en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

欧阳志伟(1991-),硕士,研究方向为天然药物化学,(E-mail)zwouyang@sina.com。

通讯作者:

覃江克,博士,教授,博士研究生导师,从事天然药物化学研究,(E-mail)jiangkeq@sina.com。

中图分类号:Q946.81

文献标识码:A

文章编号:1000-3142(2023)01-0111-09

DOI:10.11931/guihaia.gxzw202112023

参考文献
BLANCHFIEID JT, SANDS D, KENNARD C, et al. , 2003. Characterisation of alkaloids from some Australian Stephania (Menispermaceae) species [J]. Phytochemistry, 63(6): 711-720.
参考文献
CHEN L, SONG ZY, WANG JJ, et al. , 2010. Studies on the chemical constituents from aerial parts of Gynura divaricata [J]. J Chin Med Mat, 33(3): 373-376. [陈磊, 宋增艳, 王津江, 等, 2010. 白背三七地上部分化学成分研究 [J]. 中药材, 33(3): 373-376. ]
参考文献
CUI ZX, XU W, YANG XW, et al. , 2018. Chemical constituents of lipophilic parts in water extract from stem of Mahonia fortunei [J]. Chin Trad Herb Drugs, 49(1): 80-89. [崔泽旭, 徐嵬, 杨秀伟, 等, 2018. 细叶十大功劳茎水提取物脂溶性部位的化学成分研究 [J]. 中草药, 49(1): 80-89. ]
参考文献
Editorial Committee of Chinese Herb Medicine, State Administrationof Traditional Chinese Medicine, 1999. Chinese Herb Medicine: Vol. 3 [M]. Shanghai: Shanghai Science and Technology Press: 638. [国家中医药管理局《中华本草》编委会, 1999. 中华本草: 第3册 [M]. 上海: 上海科学技术出版社: 638.
参考文献
FU L, SERIKJAN S, HONG YQ, et al. , 2019. Isolation and identification of antioxidant activity constituents from Elephantopus scaber [J]. Chin J Exp Trad Med Form, 25(2): 156-162. [付露, 沙合尼西·赛力克江, 洪吟秋, 等, 2019. 地胆草抗氧化活性成分分离鉴定 [J]. 中国实验方剂学杂志, 25(2): 156-162. ]
参考文献
GREEN LC, WAGNER DA, GLOGOWSKI J, et al. , 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids [J]. Anal Biochem, 126(1): 131-138.
参考文献
Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 1993. Flora of Guangxi [M]. Nanning: Guangxi Science & Technology Publishing House: 410. [广西壮族自治区中国科学院广西植物研究所, 1993. 广西植物志 [M]. 南宁: 广西科学技术出版社: 410. ]
参考文献
GUZIK TJ, KORBUT R, ADAMEK-GUZIK T, 2003. Nitric oxide and superoxide in inflammation and immuneregulation [J]. J Physiol Pharm, 54(4): 469-487.
参考文献
GUO YT, SUN QS, QIU ZX, et al. , 2021. The therapeutic substances and pharmacological mechanism of Corydalis saxicola Bunting total alkaloids [J]. J Pharm Res, 40(7): 421-426. [郭雅婷, 孙秋爽, 邱志霞, 等, 2021. 岩黄连总碱药效物质基础及药理作用机制研究进展 [J]. 药学研究, 40(7): 421-426. ]
参考文献
HE ZC, WANG DM, LI GC, et al. , 2014. Study on alkaloids from Corydalis saxicola and their anti-oxidative activities [J]. Chin Trad Herb Drugs, 45(11): 1526-1531. [何志超, 王冬梅, 李国成, 等, 2014. 岩黄连生物碱类成分及其抗氧化活性研究 [J]. 中草药, 45(11): 1526-1531. ]
参考文献
JANSSEN RHAM, LOUSBERG RJJC, WIJKENS P , et al. , 1989. Assignment of 1H and 13C NMR resonances of some isoquinoline alkaloids [J]. Phytochemistry, 28(10): 2833-2839.
参考文献
Jiangsu New Medical College, 1996. Dictionary of Traditional, Chinese Medicine: Vol. 1 [M]. Shanghai: Shanghai Science and Technology Press: 1348. [江苏新医学院, 1996. 中药大辞典: 上册 [M]. 上海: 上海科技出版社: 1348. ]
参考文献
JIAO B, XU CT, LI Q, et al. , 2019. Chemical constituents of ethyl acetate extract from seed cake of Camellia oleifera and its anti-inflammatory activities [J]. Chin J Exp Trad Med Form, 25(22): 132-137. [焦兵, 许承婷, 黎青, 等, 2019. 油茶枯乙酸乙酯部位化学成分及其抗炎活性 [J]. 中国实验方剂学杂志, 25(22): 132-137. ]
参考文献
KARTHIKEYAN A, MOHAN P, CHINNAKALI P, et al. , 2018. Elevated systemic zonula occludens 1 is positively correlated with inflammation in cirrhosis [J]. Clin Chim Acta, 480: 193-198.
参考文献
KUAI CP, JU LJ, HU PP, et al. , 2020. Corydalis saxicola alkaloids attenuate cisplatin-induced neuropathic pain by reducing loss of IENF and blocking TRPV1 activation [J]. Am J Chin Med, 48(2): 407-428.
参考文献
LI ZF, WANG Q, FENG YL, et al. , 2012. Chemical constituents from Coptis chinensis [J]. J Chin Med Mat, 35(9): 1438-1441. [李志峰, 王琦, 冯育林, 等, 2012. 黄连的化学成分研究 [J]. 中药材, 35(9): 1438-1441. ]
参考文献
LIANG YH, TANG CL, LU SY, et al. , 2016. Serum metabonomics study of the hepatoprotective effect of Corydalis saxicola Bunting on carbon tetrachloride-induced acute hepatotoxicity in rats by 1H NMR analysis [J]. J Pharm Biomed Anal, 129: 70-79.
参考文献
LI P, LIU SS, LIU Q, et al. , 2019. A phytochemical study on Dichocarpum auriculatum, an endangered medicinal plant peculiar to China [J]. Chin Herb Med, 11(4): 364-368.
参考文献
LEE SR, LEE JG, HEO JH, et al. , 2021. Loss of PGRMC1 delays the progression of hepatocellular carcinoma via suppression of pro-inflammatory immune responses [J]. Cancers, 13(10): 2438-2438.
参考文献
MOSMANN T, 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays [J]. J Immunol Methods, 65 (1/2): 55-63.
参考文献
MAO YA, 2006. Chemical constituents and activity of Corydalis saxicola Bunting [D]. Nanning: Guangxi Medical University. [毛宇昂, 2006. 岩黄连化学成分和活性的研究 [D]. 南宁: 广西医科大学. ]
参考文献
MURATORI L, LONGHI MS, 2013. The interplay between regulatory and effector T cells in autoimmune hepatitis: Implications for innovative treatment strategies [J]. J Autoimmun, 46: 74-80.
参考文献
SI JY, CHEN DH, PAN RL, et al. , 2006. Chemical constituents of Hedyotis diffusa [J]. Nat Prod Res Dev, 18(6): 942-944. [斯建勇, 陈迪华, 潘瑞乐, 等, 2006. 白花蛇舌草的化学成分研究 [J]. 天然产物研究与开发, 18(6): 942-944. ]
参考文献
SUN Q, SHEN YH, TIAN JM, et al. , 2009. Chemical constituents of Crinum asiaticum L. var. sinicum Baker and their cytotoxic activities [J]. Chem Biodivers, 6(10): 1751-1757.
参考文献
SONG K, WANG HQ, LIU C, et al. , 2014. Chemical constituents from Chenopodium ambrosioides [J]. Chin J Chin Mat Med, 39(2): 254-257. [宋坤, 王洪庆, 刘超, 等, 2014. 土荆芥化学成分的研究 [J]. 中国中药杂志, 39(2): 254-257. ]
参考文献
SUN W, MA ZY, ZHANG X, et al. , 2015. Secondary metabolites of Petrosimonia sibirica [J]. Chem Nat Compd, 51(3): 530-531.
参考文献
SUN LD, WANG F, DAI F, et al. , 2015. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent [J]. Biochem Pharmacol, 95(3): 156-169.
参考文献
TANG CL, LIU P, ZHENG H, et al. , 2018. The chemical constituents and pharmacological effects of Corydalis saxicola Bunting: A review [J]. Trad Chin Drug Res Pharmacol, 29(1): 104-109. [唐超玲, 刘平, 郑华, 等, 2018. 岩黄连化学成分及药理作用研究进展 [J]. 中药新药与临床药理, 29(1): 104-109. ]
参考文献
WEI JQ, JIANG SY, TANG H, et al. , 2006. Photosynthetic and transpiration characteristics of Corydalis saxicola and its response to light intensity and concentration of CO2 [J]. Guihaia, 26(3): 317-320. [韦记青, 蒋水元, 唐辉, 等, 2006. 岩黄连光合与蒸腾特性及其对光照强度和CO2浓度的响应 [J]. 广西植物, 26(3): 317-320. ]
参考文献
WU YR, MA YB, ZHAO YX, et al. , 2012. Anti-hepatitis virus constituents from Corydalis saxicola [J]. Chin Trad Herb Drugs, 43(1): 32-37. [吴颖瑞, 马云宝, 赵友兴, 等, 2012. 岩黄连的抗乙肝病毒活性成分研究 [J]. 中草药, 43(1): 32-37. ]
参考文献
WU F, ZHENG H, YANG ZT, et al. , 2017. Urinary metabonomics study of the hepatoprotective effects of total alkaloids from Corydalis saxicola Bunting on carbon tetrachloride-induced chronic hepatotoxicity in rats using 1H NMR analysis [J]. J Pharm Biomed Anal, 140: 199-209.
参考文献
XIAO P, LIN CX, PAN BJ, et al. , 2019. Pharmacodynamics of Yanhuanglian suppository for rats with chronic pelvic inflammatory diseases [J]. Cent S Pharm, 17(12): 2052-2058. [肖萍, 林彩霞, 盘冰洁, 等, 2019. 岩黄连栓治疗慢性盆腔炎大鼠的药效学研究 [J]. 中南药学, 17(12): 2052-2058. ]
参考文献
YU JJ, QIU ZX, LIU QY, et al. , 2018. Rsearch advance on Corydalis saxicola Bunting [J]. J Pharm Res, 37(6): 342-345. [余姣娇, 邱志霞, 刘秋燕, 等, 2018. 岩黄连的研究进展 [J]. 药学研究, 37(6): 342-345. ]
参考文献
ZENG FL, XIANG YF, LIANG ZR, et al. , 2013. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola [J]. Am J Chin Med, 41(1): 119-130.
参考文献
ZHANG B, HUANG RZ, HUA J, et al. , 2016. Antitumor lignanamides from the aerial parts of Corydalis saxicola [J]. Phytomedicine, 23(13): 1599-1609.
参考文献
ZHUGE ML, JIANG WZ, XIAO P, et al. , 2019. Experimental study on anti-inflammatory and analgesic effects of Corydalis saxicola rectal suppository [J]. Chin J Ethnom Ethnopharm, 28(9): 11-13. [诸葛明丽, 蒋伟哲, 肖萍, 等, 2019. 岩黄连直肠栓抗炎镇痛作用实验研究 [J]. 中国民族民间医药, 28(9): 11-13. ]
参考文献
ZHANG C, YAO XD, LEI FH, 2020. Research progress on alkaloids in Corydalis saxicola Bunting [J]. Technol Dev Chem Ind, 49(12): 9-13. [张成, 姚兴东, 雷福厚, 2020. 岩黄连中生物碱的研究进展 [J]. 化工技术与开发, 49(12): 9-13. ]
目录contents

    摘要

    为研究岩黄连的化学成分及其抗炎活性,该研究采用硅胶、MCI、Sephadex LH-20、制备型高效液相色谱等方法对岩黄连95%乙醇提取物的乙酸乙酯萃取部位进行分离和纯化,通过核磁共振波谱(NMR)、高分辨质谱(HR-MS)等谱学手段鉴定其结构,同时采用脂多糖(LPS)诱导的小鼠巨噬细胞RAW264.7建立体外炎症筛选模型,并评价其抗炎活性。结果表明:从岩黄连乙醇提取物的乙酸乙酯部位中分离并鉴定了13个化合物,分别为黄连碱 (1)、盐酸小檗碱 (2)、文殊兰新碱 (3)、甲基小檗碱 (4)、脱氢卡维丁 (5)、左旋四氢巴马汀 (6)、药根碱 (7)、紫堇定 (8)、反式阿魏酸酰对羟基苯乙胺 (9)、对苯二甲酸二丁酯 (10)、山奈酚 (11)、异地芰普内酯 (12)、地芰普内酯 (13)。其中,化合物348-13为首次从该植物中分离获得;化合物4911对LPS诱导巨噬细胞RAW264.7产生炎症因子NO均具有良好的抑制作用,半抑制浓度(IC50)值分别为(18.8 ± 0.2)、(29.1 ± 0.3)、(18.0 ± 0.1)μmol·L-1,优于阳性对照吲哚美辛,在抗炎药物的研究与开发中表现出良好的发展潜力。该研究结果明确了岩黄连的抗炎物质基础,为其进一步深度研究与开发利用提供了一定的科学依据。

    Abstract

    Corydalis saxicola which belongs to the family of Papaveraceae, is always used to treat various diseases such as hepatitis B, cirrhosis, furuncle, acute icteric hepatitis, and advanced cancer as traditional Zhuang medicine in Guangxi province. To study the anti-inflammatory activity of the chemical constituents of C. saxicola, silica gel, MCI, Sephadex LH-20 column chromatography and preparative high performance liquid chromatography were used to separate the chemical constituents from the ethyl acetate fraction of 95% ethanol extract of C. saxicola. Their structures were identified by nuclear magnetic resonance (NMR) and high resolution mass spectrum (HR-MS). In addition, the anti-inflammatory activity was evaluated by the mouse macrophage RAW264.7 induced by lipopolysaccharide (LPS). The results showed that 13 chemical compounds were isolated and identified as coptisine (1), berberine hydrochloride (2), crinumaquine (3), worenine (4), dehydrocavidine (5), (-)-tetrahydropalmatine (6), jatrorrhizine (7), corydaldine (8), N-trans-feruloyl tyramine (9), dibutylterephthalate (10), kaempferol (11), isololiolide (12), loliolide (13) respectively. Compounds 3, 4, 8-13 were isolated from this plant for the first time. Compounds 4, 9 and 11 showed good inhibitory effects on LPS induced NO production by macrophage RAW264.7 with IC50 values of (18.8 ± 0.2), (29.1 ± 0.3), (18.0 ± 0.1) μmol·L-1 respectively, which was better than the positive control indomethacin, exhibited good potential in the research and development of anti-inflammatory drugs. These results can clarify the anti-inflammatory material basis of C. saxicola, and provide a scientific theoretical basis for its further utilization.

  • 岩黄连,又名土黄连、岩胡,为罂粟科(Papaveraceae)紫堇属植物石生黄堇(Corydalis saxicola)的全草,多分布于我国广西、贵州、云南等高山石缝、石穴中,是典型的喀斯特地带药用植物之一(唐超玲等,2018)。据《广西植物志》《中药大辞典》《中华本草》等记载,岩黄连味苦、性寒,具有清热、消肿、止血、止痛、利湿、拔毒等作用,在临床上用于治疗乙肝、肝硬化、急性黄疸型肝炎以及肝癌等肝部疾病,具有显著疗效(中国科学院广西植物研究所,1993; 江苏新医学院,1996; 国家中医药管理局《中华本草》编委会,1999; 韦记青等,2006; 吴颖瑞等,2012; Zeng et al.,2013; Liang et al.,2016; Zhang et al.,2016; Wu et al.,2017)。

  • 有研究表明,岩黄连中的主要有效成分是生物碱,其基本类型为四氢原小檗碱型、小檗碱型、阿朴菲型、血根碱型、苄基异喹啉型等。其中,脱氢卡维汀、小檗碱和巴马汀为其主要生物碱类活性成分,具有抗肿瘤、保肝、镇痛、抗菌等多种药理活性(余姣娇等,2018; 张成等,2020; Kuai et al.,2020)。也有研究表明,炎症与肝癌、肝硬化、黄疸型肝炎等疾病密切相关,在这些疾病的发生和发展过程中扮演着重要角色,有效干预炎症,有益于症状的缓解和相关疾病的治疗(Luigi et al.,2013; Ashwini et al.,2018; Lee et al.,2021)。目前,对岩黄连抗炎活性方面的研究很少,并且主要集中在生物总碱部位等粗提物研究上(唐超玲等,2018; 诸葛明丽等,2019; 肖萍等,2019; 郭雅婷等,2021),而对其中单体化合物抗炎活性的研究尚未见报道,其抗炎物质基础不明确。为了更深入了解岩黄连化学成分,探究其抗炎活性物质,本课题组对岩黄连95%乙醇提取物中的乙酸乙酯部分进行系统的化学成分分离和纯化、结构鉴定及抗炎活性研究,以期从纯单体化合物层面丰富壮药岩黄连的化学成分,阐明其抗炎活性物质基础,为岩黄连的进一步开发与利用提供科学依据。

  • 1 材料与方法

  • 1.1 材料

  • 岩黄连购于广西东兰县,经广西师范大学生命科学院唐绍清教授鉴定为罂粟科植物石生黄堇(Corydalis saxicola)的全草。

  • 1.2 仪器和试剂

  • LC3000型制备高效液相色谱仪(北京创新通恒科技有限公司); LC-20A分析型高效液相色谱仪(日本岛津科技公司); Inertil ODS-3(4.6 mm×250 mm)分析柱(日本岛津科技公司); 400、600 MHz 超导核磁共振仪(瑞士Bruker公司); ZHJH-C1112B超净工作台(Clean Bench公司); TH4-200倒置显微镜(OLYMPUS公司); Infinite M1000型多功能酶标仪(Tecan公司); YMC-Pack-ODS 色谱柱(20.0 mm×250 mm)(日本YMC公司); AB-8大孔树脂(郑州和成新材料科技有限公司); 100~200目柱色谱硅胶(青岛海洋化工有限公司); Sephadex LH-20凝胶(美国GE公司); MCI柱色谱(日本三菱公司)。甲醇(色谱纯,美国TEDIA公司); 乙醇、乙酸乙酯、正丁醇等溶剂(分析纯,西陇化工股份有限公司); 甲醇、三氟乙酸(TFA)溶剂(色谱纯,上海泰坦科技股份有限公司); RAW264.7巨噬细胞(中科院上海生命科学研究院); 一氧化氮(NO)试剂盒(碧云天公司,批号为022421210608); 噻唑蓝(MTT)粉剂(Solarbio公司,批号为1223G0531); 脂多糖(Solarbio公司,批号为426Y031); DMEM基础培养基、胎牛血清(Gibco公司,批号为2110875CP); 吲哚美辛(西亚公司,批号为Y2462)。

  • 1.3 提取和分离

  • 参考Zhang等(2016)的方法并有所改动。将9 kg岩黄连全草药材粉碎后,加入50 L石油醚回流3 h去除叶绿素,过滤后再加入95%乙醇回流提取3次,每次3 h,将提取液合并浓缩得到浸膏0.7 kg。将浸膏溶于1 L 3%的酒石酸溶液(pH = 2~3),依次用石油醚、乙酸乙酯、正丁醇萃取3次,浓缩得石油醚部位100 g、乙酸乙酯部位60 g、正丁醇部位60 g。

  • 取乙酸乙酯部位(60 g),用AB-8大孔树脂初步分离,乙醇-水(0∶100→100∶0, V/V)梯度洗脱,得到Fr.1~Fr.8共8个组分。Fr.3经Sephadex LH-20凝胶柱(甲醇-水,30∶70→100∶0,V/V)分离,得到Fr.3-1~Fr.3-8共8个组分。其中,Fr.3-2经制备型HPLC(甲醇-0.1% TFA,45∶55,V/V)纯化后得到化合物1(16 mg)、2(15 mg); Fr.3-4经制备型HPLC(甲醇-0.1% TFA,40∶60,V/V)纯化后得到化合物3(83.7 mg); Fr.3-5经制备型HPLC(甲醇-0.1% TFA,40∶60,V/V)纯化后得到化合物4(10 mg)、5(10 mg); Fr.3-6经制备型HPLC(甲醇-0.1% TFA,40∶60,V/V)纯化后得到化合物6(14 mg); Fr.3-8经制备型HPLC(甲醇-0.1% TFA,45∶55,V/V)纯化后得到化合物7(11.7 mg)、8(7 mg)。Fr.5经Sephadex LH-20凝胶柱(甲醇-水,30∶70→100∶0,V/V)分离,得到Fr.5-1~Fr.5-5共5个组分。其中,Fr.5-5经制备型HPLC(甲醇-水,35∶665,V/V)纯化后得到化合物9(6.1 mg)。Fr.8经硅胶柱色谱(二氯甲烷-甲醇)进行分离,得到Fr.8-1~Fr.8-6共6个组分。其中,Fr.8-1经制备型HPLC(甲醇-0.1% TFA,75∶25,V/V)纯化后得到化合物10(4.6 mg); Fr.8-3经MCI柱色谱处理后经制备型HPLC(甲醇-水,72∶28,V/V)纯化后得到化合物11(3.4 mg)、12(118.6 mg); Fr.8-4和Fr.8-5经制备型HPLC(甲醇-水,78∶22,V/V)纯化后得到化合物13(3.7 mg)。化合物的结构如图1所示。

  • 1.4 细胞的培养及毒性评价

  • RAW264.7细胞在含有10%胎牛血清的DMEM培养液中于37℃、5% CO2条件下培养,生长至70%时进行传代。采用MTT法(Mosmann,1983)检测化合物对RAW264.7细胞存活率的影响。

  • 对数生长周期的RAW264.7细胞株,按照180 μL每孔的体积将浓度为1×105个·mL-1的细胞悬浮液接种于96孔板中,同时设置空白组、吲哚美辛组以及给药组(50 μmol·L-1),每组设3个复孔,于5% CO2、37℃条件下培养24 h。在避光条件下每孔加入10 μL 5 g·L-1的MTT溶液,继续于5% CO2、37℃条件下孵育4 h,弃去培养液,每孔加入100 μL DMSO试剂充分溶解后用酶标仪在570 nm波长处测量吸光度OD值,并根据OD值计算RAW264.7细胞的存活率。计算公式如下:

  • 存活率=(OD给药组)/(OD空白组)×100%

  • 1.5 抗炎活性评价

  • 细胞分为4组,分别为空白组、LPS炎症模型组、不同浓度给药组(测试化合物及阳性药吲哚美辛),每个浓度设置3个复孔,取对数生长周期的RAW264.7细胞株,以1×105个·mL-1的密度接种于96孔板中,培养箱培养24 h后给药。空白组加入完全培养基,给药组加入不同浓度的化合物,继续培养孵育4 h后和LPS炎症模型组一起加入质量浓度为1 mg·L-1 的LPS,继续于细胞培养箱中培养24 h。

  • 1.6 NO含量测定

  • 采用Griess法(Green et al.,1982; 焦兵等,2019)测定给药组对LPS诱导的RAW264.7细胞上清液中NO的含量,收集各组细胞上清液,严格按照NO检测试剂盒说明书进行测定。

  • 1.7 统计学分析

  • 利用SPSS 21.0软件进行数据处理和统计学分析; 以半抑制浓度(IC50)值表示化合物体外抗炎活性强度,每个实验重复3次,所有数值均以x-±s形式表示。

  • 图1 化合物1-13 结构式

  • Fig.1 Chemical structures of compounds 1-13

  • 2 结果与分析

  • 2.1 化合物的结构鉴定

  • 化合物1 C19H14NO4,黄色晶体,HR-ESI-MS m/z: 321.259 0 [M+H]+1H-NMR(DMSO-d6,400 MHz)δH: 7.78(1H,s,H-1),7.08(1H,s,H-4),3.20(2H,t,J = 6.3 Hz,H-5),4.89(2H,t,J = 6.3 Hz,H-6),9.97(1H,s,H-8),8.03(1H,d,J = 8.6 Hz,H-11),7.83(1H,d,J = 8.6 Hz,H-12),8.98(1H,s,H-13),6.17(2H,s,2-OCH2O-3),6.53(2H,s,9-OCH2O-10); 13C-NMR(DMSO-d6,100 MHz)δc: 105.3(C-1),147.7(C-2),149.8(C-3),108.4(C-4),130.6(C-4a),26.3(C-5),55.1(C-6),143.8(C-8),111.6(C-8a),144.6(C-9),147.7(C-10),121.1(C-11),121.8(C-12),132.3(C-12a),121.1(C-13),136.8(C-13a),120.5(C-13b),102.1(2-OCH2O-3),104.5(9-OCH2O-10)。以上数据与文献(毛宇昂,2006)报道基本一致,故鉴定该化合物为黄连碱(coptisine)。

  • 化合物2 C20H18ClNO4,浅黄色结晶粉末,HR-ESI-MS m/z: 372.103 3 [M+H]+1H-NMR(DMSO-d6,400 MHz)δH: 7.79(1H,s,H-1),7.08(1H,s,H-4),3.20(2H,t, J = 6.4 Hz,H-5),4.94(2H,t,J = 6.3 Hz,H-6),9.91(1H,s,H-8),8.20(1H,d,J = 9.2 Hz,H-11),8.00(1H,d,J = 9.0 Hz,H-12),8.97(1H,s,H-13),6.17(2H,s,2-OCH2O-3),4.09(3H,s,9-OCH3),4.06(3H,s,10-OCH3); 13C-NMR(DMSO-d6,100 MHz)δC: 105.5(C-1),147.7(C-2),150.4(C-3),108.4(C-4),130.7(C-4a),26.3(C-5),55.2(C-6),143.7(C-8),121.4(C-8a),145.5(C-9),149.8(C-10),126.7(C-11),123.6(C-12),133.0(C-12a),120.5(C-13),137.5(C-13a),120.2(C-13b),102.1(2-OCH2O-3),62.0(9-OCH3),57.1(10-OCH3)。以上数据与文献(Janssen et al.,1989)报道基本一致,故鉴定该化合物为盐酸小檗碱(berberine hydrochloride)。

  • 化合物3 C20H18NO4+,黄色粉末,HR-ESI-MS m/z: 337.127 6 [M+H]+1H-NMR(DMSO-d6,400 MHz)δH: 7.78(1H,s,H-1),7.09(1H,s,H-4),13.20(2H,t,J = 8.0 Hz,H-5),4.93(2H,t,J = 8 Hz,H-6),9.88(1H,s,H-8),7.99(1H,d, J = 9.1 Hz,H-10),8.20(1H,d,J = 9.2 Hz,H-11),8.92(1H,s,H-13),6.17(2H,s,-OCH2O-),4.09(3H,s,-OCH3),4.07(3H,s,-OCH3); 13C-NMR(DMSO-d6,100 MHz)δC: 105.4(C-1),149.8(C-2),147.7(C-3),108.5(C-4),120.4(C-4a),26.3(C-5),55.2(C-6),145.5(C-8),121.4(C-8a),150.4(C-9),123.5(C-10),126.8(C-11),143.7(C-12),133.0(C-12a),120.2(C-13),137.5(C-13a),130.7(C-13b),102.1(C-OCH2O),61.9(9-OCH3),57.1(12-OCH3)。以上波谱数据与文献(Sun et al.,2009)报道一致,故鉴定该化合物为文殊兰新碱(crinumaquine)。

  • 化合物4 C21H20NO4+,黄色针晶,HR-ESI-MS m/z: 351.143 3 [M+H]+1H-NMR(DMSO-d6,400 MHz)δH: 7.15(1H,s,H-1),7.47(1H,s,H-4),3.11(2H,s,H-5),4.82(2H,s,H-6),9.89(1H,s,H-8),8.20(2H,s,H-9,12),4.09(6H,s,-OCH3),6.18(2H,s,-OCH2O-),2.93(3H,s,CH3); 13C-NMR(DMSO-d6,100 MHz)δC: 110.6(C-1),146.4(C-2),149.0(C-3),108.2(C-4),133.8(C-4a),27.3(C-5),57.0(C-6),144.0(C-8),121.4(C-8a),144.1(C-9),150.3(C-10),125.9(C-11),120.4(C-12),133.0(C-12a),135.9(C-13),120.8(C-13a),130.1(C-13b),56.7(O-CH3),62.1(O-CH3),17.7(C-CH3),102.0(-OCH2O-)。以上数据与文献(李志峰等,2012)报道基本一致,故鉴定该化合物为甲基小檗碱(worenine)。

  • 化合物5 C21H20NO4+,黄色粉末,HR-ESI-MS m/z: 373.099 7 [M+Na]+1H-NMR(DMSO-d6,400 MHz)δH: 7.17(1H,s,H-1),7.38(1H,s,H-4),3.14(2H,t,J = 5.9 Hz,H-5),4.79(2H,t,J = 5.8 Hz,H-6),9.95(1H,s,H-8),8.00(1H,d,J = 9.0 Hz,H-11),8.06(1H,d,J = 9.0 Hz,H-12),3.89(3H,s,2-OCH3),3.85(3H,s,3-OCH3),6.56(2H,s,9-O-CH2-O-10),2.97(3H,s,13-CH3); 13C-NMR(DMSO-d6,100 MHz)δC: 111.0(C-1),150.6(C-2),147.2(C-3),110.9(C-4),135.6(C-4a),26.8(C-5),56.7(C-6),143.1(C-8),132.4(C-8a),147.0(C-9),144.7(C-10),114.4(C-11),119.2(C-12),131.8(C-12a),120.2(C-13),130.5(C-13a),119.4(C-13b),56.1(2-O-CH3),55.9(3-O-CH3),104.7(-OCH2O-),18.2(13-CH3)。以上数据与文献(何志超等,2014)报道基本一致,故鉴定化合物为脱氢卡维丁(dehydrocavidine)。

  • 化合物6 C21H25NO4,淡黄色无定形粉末,HR-ESI-MS m/z: 356.186 6 [M+H]+1H-NMR(DMSO-d6,400 MHz)δH: 6.87(1H,s,H-1),6.68(1H,s,H-4),2.93(1H,m,H-5α),2.44(1H,m,H-5β),2.54(1H,m,H-6α),3.10(1H,m,H-6β),4.06(1H,d,J = 15.7 Hz,H-8β),6.88(2H,s,H-11,12),2.60(1H,dd,J = 15.3,11.2 Hz,H-13α),3.35(1H,d,J = 3.7 Hz,H-13β),3.39(2H,dd,J = 3.6 Hz,H-8α,13a),3.77(3H,s,2-OCH3),3.75(3H,s,3-OCH3),3.73(3H,s,9-OCH3),3.72(3H,s,10-OCH3); 13C-NMR(DMSO-d6,100 MHz)δC: 109.4(C-1),147.2(C-2),147.2(C-3),111.7(C-4),126.4(C-4a),28.6(C-5),50.9(C-6),53.4(C-8),127.7(C-8a),144.4(C-9),149.8(C-10),111.1(C-11),123.7(C-12),128.3(C-12a),35.7(C-13),58.8(C-13a),129.7(C-13b),55.4(2-OCH3),55.7(3-OCH3),59.6(9-OCH3),55.7(10-OCH3)。以上数据与文献(Blanchfieid et al.,2003)的报道基本一致,故鉴定化合物为左旋四氢巴马汀[(-)-tetrahydropalmatine]。

  • 化合物7 C20H20NO4+,黄色无定形粉末,HR-ESI-MS m/z: 339.143 4 [M+H]+1H-NMR(DMSO-d6,400 MHz)δH: 7.04(1H,s,H-1),7.57(1H,s,H-4),3.19(2H,t,H-5),4.93(2H,t,J = 6.3 Hz,H-6),9.85(1H,s,H-8),8.03(1H,d,J = 9.1 Hz,H-11),8.17(1H,d,J = 9.1 Hz,H-12),8.78(1H,s,H-13),3.88(3H,s,C2-OCH3),4.05(3H,s,C9-OCH3),4.08(3H,s,C10-OCH3); 13C-NMR(DMSO-d6,100 MHz)δC: 111.5(C-1),150.7(C-2),146.6(C-3),112.3(C-4),127.1(C-4a),26.1(C-5),55.6(C-6),145.5(C-8),119.2(C-8a),150.3(C-9),143.6(C-10),123.7(C-11),126.7(C-12),133.2(C-12a),119.6(C-13),137.9(C-13a),121.4(C-13b),56.0(C-OCH3),62.0(C-OCH3),57.1(C-OCH3)。以上数据与文献(Li et al.,2019)报道一致,故鉴定化合物为药根碱(jatrorrhizine)。

  • 化合物8 C11H13NO3,无色棱晶,HR-ESI-MS m/z: 208.097 6 [M+H]+1H-NMR(DMSO-d6,600 MHz)δH: 3.33(2H,m,H-3),2.81(2H,t,J = 6.6 Hz,H-4),7.34(1H,s,H-5),7.72(1H,s,H-8),6.88(1H,s,N-H),3.80(3H,s,6-OCH3),3.75(3H,s,7-OCH3); 13C-NMR(DMSO-d6,150 MHz)δC: 164.7(C-1),40.1(C-3),27.4(C-4),132.9(C-4a),109.7(C-5),151.6(C-6),147.4(C-7),110.4(C-8),121.6(C-8a),55.7(6-CH3),55.5(7-OCH3)。以上数据与文献(崔泽旭等,2018)报道相符,故鉴定化合物为紫堇定(corydaldine)。

  • 化合物9 C19H21NO5,淡粉色粉末,HR-ESI-MS m/z: 344.149 3 [M+H]+1H-NMR(CDCl3,600 MHz)δH: 6.96(1H,s,H-2),7.03(1H,d,J = 8.4 Hz,H-5),6.89(1H,d,J = 8.4 Hz,H-6),7.53(1H,d,J = 15.5 Hz,H-7),6.17(1H,d,J = 15.5 Hz,H-8),6.70(2H,d,J = 7.8 Hz,H-2′,6′),6.86(2H,d,J = 7.8 Hz,H-3′,5′),2.81(2H,t,J = 6.9 Hz,H-7′),3.62(2H,q,J = 6.9 Hz,H-8′),3.88(6H,d,-OCH3); 13C-NMR(CDCl3,150 MHz)δC: 127.4(C-1),109.7(C-2),147.6(C-3),146.8(C-4),111.4(C-5),122.3(C-6),141.3(C-7),114.6(C-8),166.4(C-9),130.8(C-1′),114.9(C-2),146.8(C-3′),144.4(C-4′),118.2(C-5′),121.5(C-6′),35.4(C-7′),41.0(C-8′)。以上数据与文献(宋坤等,2014)报道相一致,故鉴定化合物9为反式阿魏酸酰对羟基苯乙胺(N-trans-feruloyl tyramine)。

  • 化合物10 C16H22O4,无色油状液体,HR-ESI-MS m/z: 301.142 4 [M+Na]+1H-NMR(DMSO-d6,600 MHz)δH: 7.70(2H,q,J = 4.3 Hz,H-2,5),7.65(2H,q,J = 4.3 Hz,H-3,6),4.19(4H,t,H-9,9′),1.58(4H,m,H-10,10′),1.33(4H,m,H-11,11′),0.88(6H,t,H-2,12′); 13C-NMR(DMSO-d6,150 MHz)δC: 132.1(C-1,4),129.1(C-2,5),132.0(C-3,6),167.6(C-7,7′),65.6(C-9,9′),30.4(C-10,10′),19.1(C-11,11′),13.9(C-12,12′)。以上数据与文献(陈磊等,2010)报道基本一致,故鉴定该化合物10为对苯二甲酸二丁酯(dibutylterephthalate)。

  • 化合物11 C15H10O6,黄色无定形粉末,HR-ESI-MS m/z: 287.054 8 [M+H]+1H-NMR(MeOH-d4,600 MHz)δH: 8.04(2H,d,J = 8.8 Hz,H-2′,H-6′),6.86(2H,d,J = 8.8 Hz,H-3′,H-5′),6.14(1H,d,J = 1.8 Hz,H-6),6.35(1H,d,J = 1.7 Hz,H-8); 13C-NMR(MeOH-d4,150 MHz)δC: 146.6(C-2),135.7(C-3),175.9(C-4),161.1(C-5),97.9(C-6),164.1(C-7),93.1(C-8),156.8(C-9),103.1(C-10),122.3(C-1′),129.3(C-2′,C-6′),114.9(C-3′,C-5′),159.1(C-4′)。以上数据与文献(斯建勇等,2006)报道相一致,故鉴定化合物为山奈酚(kaempferol)。

  • 化合物12 C11H16O3,淡黄色粉末,HR-ESI-MS m/z: 197.117 0 [M+H]+1H-NMR(DMSO-d6,600 MHz)δH: 5.79(1H,s,H-8),4.90(1H,s,3-OH),3.98(1H,m,H-3),2.35(2H,ddd,J = 11.6,4.1,2.1 Hz,H-2α),1.51(3H,s,H-1),1.89(1H,ddd, J = 12.8,4.3,2.2 Hz,H-4α),1.29(2H,d,J = 11.6 Hz,H-2β),1.22(3H,s,H-12),1.19(3H,s,H-11),1.15(1H,d,J = 12.1 Hz,H-4β); 13C-NMR(DMSO-d6,150 MHz)δC: 34.8(C-1),47.9(C-2),63.1(C-3),49.7(C-4),86.5(C-5),171.0(C-7),112.4(C-8),181.8(C-9),25.3(C-10),29.8(C-11),24.7(C-12)。以上数据与文献(付露等,2019)报道相一致,故鉴定化合物为异地芰普内酯(isololiolide)。

  • 化合物13 C11H16O3,淡黄色粉末,HR-ESI-MS m/z: 197.117 0 [M+H]+1H-NMR(Pyr-d5,600 MHz)δH: 5.86(1H,s,H-8),4.38(1H,s,3-OH),3.94(1H,m,H-3),2.60(1H,dd,J = 13.4,2.3 Hz,H-4α),2.04(1H,dd,J = 14.2,2.5 Hz,H-2α),1.93(3H,s,H-1),1.76(1H,dd,J = 13.4,3.9 Hz,H-4β),1.52(3H,s,H-12),1.41(1H,dd,J = 14.2,3.9 Hz,H-2β),1.14(3H,s,H-11); 13C-NMR(Pyr-d5,150 MHz)δC: 37.1(C-1),47.3(C-2),66.8(C-3),48.6(C-4),88.0(C-5),172.8(C-7),114.0(C-8),183.9(C-9),31.6(C-10),28.2(C-11),27.5(C-12)。经比对,与化合物12为同分异构体,并且以上数据与文献(Sun W et al.,2015)报道相一致,故鉴定化合物为地芰普内酯(loliolide)。

  • 2.2 抗炎活性测试

  • 炎症是生物体对抗外来有害物质或损伤的防御性反应,通过释放NO、TNF-α等炎症介质或因子对抗细菌、病毒等入侵物质,以维持机体平衡; 适度的炎症反应对生物体有利,但过度和持续的炎症反应会导致细胞肿胀、破裂并释放细胞毒性物质,最终引起组织坏死,引发炎症性疾病(Sun LD et al.,2015)。NO是一种独特的内源性信号分子,参与正常生理活动; 然而,炎症反应过度爆发时,NO会异常过量表达,导致炎症加剧,其与多种炎症疾病的发生和发展密切相关,通常被认为是炎症产生的标志并用作体外抗炎药物筛选模型(Guzik et al.,2003)。本研究采用LPS刺激RAW264.7细胞产生炎症介质NO对所分离的化合物进行抗炎活性初筛。首先,采用MTT方法测定化合物对RAW264.7细胞存活率的影响,以确保后续实验NO抑制实验在基本无毒的条件下进行。本研究结果表明,当化合物浓度为50 μmol·L-1时,除化合物1-3外,其余化合物RAW264.7细胞存活率均高于70%。因此,我们用Griess法进一步测试了化合物4-13对LPS诱导RAW264.7细胞产生NO的抑制作用(表1)。从表1可以看出,化合物4911对NO的产生有明显的抑制活性,IC50值分别为(18.8 ± 0.2)、(29.1 ± 0.3)、(18.0 ± 0.1)μmol·L-1,优于对照药吲哚美辛,表现出良好的体外抗炎活性。

  • 表1 化合物4-13对LPS诱导RAW264.7 细胞产生NO抑制的IC50

  • Table1 IC50 values of compounds 4-13 on NO production in LPS-induced RAW264.7 macrophage cells

  • 3 讨论与结论

  • 作为我国西南喀斯特地带民间常用的珍贵药材之一,岩黄连在治疗急性黄疸型肝炎、肝硬化、肝癌等疾病方面具有良好的疗效,非常值得深入研究与开发利用。岩黄连相关产品的开发,其化学成分与药理学的系统研究是基础。本研究从岩黄连95%乙醇提取物的乙酸乙酯萃取部位中分离出13个化合物,包括9个生物碱类化合物(1-9)、3个酯类化合物(101213)和1个黄酮(11)。其中,化合物348-13成分首次从岩黄连植物中分离得到,抗炎活性筛选的研究结果表明化合物49和化合物11对LPS诱导的小鼠巨噬细胞RAW264.7产生炎症介质NO具有良好的抑制活性,优于阳性对照吲哚美辛。

  • 有研究表明,急性黄疸型肝炎往往会导致过度炎症反应,并且炎症会与肝硬化、肝癌的发展密切相关,适当干预炎症有助于这些疾病的治疗(Muratori &Longhi,2013; Karthikeyan et al.,2018; Lee et al.,2021)。岩黄连中的单体化合物除表现出抗病毒、抗肿瘤等活性外,还表现出良好的抗炎活性,其可能亦通过对炎症的干预发挥协同治疗作用,这可能是其表现出良好疗效的因素之一。本研究结果进一步丰富了岩黄连的化学成分,并发现了其中有效的抗炎化合物,为今后阐明岩黄连中的抗炎药效物质基础,以及为其进一步深度研究与开发利用提供了科学理论依据。

  • 参考文献

    • BLANCHFIEID JT, SANDS D, KENNARD C, et al. , 2003. Characterisation of alkaloids from some Australian Stephania (Menispermaceae) species [J]. Phytochemistry, 63(6): 711-720.

    • CHEN L, SONG ZY, WANG JJ, et al. , 2010. Studies on the chemical constituents from aerial parts of Gynura divaricata [J]. J Chin Med Mat, 33(3): 373-376. [陈磊, 宋增艳, 王津江, 等, 2010. 白背三七地上部分化学成分研究 [J]. 中药材, 33(3): 373-376. ]

    • CUI ZX, XU W, YANG XW, et al. , 2018. Chemical constituents of lipophilic parts in water extract from stem of Mahonia fortunei [J]. Chin Trad Herb Drugs, 49(1): 80-89. [崔泽旭, 徐嵬, 杨秀伟, 等, 2018. 细叶十大功劳茎水提取物脂溶性部位的化学成分研究 [J]. 中草药, 49(1): 80-89. ]

    • Editorial Committee of Chinese Herb Medicine, State Administrationof Traditional Chinese Medicine, 1999. Chinese Herb Medicine: Vol. 3 [M]. Shanghai: Shanghai Science and Technology Press: 638. [国家中医药管理局《中华本草》编委会, 1999. 中华本草: 第3册 [M]. 上海: 上海科学技术出版社: 638.

    • FU L, SERIKJAN S, HONG YQ, et al. , 2019. Isolation and identification of antioxidant activity constituents from Elephantopus scaber [J]. Chin J Exp Trad Med Form, 25(2): 156-162. [付露, 沙合尼西·赛力克江, 洪吟秋, 等, 2019. 地胆草抗氧化活性成分分离鉴定 [J]. 中国实验方剂学杂志, 25(2): 156-162. ]

    • GREEN LC, WAGNER DA, GLOGOWSKI J, et al. , 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids [J]. Anal Biochem, 126(1): 131-138.

    • Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 1993. Flora of Guangxi [M]. Nanning: Guangxi Science & Technology Publishing House: 410. [广西壮族自治区中国科学院广西植物研究所, 1993. 广西植物志 [M]. 南宁: 广西科学技术出版社: 410. ]

    • GUZIK TJ, KORBUT R, ADAMEK-GUZIK T, 2003. Nitric oxide and superoxide in inflammation and immuneregulation [J]. J Physiol Pharm, 54(4): 469-487.

    • GUO YT, SUN QS, QIU ZX, et al. , 2021. The therapeutic substances and pharmacological mechanism of Corydalis saxicola Bunting total alkaloids [J]. J Pharm Res, 40(7): 421-426. [郭雅婷, 孙秋爽, 邱志霞, 等, 2021. 岩黄连总碱药效物质基础及药理作用机制研究进展 [J]. 药学研究, 40(7): 421-426. ]

    • HE ZC, WANG DM, LI GC, et al. , 2014. Study on alkaloids from Corydalis saxicola and their anti-oxidative activities [J]. Chin Trad Herb Drugs, 45(11): 1526-1531. [何志超, 王冬梅, 李国成, 等, 2014. 岩黄连生物碱类成分及其抗氧化活性研究 [J]. 中草药, 45(11): 1526-1531. ]

    • JANSSEN RHAM, LOUSBERG RJJC, WIJKENS P , et al. , 1989. Assignment of 1H and 13C NMR resonances of some isoquinoline alkaloids [J]. Phytochemistry, 28(10): 2833-2839.

    • Jiangsu New Medical College, 1996. Dictionary of Traditional, Chinese Medicine: Vol. 1 [M]. Shanghai: Shanghai Science and Technology Press: 1348. [江苏新医学院, 1996. 中药大辞典: 上册 [M]. 上海: 上海科技出版社: 1348. ]

    • JIAO B, XU CT, LI Q, et al. , 2019. Chemical constituents of ethyl acetate extract from seed cake of Camellia oleifera and its anti-inflammatory activities [J]. Chin J Exp Trad Med Form, 25(22): 132-137. [焦兵, 许承婷, 黎青, 等, 2019. 油茶枯乙酸乙酯部位化学成分及其抗炎活性 [J]. 中国实验方剂学杂志, 25(22): 132-137. ]

    • KARTHIKEYAN A, MOHAN P, CHINNAKALI P, et al. , 2018. Elevated systemic zonula occludens 1 is positively correlated with inflammation in cirrhosis [J]. Clin Chim Acta, 480: 193-198.

    • KUAI CP, JU LJ, HU PP, et al. , 2020. Corydalis saxicola alkaloids attenuate cisplatin-induced neuropathic pain by reducing loss of IENF and blocking TRPV1 activation [J]. Am J Chin Med, 48(2): 407-428.

    • LI ZF, WANG Q, FENG YL, et al. , 2012. Chemical constituents from Coptis chinensis [J]. J Chin Med Mat, 35(9): 1438-1441. [李志峰, 王琦, 冯育林, 等, 2012. 黄连的化学成分研究 [J]. 中药材, 35(9): 1438-1441. ]

    • LIANG YH, TANG CL, LU SY, et al. , 2016. Serum metabonomics study of the hepatoprotective effect of Corydalis saxicola Bunting on carbon tetrachloride-induced acute hepatotoxicity in rats by 1H NMR analysis [J]. J Pharm Biomed Anal, 129: 70-79.

    • LI P, LIU SS, LIU Q, et al. , 2019. A phytochemical study on Dichocarpum auriculatum, an endangered medicinal plant peculiar to China [J]. Chin Herb Med, 11(4): 364-368.

    • LEE SR, LEE JG, HEO JH, et al. , 2021. Loss of PGRMC1 delays the progression of hepatocellular carcinoma via suppression of pro-inflammatory immune responses [J]. Cancers, 13(10): 2438-2438.

    • MOSMANN T, 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays [J]. J Immunol Methods, 65 (1/2): 55-63.

    • MAO YA, 2006. Chemical constituents and activity of Corydalis saxicola Bunting [D]. Nanning: Guangxi Medical University. [毛宇昂, 2006. 岩黄连化学成分和活性的研究 [D]. 南宁: 广西医科大学. ]

    • MURATORI L, LONGHI MS, 2013. The interplay between regulatory and effector T cells in autoimmune hepatitis: Implications for innovative treatment strategies [J]. J Autoimmun, 46: 74-80.

    • SI JY, CHEN DH, PAN RL, et al. , 2006. Chemical constituents of Hedyotis diffusa [J]. Nat Prod Res Dev, 18(6): 942-944. [斯建勇, 陈迪华, 潘瑞乐, 等, 2006. 白花蛇舌草的化学成分研究 [J]. 天然产物研究与开发, 18(6): 942-944. ]

    • SUN Q, SHEN YH, TIAN JM, et al. , 2009. Chemical constituents of Crinum asiaticum L. var. sinicum Baker and their cytotoxic activities [J]. Chem Biodivers, 6(10): 1751-1757.

    • SONG K, WANG HQ, LIU C, et al. , 2014. Chemical constituents from Chenopodium ambrosioides [J]. Chin J Chin Mat Med, 39(2): 254-257. [宋坤, 王洪庆, 刘超, 等, 2014. 土荆芥化学成分的研究 [J]. 中国中药杂志, 39(2): 254-257. ]

    • SUN W, MA ZY, ZHANG X, et al. , 2015. Secondary metabolites of Petrosimonia sibirica [J]. Chem Nat Compd, 51(3): 530-531.

    • SUN LD, WANG F, DAI F, et al. , 2015. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent [J]. Biochem Pharmacol, 95(3): 156-169.

    • TANG CL, LIU P, ZHENG H, et al. , 2018. The chemical constituents and pharmacological effects of Corydalis saxicola Bunting: A review [J]. Trad Chin Drug Res Pharmacol, 29(1): 104-109. [唐超玲, 刘平, 郑华, 等, 2018. 岩黄连化学成分及药理作用研究进展 [J]. 中药新药与临床药理, 29(1): 104-109. ]

    • WEI JQ, JIANG SY, TANG H, et al. , 2006. Photosynthetic and transpiration characteristics of Corydalis saxicola and its response to light intensity and concentration of CO2 [J]. Guihaia, 26(3): 317-320. [韦记青, 蒋水元, 唐辉, 等, 2006. 岩黄连光合与蒸腾特性及其对光照强度和CO2浓度的响应 [J]. 广西植物, 26(3): 317-320. ]

    • WU YR, MA YB, ZHAO YX, et al. , 2012. Anti-hepatitis virus constituents from Corydalis saxicola [J]. Chin Trad Herb Drugs, 43(1): 32-37. [吴颖瑞, 马云宝, 赵友兴, 等, 2012. 岩黄连的抗乙肝病毒活性成分研究 [J]. 中草药, 43(1): 32-37. ]

    • WU F, ZHENG H, YANG ZT, et al. , 2017. Urinary metabonomics study of the hepatoprotective effects of total alkaloids from Corydalis saxicola Bunting on carbon tetrachloride-induced chronic hepatotoxicity in rats using 1H NMR analysis [J]. J Pharm Biomed Anal, 140: 199-209.

    • XIAO P, LIN CX, PAN BJ, et al. , 2019. Pharmacodynamics of Yanhuanglian suppository for rats with chronic pelvic inflammatory diseases [J]. Cent S Pharm, 17(12): 2052-2058. [肖萍, 林彩霞, 盘冰洁, 等, 2019. 岩黄连栓治疗慢性盆腔炎大鼠的药效学研究 [J]. 中南药学, 17(12): 2052-2058. ]

    • YU JJ, QIU ZX, LIU QY, et al. , 2018. Rsearch advance on Corydalis saxicola Bunting [J]. J Pharm Res, 37(6): 342-345. [余姣娇, 邱志霞, 刘秋燕, 等, 2018. 岩黄连的研究进展 [J]. 药学研究, 37(6): 342-345. ]

    • ZENG FL, XIANG YF, LIANG ZR, et al. , 2013. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola [J]. Am J Chin Med, 41(1): 119-130.

    • ZHANG B, HUANG RZ, HUA J, et al. , 2016. Antitumor lignanamides from the aerial parts of Corydalis saxicola [J]. Phytomedicine, 23(13): 1599-1609.

    • ZHUGE ML, JIANG WZ, XIAO P, et al. , 2019. Experimental study on anti-inflammatory and analgesic effects of Corydalis saxicola rectal suppository [J]. Chin J Ethnom Ethnopharm, 28(9): 11-13. [诸葛明丽, 蒋伟哲, 肖萍, 等, 2019. 岩黄连直肠栓抗炎镇痛作用实验研究 [J]. 中国民族民间医药, 28(9): 11-13. ]

    • ZHANG C, YAO XD, LEI FH, 2020. Research progress on alkaloids in Corydalis saxicola Bunting [J]. Technol Dev Chem Ind, 49(12): 9-13. [张成, 姚兴东, 雷福厚, 2020. 岩黄连中生物碱的研究进展 [J]. 化工技术与开发, 49(12): 9-13. ]

  • 参考文献

    • BLANCHFIEID JT, SANDS D, KENNARD C, et al. , 2003. Characterisation of alkaloids from some Australian Stephania (Menispermaceae) species [J]. Phytochemistry, 63(6): 711-720.

    • CHEN L, SONG ZY, WANG JJ, et al. , 2010. Studies on the chemical constituents from aerial parts of Gynura divaricata [J]. J Chin Med Mat, 33(3): 373-376. [陈磊, 宋增艳, 王津江, 等, 2010. 白背三七地上部分化学成分研究 [J]. 中药材, 33(3): 373-376. ]

    • CUI ZX, XU W, YANG XW, et al. , 2018. Chemical constituents of lipophilic parts in water extract from stem of Mahonia fortunei [J]. Chin Trad Herb Drugs, 49(1): 80-89. [崔泽旭, 徐嵬, 杨秀伟, 等, 2018. 细叶十大功劳茎水提取物脂溶性部位的化学成分研究 [J]. 中草药, 49(1): 80-89. ]

    • Editorial Committee of Chinese Herb Medicine, State Administrationof Traditional Chinese Medicine, 1999. Chinese Herb Medicine: Vol. 3 [M]. Shanghai: Shanghai Science and Technology Press: 638. [国家中医药管理局《中华本草》编委会, 1999. 中华本草: 第3册 [M]. 上海: 上海科学技术出版社: 638.

    • FU L, SERIKJAN S, HONG YQ, et al. , 2019. Isolation and identification of antioxidant activity constituents from Elephantopus scaber [J]. Chin J Exp Trad Med Form, 25(2): 156-162. [付露, 沙合尼西·赛力克江, 洪吟秋, 等, 2019. 地胆草抗氧化活性成分分离鉴定 [J]. 中国实验方剂学杂志, 25(2): 156-162. ]

    • GREEN LC, WAGNER DA, GLOGOWSKI J, et al. , 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids [J]. Anal Biochem, 126(1): 131-138.

    • Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 1993. Flora of Guangxi [M]. Nanning: Guangxi Science & Technology Publishing House: 410. [广西壮族自治区中国科学院广西植物研究所, 1993. 广西植物志 [M]. 南宁: 广西科学技术出版社: 410. ]

    • GUZIK TJ, KORBUT R, ADAMEK-GUZIK T, 2003. Nitric oxide and superoxide in inflammation and immuneregulation [J]. J Physiol Pharm, 54(4): 469-487.

    • GUO YT, SUN QS, QIU ZX, et al. , 2021. The therapeutic substances and pharmacological mechanism of Corydalis saxicola Bunting total alkaloids [J]. J Pharm Res, 40(7): 421-426. [郭雅婷, 孙秋爽, 邱志霞, 等, 2021. 岩黄连总碱药效物质基础及药理作用机制研究进展 [J]. 药学研究, 40(7): 421-426. ]

    • HE ZC, WANG DM, LI GC, et al. , 2014. Study on alkaloids from Corydalis saxicola and their anti-oxidative activities [J]. Chin Trad Herb Drugs, 45(11): 1526-1531. [何志超, 王冬梅, 李国成, 等, 2014. 岩黄连生物碱类成分及其抗氧化活性研究 [J]. 中草药, 45(11): 1526-1531. ]

    • JANSSEN RHAM, LOUSBERG RJJC, WIJKENS P , et al. , 1989. Assignment of 1H and 13C NMR resonances of some isoquinoline alkaloids [J]. Phytochemistry, 28(10): 2833-2839.

    • Jiangsu New Medical College, 1996. Dictionary of Traditional, Chinese Medicine: Vol. 1 [M]. Shanghai: Shanghai Science and Technology Press: 1348. [江苏新医学院, 1996. 中药大辞典: 上册 [M]. 上海: 上海科技出版社: 1348. ]

    • JIAO B, XU CT, LI Q, et al. , 2019. Chemical constituents of ethyl acetate extract from seed cake of Camellia oleifera and its anti-inflammatory activities [J]. Chin J Exp Trad Med Form, 25(22): 132-137. [焦兵, 许承婷, 黎青, 等, 2019. 油茶枯乙酸乙酯部位化学成分及其抗炎活性 [J]. 中国实验方剂学杂志, 25(22): 132-137. ]

    • KARTHIKEYAN A, MOHAN P, CHINNAKALI P, et al. , 2018. Elevated systemic zonula occludens 1 is positively correlated with inflammation in cirrhosis [J]. Clin Chim Acta, 480: 193-198.

    • KUAI CP, JU LJ, HU PP, et al. , 2020. Corydalis saxicola alkaloids attenuate cisplatin-induced neuropathic pain by reducing loss of IENF and blocking TRPV1 activation [J]. Am J Chin Med, 48(2): 407-428.

    • LI ZF, WANG Q, FENG YL, et al. , 2012. Chemical constituents from Coptis chinensis [J]. J Chin Med Mat, 35(9): 1438-1441. [李志峰, 王琦, 冯育林, 等, 2012. 黄连的化学成分研究 [J]. 中药材, 35(9): 1438-1441. ]

    • LIANG YH, TANG CL, LU SY, et al. , 2016. Serum metabonomics study of the hepatoprotective effect of Corydalis saxicola Bunting on carbon tetrachloride-induced acute hepatotoxicity in rats by 1H NMR analysis [J]. J Pharm Biomed Anal, 129: 70-79.

    • LI P, LIU SS, LIU Q, et al. , 2019. A phytochemical study on Dichocarpum auriculatum, an endangered medicinal plant peculiar to China [J]. Chin Herb Med, 11(4): 364-368.

    • LEE SR, LEE JG, HEO JH, et al. , 2021. Loss of PGRMC1 delays the progression of hepatocellular carcinoma via suppression of pro-inflammatory immune responses [J]. Cancers, 13(10): 2438-2438.

    • MOSMANN T, 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays [J]. J Immunol Methods, 65 (1/2): 55-63.

    • MAO YA, 2006. Chemical constituents and activity of Corydalis saxicola Bunting [D]. Nanning: Guangxi Medical University. [毛宇昂, 2006. 岩黄连化学成分和活性的研究 [D]. 南宁: 广西医科大学. ]

    • MURATORI L, LONGHI MS, 2013. The interplay between regulatory and effector T cells in autoimmune hepatitis: Implications for innovative treatment strategies [J]. J Autoimmun, 46: 74-80.

    • SI JY, CHEN DH, PAN RL, et al. , 2006. Chemical constituents of Hedyotis diffusa [J]. Nat Prod Res Dev, 18(6): 942-944. [斯建勇, 陈迪华, 潘瑞乐, 等, 2006. 白花蛇舌草的化学成分研究 [J]. 天然产物研究与开发, 18(6): 942-944. ]

    • SUN Q, SHEN YH, TIAN JM, et al. , 2009. Chemical constituents of Crinum asiaticum L. var. sinicum Baker and their cytotoxic activities [J]. Chem Biodivers, 6(10): 1751-1757.

    • SONG K, WANG HQ, LIU C, et al. , 2014. Chemical constituents from Chenopodium ambrosioides [J]. Chin J Chin Mat Med, 39(2): 254-257. [宋坤, 王洪庆, 刘超, 等, 2014. 土荆芥化学成分的研究 [J]. 中国中药杂志, 39(2): 254-257. ]

    • SUN W, MA ZY, ZHANG X, et al. , 2015. Secondary metabolites of Petrosimonia sibirica [J]. Chem Nat Compd, 51(3): 530-531.

    • SUN LD, WANG F, DAI F, et al. , 2015. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent [J]. Biochem Pharmacol, 95(3): 156-169.

    • TANG CL, LIU P, ZHENG H, et al. , 2018. The chemical constituents and pharmacological effects of Corydalis saxicola Bunting: A review [J]. Trad Chin Drug Res Pharmacol, 29(1): 104-109. [唐超玲, 刘平, 郑华, 等, 2018. 岩黄连化学成分及药理作用研究进展 [J]. 中药新药与临床药理, 29(1): 104-109. ]

    • WEI JQ, JIANG SY, TANG H, et al. , 2006. Photosynthetic and transpiration characteristics of Corydalis saxicola and its response to light intensity and concentration of CO2 [J]. Guihaia, 26(3): 317-320. [韦记青, 蒋水元, 唐辉, 等, 2006. 岩黄连光合与蒸腾特性及其对光照强度和CO2浓度的响应 [J]. 广西植物, 26(3): 317-320. ]

    • WU YR, MA YB, ZHAO YX, et al. , 2012. Anti-hepatitis virus constituents from Corydalis saxicola [J]. Chin Trad Herb Drugs, 43(1): 32-37. [吴颖瑞, 马云宝, 赵友兴, 等, 2012. 岩黄连的抗乙肝病毒活性成分研究 [J]. 中草药, 43(1): 32-37. ]

    • WU F, ZHENG H, YANG ZT, et al. , 2017. Urinary metabonomics study of the hepatoprotective effects of total alkaloids from Corydalis saxicola Bunting on carbon tetrachloride-induced chronic hepatotoxicity in rats using 1H NMR analysis [J]. J Pharm Biomed Anal, 140: 199-209.

    • XIAO P, LIN CX, PAN BJ, et al. , 2019. Pharmacodynamics of Yanhuanglian suppository for rats with chronic pelvic inflammatory diseases [J]. Cent S Pharm, 17(12): 2052-2058. [肖萍, 林彩霞, 盘冰洁, 等, 2019. 岩黄连栓治疗慢性盆腔炎大鼠的药效学研究 [J]. 中南药学, 17(12): 2052-2058. ]

    • YU JJ, QIU ZX, LIU QY, et al. , 2018. Rsearch advance on Corydalis saxicola Bunting [J]. J Pharm Res, 37(6): 342-345. [余姣娇, 邱志霞, 刘秋燕, 等, 2018. 岩黄连的研究进展 [J]. 药学研究, 37(6): 342-345. ]

    • ZENG FL, XIANG YF, LIANG ZR, et al. , 2013. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola [J]. Am J Chin Med, 41(1): 119-130.

    • ZHANG B, HUANG RZ, HUA J, et al. , 2016. Antitumor lignanamides from the aerial parts of Corydalis saxicola [J]. Phytomedicine, 23(13): 1599-1609.

    • ZHUGE ML, JIANG WZ, XIAO P, et al. , 2019. Experimental study on anti-inflammatory and analgesic effects of Corydalis saxicola rectal suppository [J]. Chin J Ethnom Ethnopharm, 28(9): 11-13. [诸葛明丽, 蒋伟哲, 肖萍, 等, 2019. 岩黄连直肠栓抗炎镇痛作用实验研究 [J]. 中国民族民间医药, 28(9): 11-13. ]

    • ZHANG C, YAO XD, LEI FH, 2020. Research progress on alkaloids in Corydalis saxicola Bunting [J]. Technol Dev Chem Ind, 49(12): 9-13. [张成, 姚兴东, 雷福厚, 2020. 岩黄连中生物碱的研究进展 [J]. 化工技术与开发, 49(12): 9-13. ]