科的关系与APG IV(APG et al.,2016)一致。然而,由于物种采样困难以及大量的核基因测序时间和经费比较多,因此核基因组或者大量核基因建树的物种覆盖率都比较低。而取样率低对物种多样化过程分析的准确性有着非常大的影响(Chang et al.,2020),因此基因组结合小片段建树是提高物种覆盖率的解决方案之一。然而,由于小片段的信息位点不足,可能无法十分准确地估计近缘物种之间的系统发育关系,也可能对系统发育树的枝长估计产生影响,从而影响到多样化速率的估计。随着叶绿体基因组测序价格的下降和分析方法的成熟,增加叶绿体基因组的物种覆盖率可能是解决近缘物种系统发育关系的较为经济快捷的方法。

  • 参考文献

    • ANTONELLI A, KISSLING WD, FLANTUA S, et al. , 2018. Geological and climatic influences on mountain biodiversity [J]. Nat Geosci, 11(10): 718-725.

    • ANGOSPERM PHYLOGENY GROUP, CHASE MW, CHRISTENHUSZ MJM, et al. , 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV [J]. Bot J Linn Soc, 181(1): 1-20.

    • BARRACLOUGH TG, SAVOLAINEN V, 2010. Evolutionary rates and species diversity in flowering plants [J]. Evolution, 55(4): 677-683.

    • BININDA-EMONDS ORP, 2004. The evolution of supertrees [J]. Trend Ecol Evol, 19(6): 315-322.

    • BLOOM DD, MARTIN F, SHORT A, et al. , 2014. Cladeage and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) Lineages [J]. PLoS ONE, 9(6): e98430.

    • CHANG J, RABOSKY DL, ALFARO ME, 2020. Estimating diversification rates on incompletely sampled phylogenies: theoretical concerns and practical solutions [J]. Syst Biol, 69(3): 602-611.

    • EBERSBACH J, MUELLNER-RIEHL AN, MICHALAK I, et al. , 2017. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. [J]. J Biogeogr, 44(4): 900-910.

    • FOLK RA, STUBBS RL, MORT ME, et al. , 2019. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation [J]. Proc Natl Acad Sci USA, 116(22): 201817999.

    • GORDON AD, 1986. Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves [J]. J Classif, 3(2): 335-348.

    • IGEA J, TANENTZAP AJ, 2020. Angiosperm speciation cools down in the tropics [J]. Ecol Lett, 23(4): 692-700.

    • JIAN S, SOLTIS PS, GITZENDANNER MA, et al. , 2008. Resolving an ancient, rapid radiation in Saxifragales [J]. Syst Biol, 57(1): 38-57.

    • LI H, WIENS JJ, 2019. Time explains regional richness patterns within clades more often than diversification rates or area [J]. Amer Nat, 193(4): 514-529.

    • LIU J, LUO YH, LI DZ, et al. , 2017. Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions: retrospect and prospect [J]. Biodivers Sci, 25(2): 163-174. [刘杰, 罗亚皇, 李德铢, 等, 2017. 青藏高原及毗邻区植物多样性演化与维持机制: 进展及展望 [J]. 生物多样性, 25(2): 163-174. ]

    • MACHAC A, 2020. The dynamics of bird diversity in the New World [J]. Syst Biol, 69(6): 1180-1199.

    • MARIN J, HEDGES SB, 2016. Time best explains global variation in species richness of amphibians, birds and mammals [J]. J Biogeogr, 43(6): 1069-1079.

    • MARIN J, RAPACCIUOLO G, COSTA GC, et al. , 2018. Evolutionary time drives global tetrapod diversity [J]. Proc Roy Soc B-Biol Sci, 285(1872): 20172378.

    • MCPEEK MA, BROWN JM, 2007. Cladeage and not diversification rate explains species richness among animal taxa [J]. Amer Nat, 169(4): 97-106.

    • MOODY ML, GARCIA M, 2021. Post-Oligocene diversification in Australia: Phylogeography, systematics and new species of Gonocarpus (Haloragaceae) [J]. Taxon, 70(4): 761-777.

    • MOREAU CS, BELL CD, 2013. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants [J]. Evolution, 67(8): 2240-2257.

    • PARADIS E, SCHLIEP K, 2019. ape 5. 0: an environment for modern phylogenetics and evolutionary analyses in R [J]. Bioinformatics, 35(3): 526-528.

    • PONTARP M, BUNNEFELD L, CABRAL JS, et al. , 2018. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models [J]. Trends Ecol Evol, 34(3): 211-223.

    • PYRON RA, WIENS JJ, 2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity [J]. Proc Roy Soc B: Biol Sci, 280(1770): 20131622.

    • R CORE TEAM, 2021. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria [EB/OL]. URL http: //www. R-project. org/.

    • RABOSKY DL, 2010. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions [J]. Ecol Lett, 12(8): 735-743.

    • RABOSKY DL, ADAMS DC, 2012. Rates of morphological evolution are correlated with species richness in salamanders [J]. Evolution, 66(6): 1807-1818.

    • RABOSKY DL, GRUNDLER M, ANDERSON C, et al. , 2014. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees [J]. Meth Ecol Evol, 5(7): 701-707.

    • RABOSKY DL, SLATER GJ, ALFARO ME, et al. , 2012. Clade age and species richness are decoupled across the eukaryotic tree of life [J]. Plos Biol, 10(8): e1001381.

    • RICKLEFS RE, RENNER SS, 1994. Species richness within families of flowering plants [J]. Evolution, 48(5): 1619-1636.

    • SÁNCHEZ-REYES LL, MORLON H, MAGALLÓN S, 2017. Uncovering higher-taxon diversification dynamics from clade age and species-richness data [J]. Syst Biol, 66(3): 367-378.

    • SCHOLL JP, WIENS JJ, 2016. Diversification rates and species richness across the tree of life [J]. Proc Roy Soc B: Biol Sci, 283(1838): 20161334.

    • SMITH SA, DONOGHUE MJ, 2008. Rates of molecular evolution are linked to life history in flowering plants [J]. Science, 322(5898): 86-89.

    • SMALL RL, CRONN RC, WENDEL JF, 2004. Use of nuclear genes for phylogeny reconstruction in plants [J]. Aust Syst Bot, 17(2): 145-170.

    • SOLTIS DE, MORT ME, LATVIS M, et al. , 2013. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach [J]. Amer J Bot, 100(5): 916-929.

    • STADLER T, RABOSKY DL, RICKLEFS RE, et al. , 2014. On age and species richness of higher taxa [J]. Amer Nat, 184(4): 447-455.

    • STUBBS RL, FOLK RA, SOLTIS DE, et al. , 2020. Diversification in the Arctic: Biogeography and systematics of the North American Micranthes (Saxifragaceae) [J]. Syst Bot, 45(4): 802-811.

    • SUN M, FOLK RA, GITZENDANNER MA, et al. , 2020. Recent accelerated diversification inrosids occurred outside the tropics [J]. Nat Comm, 11(1): 3333.

    • TANG ZY, FANG JY, 2004. A review on the elevational patterns of plant species diversity [J]. Biodivers Sci, 12(1): 20-28. [唐志尧, 方精云, 2004. 植物物种多样性的垂直分布格局 [J]. 生物多样性, 12(1): 20-28. ]

    • VALENTE LM, SAVOLAINEN V, MANNING JC, et al. , 2011. Explaining disparities in species richness between Mediterranean floristic regions: a case study in Gladiolus (Iridaceae) [J]. Global Ecol Biogeogr, 20(6): 881-892.

    • WIENS JJ, 2011. The causes of species richness patterns across space, time, and clades and the role of “Ecological Limits” [J]. Quart Rev Biol, 86(2): 75-96.

    • XU Y, 2021. Speciation patterns of Saxifraga. L based on sister species [D]. Chengdu: Sichuan University: 1-27. [徐莹, 2021. 基于姊妹对的虎耳草属物种形成模式研究 [D]. 成都: 四川大学: 1-27. ]

    • XING Y, REE RH, 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot [J]. Proc Natl Acad Sci USA, 114(17): 3444.

    • YAN HF, ZHANG CY, ANDERBERG AA, et al. , 2018. What explains high plant richness in East Asia? Time and diversification in the tribe Lysimachieae (Primulaceae) [J]. New Phytol, 219(1). doi: 10. 1111/nph. 15144.

    • ZHANG DJ, CHEN SY, GAO QB, et al. , 2008. Circumscription and phylogeny of Saxifraga sect. Ciliatae: Evidence from nrDNA ITS sequences [J]. J Syst Evol, 46(5): 667-675.

    • ZHANG JQ, MENG SY, RAO GY, 2014a. Phylogeography of Rhodiola kirilowii (Crassulaceae): A story of miocene divergence and quaternary expansion [J]. PLoS ONE, 9(11): e112923.

    • ZHANG JQ, MENG SY, ALLEN GA, et al. , 2014b. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae) [J]. Mol Phylogenet Evol, 77: 147-158.

  • 参考文献

    • ANTONELLI A, KISSLING WD, FLANTUA S, et al. , 2018. Geological and climatic influences on mountain biodiversity [J]. Nat Geosci, 11(10): 718-725.

    • ANGOSPERM PHYLOGENY GROUP, CHASE MW, CHRISTENHUSZ MJM, et al. , 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV [J]. Bot J Linn Soc, 181(1): 1-20.

    • BARRACLOUGH TG, SAVOLAINEN V, 2010. Evolutionary rates and species diversity in flowering plants [J]. Evolution, 55(4): 677-683.

    • BININDA-EMONDS ORP, 2004. The evolution of supertrees [J]. Trend Ecol Evol, 19(6): 315-322.

    • BLOOM DD, MARTIN F, SHORT A, et al. , 2014. Cladeage and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) Lineages [J]. PLoS ONE, 9(6): e98430.

    • CHANG J, RABOSKY DL, ALFARO ME, 2020. Estimating diversification rates on incompletely sampled phylogenies: theoretical concerns and practical solutions [J]. Syst Biol, 69(3): 602-611.

    • EBERSBACH J, MUELLNER-RIEHL AN, MICHALAK I, et al. , 2017. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. [J]. J Biogeogr, 44(4): 900-910.

    • FOLK RA, STUBBS RL, MORT ME, et al. , 2019. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation [J]. Proc Natl Acad Sci USA, 116(22): 201817999.

    • GORDON AD, 1986. Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves [J]. J Classif, 3(2): 335-348.

    • IGEA J, TANENTZAP AJ, 2020. Angiosperm speciation cools down in the tropics [J]. Ecol Lett, 23(4): 692-700.

    • JIAN S, SOLTIS PS, GITZENDANNER MA, et al. , 2008. Resolving an ancient, rapid radiation in Saxifragales [J]. Syst Biol, 57(1): 38-57.

    • LI H, WIENS JJ, 2019. Time explains regional richness patterns within clades more often than diversification rates or area [J]. Amer Nat, 193(4): 514-529.

    • LIU J, LUO YH, LI DZ, et al. , 2017. Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions: retrospect and prospect [J]. Biodivers Sci, 25(2): 163-174. [刘杰, 罗亚皇, 李德铢, 等, 2017. 青藏高原及毗邻区植物多样性演化与维持机制: 进展及展望 [J]. 生物多样性, 25(2): 163-174. ]

    • MACHAC A, 2020. The dynamics of bird diversity in the New World [J]. Syst Biol, 69(6): 1180-1199.

    • MARIN J, HEDGES SB, 2016. Time best explains global variation in species richness of amphibians, birds and mammals [J]. J Biogeogr, 43(6): 1069-1079.

    • MARIN J, RAPACCIUOLO G, COSTA GC, et al. , 2018. Evolutionary time drives global tetrapod diversity [J]. Proc Roy Soc B-Biol Sci, 285(1872): 20172378.

    • MCPEEK MA, BROWN JM, 2007. Cladeage and not diversification rate explains species richness among animal taxa [J]. Amer Nat, 169(4): 97-106.

    • MOODY ML, GARCIA M, 2021. Post-Oligocene diversification in Australia: Phylogeography, systematics and new species of Gonocarpus (Haloragaceae) [J]. Taxon, 70(4): 761-777.

    • MOREAU CS, BELL CD, 2013. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants [J]. Evolution, 67(8): 2240-2257.

    • PARADIS E, SCHLIEP K, 2019. ape 5. 0: an environment for modern phylogenetics and evolutionary analyses in R [J]. Bioinformatics, 35(3): 526-528.

    • PONTARP M, BUNNEFELD L, CABRAL JS, et al. , 2018. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models [J]. Trends Ecol Evol, 34(3): 211-223.

    • PYRON RA, WIENS JJ, 2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity [J]. Proc Roy Soc B: Biol Sci, 280(1770): 20131622.

    • R CORE TEAM, 2021. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria [EB/OL]. URL http: //www. R-project. org/.

    • RABOSKY DL, 2010. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions [J]. Ecol Lett, 12(8): 735-743.

    • RABOSKY DL, ADAMS DC, 2012. Rates of morphological evolution are correlated with species richness in salamanders [J]. Evolution, 66(6): 1807-1818.

    • RABOSKY DL, GRUNDLER M, ANDERSON C, et al. , 2014. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees [J]. Meth Ecol Evol, 5(7): 701-707.

    • RABOSKY DL, SLATER GJ, ALFARO ME, et al. , 2012. Clade age and species richness are decoupled across the eukaryotic tree of life [J]. Plos Biol, 10(8): e1001381.

    • RICKLEFS RE, RENNER SS, 1994. Species richness within families of flowering plants [J]. Evolution, 48(5): 1619-1636.

    • SÁNCHEZ-REYES LL, MORLON H, MAGALLÓN S, 2017. Uncovering higher-taxon diversification dynamics from clade age and species-richness data [J]. Syst Biol, 66(3): 367-378.

    • SCHOLL JP, WIENS JJ, 2016. Diversification rates and species richness across the tree of life [J]. Proc Roy Soc B: Biol Sci, 283(1838): 20161334.

    • SMITH SA, DONOGHUE MJ, 2008. Rates of molecular evolution are linked to life history in flowering plants [J]. Science, 322(5898): 86-89.

    • SMALL RL, CRONN RC, WENDEL JF, 2004. Use of nuclear genes for phylogeny reconstruction in plants [J]. Aust Syst Bot, 17(2): 145-170.

    • SOLTIS DE, MORT ME, LATVIS M, et al. , 2013. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach [J]. Amer J Bot, 100(5): 916-929.

    • STADLER T, RABOSKY DL, RICKLEFS RE, et al. , 2014. On age and species richness of higher taxa [J]. Amer Nat, 184(4): 447-455.

    • STUBBS RL, FOLK RA, SOLTIS DE, et al. , 2020. Diversification in the Arctic: Biogeography and systematics of the North American Micranthes (Saxifragaceae) [J]. Syst Bot, 45(4): 802-811.

    • SUN M, FOLK RA, GITZENDANNER MA, et al. , 2020. Recent accelerated diversification inrosids occurred outside the tropics [J]. Nat Comm, 11(1): 3333.

    • TANG ZY, FANG JY, 2004. A review on the elevational patterns of plant species diversity [J]. Biodivers Sci, 12(1): 20-28. [唐志尧, 方精云, 2004. 植物物种多样性的垂直分布格局 [J]. 生物多样性, 12(1): 20-28. ]

    • VALENTE LM, SAVOLAINEN V, MANNING JC, et al. , 2011. Explaining disparities in species richness between Mediterranean floristic regions: a case study in Gladiolus (Iridaceae) [J]. Global Ecol Biogeogr, 20(6): 881-892.

    • WIENS JJ, 2011. The causes of species richness patterns across space, time, and clades and the role of “Ecological Limits” [J]. Quart Rev Biol, 86(2): 75-96.

    • XU Y, 2021. Speciation patterns of Saxifraga. L based on sister species [D]. Chengdu: Sichuan University: 1-27. [徐莹, 2021. 基于姊妹对的虎耳草属物种形成模式研究 [D]. 成都: 四川大学: 1-27. ]

    • XING Y, REE RH, 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot [J]. Proc Natl Acad Sci USA, 114(17): 3444.

    • YAN HF, ZHANG CY, ANDERBERG AA, et al. , 2018. What explains high plant richness in East Asia? Time and diversification in the tribe Lysimachieae (Primulaceae) [J]. New Phytol, 219(1). doi: 10. 1111/nph. 15144.

    • ZHANG DJ, CHEN SY, GAO QB, et al. , 2008. Circumscription and phylogeny of Saxifraga sect. Ciliatae: Evidence from nrDNA ITS sequences [J]. J Syst Evol, 46(5): 667-675.

    • ZHANG JQ, MENG SY, RAO GY, 2014a. Phylogeography of Rhodiola kirilowii (Crassulaceae): A story of miocene divergence and quaternary expansion [J]. PLoS ONE, 9(11): e112923.

    • ZHANG JQ, MENG SY, ALLEN GA, et al. , 2014b. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae) [J]. Mol Phylogenet Evol, 77: 147-158.