en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

袁亚敏(1979-),硕士,讲师,主要从事医学与教育研究,(E-mail)guoya111king@163.com。

通讯作者:

周晓欢,副教授,主要从事医学教育与药理学研究,(E-mail)lihui333zy@sina.com。

中图分类号:Q946

文献标识码:A

文章编号:1000-3142(2023)01-0190-09

DOI:10.11931/guihaia.gxzw202112078

参考文献
AFSHAR FH, DELAZA RA, NAZEMIYEH H, et al. , 2017. Melilotoside derivatives from Artemisia splendens (Asteraceae) [J]. Rec Nat Prod, 11(1): 43-51.
参考文献
CRAVEIRO AA, SILVEIRA ER, 1982. Two cleistanthane type diterpenes from Croton sonderianus [J]. Phytochemistry, 21(10): 2571-2574.
参考文献
DONG H, GOU YL, CAO SG, et al. , 1999. Eicosenones and methylated flavonols from Amomum koenigii [J]. Phytochemistry, 50(5): 899-907.
参考文献
DUYQ, LIN B, YAN ZY, et al. , 2019. Enantiomeric 8, 4′-type oxyneolignans from the root barks of Ailanthus altissima (Mill. ) Swingle and their neuroprotective effects against H2O2-induced SH-SY5Y cells injury [J]. Fitoterap, 139(11): 104403.
参考文献
DU YQ, YAN ZY, CHEN JJ, et al. , 2019. The identification of phenylpropanoids isolated from the root bark of Ailanthus altissima (Mill. ) Swingle [J]. Nat Prod Res, 1643(7): 861-863.
参考文献
Editorial Committee of Flora of China Chinese Academy of Sciences, 1998. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press, 23: 38-41. [中国科学院中国植物志编委会, 1998. 中国植物志 [M]. 北京: 科学出版社, 23: 76-79. ]
参考文献
KITAGAWA I, CHEN WZ, HORI K, et al. , 1998. Chemical studies of Chinese licorice-roots. Ⅱ. five new flavonoid constituents from the roots of Glycyrrhiza aspera PALL. collected in Xinjiang [J]. Chem Pharm Bull, 46 (10): 1511-1517.
参考文献
KUANG HX, YANG BY, TANG L, et al. , 2010. Baimantuoluosides A-C, three new withanolide glucosides from the flower of Datura metel L. [J]. Helv Chim Acta, 92(2): 1315-1323.
参考文献
LI DX, ZENG XJ, YANG LM, 2013. Preliminary study on bacteriostasis of the Hollyhock flower by flow cytometry [J]. Mod J Integr Trad Chin W Med, 26 (8): 683-686. [李东霞, 曾祥吉, 杨丽敏, 2013. 流式细胞术检测蜀葵花抑菌作用的初步研究 [J]. 现代中西医结合杂志, 22(36): 3991-3993. ]
参考文献
LI MS, KE YQ, ZHANG ZQ, et al. , 2021. Study on chemical constituents from tems and leaves of Sabia parviflora and their hepatoprotective activity [J]. Chin Trad Herb Drugs, 52(23) : 7096-7104. [李曼姝, 柯银铅, 张紫琴, 等, 2021. 小花清风藤茎叶化学成分及其保肝活性研究 [J]. 中草药, 52(23): 7096-7104. ]
参考文献
LI N, 2021. Chemical constituents from Uraria crinita and their anti-renal interstitial fibrosis activity in vitro [J]. Chin Trad Pat Med, 43(2) : 393-399. [李南, 2021. 虎尾轮根化学成分及其体外抗肾间质纤维化活性 [J]. 中成药, 43(2): 393-399. ]
参考文献
LI YZ, WEN YZ, YANG XZ, et al. , 2020. Chemical constituents from ethyl acetate extract of Eupatorium adenophorum [J]. Chin Trad Herb Drugs, 51 (4): 932-936. [李余钊, 文琰章, 杨新洲, 等, 2020. 紫茎泽兰醋酸乙酯部位化学成分研究 [J]. 中草药, 51(4): 932-936. ]
参考文献
LI YP, PAN ZH, FU YX, et al. , 2022. Anti-inflammatory constituents of Clerodendranthus spicatus [J]. Guihaia, 42(9): 1480-1486. [李毅鹏, 潘争红, 符毓夏, 等, 2021. 猫须草抗炎活性成分研究 [J/OL]. 广西植物, 42(9): 1480-1486. ]
参考文献
LI YK, 1991. Experimental methods of traditional Chinese medicine [J]. Shanghai: Shanghai Science and Technology Press: 286-289. [李仪奎, 1991. 中药药理实验方法学 [M]. 上海: 上海科学技术出版社: 286-289. ]
参考文献
LIU CH, ZHANG JJ, 2003. Treatment of radiation proctitis with modified Zhenren Yangzangtang combined with root bark of the Ailanthus altissima (Mill. ) Swingle powder [J]. Shandong J Trad Chin Med, 22(12) : 731-732. [刘昌海, 张家驹, 2003. 真人养脏汤合椿根皮散治疗放射性直肠炎 20例 [J]. 山东中医杂志, 22(12): 731-732. ]
参考文献
LIU XY, JI CJ, PENG WW, 2018. Chemical constituents from Citrus aurantium L. [J]. Chin Pharm J, 53 (19): 1627-1631. [刘欣媛, 嵇长久, 彭文文, 2018. 中药枳壳的化学成分研究 [J]. 中国药学杂志, 53(19): 1627-1631. ]
参考文献
LUO W, TANG LJ, YUAN JD, et al. , 2021. Chemical constituents of Cirsium pendulum [J]. Chin Trad Herb Drugs, 52(22): 6781-6789. [罗伟, 汤良杰, 袁建丹, 等, 2021. 烟管蓟化学成分研究 [J]. 中草药, 52(22): 6781-6789. ]
参考文献
MA S, ZHANG JX, ZHAO LQ, et al. , 2021. Analysis of chemical constituents in fruiting body of Suillus luteus [J]. Chin Mod Chin Mat Med, 23(8): 1357-1362. [马帅, 张金秀, 赵立强, 等, 2021. 黄乳牛肝菌化学成分分析 [J]. 中国现代中药, 23(8): 1357-1362. ]
参考文献
OMAR AM, DIBWE DF, TAWILA AM, et al. , 2019. Chemical constituents of Anneslea fragrans and their antiausterity activity against the PANC-1 human pancreatic cancer cell line [J]. J Nat Prod, 82(11): 3133-3139.
参考文献
QI X, CHEN ZH, GAO L, et al. , 2011. Isolation and structure identification of alkaloid and quassinoids from root bark of Ailanthus altissima [J]. Chin Trad Herb Drugs, 42(6): 1057-1060. [齐鑫, 陈智华, 高璐, 等, 2011. 椿根皮中生物碱及苦木素类化合物的分离与鉴定 [J]. 中草药, 42(6): 1057-1060. ]
参考文献
SON AR, CHOI JY, KIM JA, et al. , 2005. Isolation of melanogenesis inhibitors from Ponciri fructus [J]. Korean J Pharmacogn, 36(1): 1-8.
参考文献
VIRGINIE E, GESQUIERE L MT, JOSEPH T, et al. , 2018. Alchornoic acid derivatives from the fruits of Alchornea cordifolia (Schumach. & Thonn. ) Muell. Arg. (Euphorbiaceae) [J]. Phytochem Lett, 23(1): 62-65.
参考文献
WANG WQ, WANG W, WANG L, 2020. Study on antimicrobial test in vitro and active fraction of Cortex ailanthi [J]. JETCM, 29 (7): 1209-1212. [王婉卿, 王伟, 王雷, 2020. 椿根皮体外抑菌和活性部位的研究 [J]. 中国中医急症, 29(7): 1209-1212. ]
参考文献
XIE AR, WEI W, HAO EW, et al. , 2022. Chemical constituents from ethyl acetate extract in Saccharum ficinarum leaves [J]. Guihaia, 42(11): 1884-1891. [谢安然, 韦玮, 郝二伟, 等, 2022. 甘蔗叶乙酸乙酯部位化学成分研究 [J]. 广西植物, 42(11): 1884-1891. ]
参考文献
YAN ZY, LV TM, WANG YX, et al. , 2020. Terpenylated coumarins from the root bark of Ailanthus altissima (Mill. ) Swingle [J]. Phytochemistry, 175(7): 2361-2367.
参考文献
YU Q, 2021. Study on the chemical constituents from the aerial parts of Aralia californica [J]. J Guangdong Pharm Univ, 37(1): 1-5. [ 余茜, 2021. 加州楤木地上部位化学成分研究 [J]. 广东药科大学学报, 37(1): 1-5. ]
参考文献
ZHANG Z, NI SW, XU X, et al. , 2021. Chemical constituents of Cassia occidentalis [J]. Chin J Chin Mat Med, 46(15) : 3873-3876. [张再, 倪绍伟, 徐雪, 等, 2021. 望江南的化学成分研究 [J]. 中国中药杂志, 46(15): 3873-3876. ]
参考文献
ZHENG XM, PAN D, CAO J, et al. , 2020. Chemical constituents from Arisaema amurense [J]. Chin Trad Pat Med, 42 (1): 112-115. [ 郑琇梅, 潘多, 曹杰, 等, 2020. 东北天南星化学成分的研究 [J]. 中成药, 42(1): 112-115. ]
参考文献
ZHOU QM, PENG C, LU TY, et al. , 2016. Chemical constituents from Fritillaria unibracteata [J]. J Chin Med Mat, 39 (10) : 2237-2239. [周勤梅, 彭成, 陆廷亚, 等, 2016. 暗紫贝母化学成分研究 [J]. 中药材, 39(10): 2237-2239. ]
参考文献
ZHOU XH, YUAN YM, YU X, et al. , 2021. Chemical constituents from Ailanthus altissima and their antitumor activities in vitro [J]. Chin Trad Pat Med, 43(7): 1782-1787. [ 周晓欢, 袁亚敏, 余玺, 等, 2021. 椿根皮化学成分及其体外抗肿瘤活性 [J]. 中成药, 43(7): 1782-1787. ]
参考文献
ZHU YF, ZHOU QM, FENG GB, et al. , 1999. Antimicrobial test in vitro of Cortex toonae and Cortex ailanthi [J]. Chin Mat Med Nat Med, 16(6) : 19-21. [朱育凤, 周琴妹, 丰国炳, 等, 1999. 香椿皮与臭椿皮的体外抗菌作用比较 [J]. 中药与天然药物, 16(6): 19-21. ]
参考文献
ZOU YS, ZEREN DW, LIN CZ, et al. , 2019. Chemical constituents of Delphinium brunonianum [J]. J Chin Med Mat, 42 (8): 1806-1809. [邹园生, 泽仁达瓦, 林朝展, 等, 2019. 囊距翠雀花化学成分研究 [J]. 中药材, 42(8): 1806-1809. ]
目录contents

    摘要

    为探寻椿根皮抑菌的物质基础,该研究采用硅胶、Sephadex LH-20等方法对椿根皮甲醇提取物进行分离和纯化,通过理化性质和波谱数据分析单体化合物的结构,并以卡那霉素为对照组采用流式细胞法测试化合物的抑菌活性。结果表明:从椿根皮中得到22个化合物,分别鉴定为pleuchiol (1)、withastramonolide (2)、7-ketositosterol (3)、白桦酯醇 (4)、桦木酸甲酯 (5)、1, 2, 4-trimethoxybenzene (6)、顺丁烯二酸二甲酯 (7)、sonderianol (8)、dibutyl phthalate (9)、pinoresinol (10)、对羟基苯甲酸乙酯 (11)、avenalumic acid methyl ester (12)、5,3′-dihydroxy-3,7,4′-trimethoxy-flavone (13)、spathulenol (14)、2-甲基-5-丙基酮-7-羟基色原酮 (15)、 7,4′-dihydroxyflavone (16)、annphenone (17)、3-羟基-4-甲氧基苯甲酸 (18)、5,3′,4′-三羟基-7-甲氧基二氢黄酮 (19)、邻苯二甲酸二丁酯 (20)、4-O-甲基没食子酸 (21)、对苯二甲酸二辛酯 (22)。所有化合物均为首次从椿根皮中分离得到。抑菌活性测试结果显示,化合物2对绿脓杆菌、枯草芽孢杆菌均有抑制作用,化合物3对枯草芽孢杆菌有抑制作用,化合物8对绿脓杆菌、金黄色葡萄球菌、枯草芽孢杆菌均有抑制作用,化合物17对绿脓杆菌、金黄色葡萄球菌均有抑制作用。其中,化合物2对枯草芽孢杆菌的抑制作用与卡那霉素无显著差异(P>0.05)。

    Abstract

    In order to explore the antibacterial material basis from the root bark of Ailanthus altissima, the silica gel and Sephadex LH-20 were employed to separate and purify methanol extract from the root bark of the A. altissima, and the structures of the compounds were identified by chemical properties and spectral data. Flow cytometry was employed to test the antibacterial activity of the compounds, and kanamycin was used as control group. The results were as follows: Twenty-two compounds were isolated and elucidated from the root bark of A. altissima respectively as pleuchiol (1), withastramonolide (2), 7-ketositosterol (3), betulin (4), betulinic acid methyl ester (5), 1, 2, 4-trimethoxybenzene (6), dimethyl maleate (7), sonderianol (8), dibutyl phthalate (9), pinoresinol (10), p-hydroxybenzoic acid ethyl ester (11), avenalumic acid methyl ester (12), 5, 3′-dihydroxy-3,7, 4′-trimethoxyflavone (13), spathulenol (14), 2-methyl-5-acetonyl-7-hydroxychromone (15), 7, 4′-dihydroxyflavone (16), annphenone (17), 3-hydroxy-4-methoxybenzoic acid (18), 5, 3′,4′-trihydroxy-7-methoxyflavanone (19), dibutyl phthalate (20), 4-O-methylgallic acid (21), dioctyl terephthalate (22). All compounds were isolated from the root bark of A. altissima for the first time. The antibacterial activity tests showed that Compound 2 had inhibitory effect on Pseudomonas aeruginosa and Bacillus subtilis. Compound 3 had inhibitory effects on Bacillus subtilis. Compound 8 had inhibitory effects on Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. Compound 17 had inhibitory effects on Pseudomonas aeruginosa and Staphylococcus aureus. The inhibitory effect of Compound 2 on Bacillus subtilis was not significantly different from kanamycin (P>0.05). This paper aims to clarify the antibacterial substance basis of the root bark of A. altissima, and provide a certain theoretical basis for the development and utilization of the root of A. altissima resources and the research and development of drugs with antibacterial activity.

  • 椿根皮又称臭椿皮、樗白皮、椿根白皮,为苦木科植物臭椿(Ailanthus altissima)的根皮或干皮(全国中草药汇编组,1975)。其主要分布于我国河南、广西、河北、湖北、安徽、江西、浙江等地,具有清热燥湿、涩肠止泻的功效。临床上多用于治疗由细菌引起的结肠炎、直肠炎、阴道炎、痔疮、子宫颈内膜炎、菌痢等疾病。刘昌海和张家驹(2003)采用椿根皮散联合真人养脏汤治疗直肠炎,患者的临床症状明显好转,总有效率为80%。现代药理显示椿根皮具有抑菌、抗病毒、抗疟疾、抗肿瘤、抗血小板凝聚、解热等活性(Du et al.,2019; Yan et al.,2020)。朱育凤等(2021)分别测试椿根皮的水粗提物和乙醇粗提物的体外抑菌活性结果显示,椿根皮的水粗提物对金黄色葡萄球菌具有一定的抑制活性,但无明显抗绿脓杆菌和大肠杆菌活性; 乙醇粗提物对金黄色葡萄球菌、绿脓杆菌和大肠杆菌均具有显著抑制活性,并且乙醇粗提物对金黄色葡萄球菌、绿脓杆菌和大肠杆菌的抑菌圈控制明显优于水粗提物。

  • 目前,关于椿根皮单体化合物的研究报道较少,齐鑫等(2011)从椿根皮分离出铁屎米酮糖酯、臭椿苦内酯、臭椿辛内酯A、11-乙酰臭椿苦内酯; 周晓欢等(2021)从椿根皮95%乙醇提取物中分离得到15个化合物。本文进一步对椿根皮的化学成分及抑菌活性进行研究,目的是明确椿根皮的抑菌物质基础,为椿根皮的资源开发与利用及抑菌活性的药物研发提供一定的参照依据。

  • 1 材料与方法

  • 1.1 材料、仪器和试剂

  • 1.1.1 材料

  • 椿根皮采自广西北海市,由平顶山学院王继红副教授鉴定为臭椿(Ailanthus altissima)的根皮。绿脓杆菌、金黄色葡萄球菌、枯草芽孢杆菌(四川睿诺赛生物科技有限公司)。

  • 1.1.2 仪器和试剂

  • Triple5600+型高分辨质谱仪(德国Bruker公司); AVANCE NEO-600型核磁共振波谱仪(美国Waters 公司); ME188T型分析天平(美国Mettler Toledo公司); Sephadex LH-20葡聚糖凝胶(德国Merck公司); LHY3100T型电子天平(德国Florenz Sartorius公司); 柱色谱硅胶(青岛海洋化工厂); 氘代试剂DMSO-d6(德国Sigma-aldrich公司)。

  • 1.2 研究方法

  • 1.2.1 提取和分离

  • 取干燥椿根皮19.6 kg,分别采用95%甲醇、50%甲醇浸泡提取,回收溶剂得椿根皮浸膏2.3 kg。将浸膏分散于蒸馏水中,依次用等体积的石油醚、丙酮、正丁醇萃取,回收溶剂得石油醚层(151.3 g)、丙酮层(106.4 g)、正丁醇层(117.6 g)。取石油醚层,经硅胶柱分离,以石油醚-乙酸乙酯(80∶20→50∶50→20∶80)梯度洗脱,得7个组分(Fr.A1~Fr.A7)。取Fr.A2(7.1 g),经硅胶柱,以石油醚-丙酮(70∶30→30∶70)梯度洗脱,得5个组分(Fr.A2-1~Fr.A2-5)。取Fr.A2-2(206.8 mg),经Sephadex LH-20,得化合物8(19 mg)、23(31 mg)。取Fr.A5(8.3 g),经硅胶柱,以石油醚-二氯甲烷(60∶40→20∶80)梯度洗脱,得6个组分(Fr.A5-1~Fr.A5-6)。取Fr.A5-1(224.1 mg),经硅胶柱,以石油醚-二氯甲烷(50∶50)洗脱,得化合物22(21 mg); 取Fr.A5-3(95.3 mg),经Sephadex LH-20,得化合物4 (23 mg)、15(34 mg)。取Fr.A6(6.8 g),经硅胶柱,以石油醚-乙酸乙酯(50∶50→20∶80)梯度洗脱,得7个组分(Fr.A6-1~Fr.A6-7)。取Fr.A6-5(102.4 mg),经Sephadex LH-20,得化合物14(28 mg)、21(26 mg)。取丙酮层,经硅胶柱分离,以石油醚-二氯甲烷(70∶30→50∶50~30∶70)梯度洗脱,得8个组分(Fr.B1~Fr.B8)。取Fr.B1(8.5 g),经硅胶柱分离,以石油醚-乙酸乙酯(75∶25→25∶75)梯度洗脱,得7个组分(Fr.B1-1~Fr.B1-7)。取Fr.B1-3(192.3 mg),经Sephadex LH-20,得化合物1(28 mg)、3 (23 mg); 取Fr.B1-5(253.4 mg),经硅胶柱,以石油醚-二氯甲烷(60∶40)洗脱,得化合物13 (16 mg)、20 (29 mg)。取Fr.B4(7.5 g),经硅胶柱分离,以石油醚-二氯甲烷(55∶45→15∶75)梯度洗脱,得6个组分(Fr.B4-1~Fr.B4-6)。取Fr.B4-3(181.5 mg),经硅胶柱,以石油醚-丙酮(35∶65)洗脱,得化合物7(21 mg)、12 (18 mg); 取Fr.A4-4(73.5 mg),经Sephadex LH-20,得化合物2 (19 mg)、19(26 mg)。取Fr.B7(10.2 g),经硅胶柱分离,以石油醚-二氯甲烷(55∶45→15∶75)梯度洗脱,得8个组分(Fr.B7-1~Fr.B7-8)。取Fr.B7-2(151.3 mg),经硅胶柱,以石油醚-二氯甲烷(45∶55)洗脱,得化合物9 (33 mg)、16 (28 mg); 取Fr.B7-7(131.4 mg),经硅胶柱,以石油醚-二氯甲烷(35∶65)洗脱,得化合物11(21 mg)、18 (35 mg)。取正丁醇层,经硅胶柱分离,以乙酸乙酯-甲醇(65∶35→35∶65→15∶85)梯度洗脱,得6个组分(Fr.C1~Fr.C6)。取Fr.C2(8.4 g),经硅胶柱分离,以丙酮-甲醇(55∶45→15∶85)梯度洗脱,得7个组(Fr.C2-1~Fr.C2-7)。取Fr.A2-2(175.3 mg),经Sephadex LH-20,得化合物5(33 mg)、6(19 mg)、10 (32 mg)。取Fr.C5(9.7 g),经硅胶柱分离,以二氯甲烷-甲醇(45∶55→25∶75)梯度洗脱,得5个组分(Fr.C5-1~Fr.C5-5)。取Fr.C5-3(95.3 mg),经Sephadex LH-20,得化合物17(31 mg)。

  • 1.2.2 抑菌活性实验

  • 采用流式细胞法(李仪奎,1991; 李东霞等,2013)测定化合物23817的抑菌活性,以卡那霉素为对照组。取绿脓杆菌、金黄色葡萄球菌、枯草芽孢杆菌的标准菌株,接种于麦康凯肉汤培养基中,于36℃下培养48 h,采用生理盐水稀释(浓度为1×105 CFU·mL-1),置于琼脂平板上。对照组和化合物样品配置成浓度为0.1、0.5、1.0、4.0、8.0、12.0、25.0、50.0、100.0、200.0 μg·mL-1。分别将含有样品的无菌圆形滤纸片置于接种过绿脓杆菌、金黄色葡萄球菌、枯草芽孢杆菌的培养基上,于37℃下培养24 h,检查抑菌圈、最低抑菌浓度(MIC),并分析化合物对绿脓杆菌、金黄色葡萄和枯草芽孢杆菌的抑制活性。

  • 2 结果与分析

  • 2.1 化合物的结构鉴定

  • 化合物1 白色结晶。HR-ESI-MS m/z:412.873 1 [M+H]+1H-NMR(600 MHz,acetone-d6δ:5.41(1H,t,J=9.6 Hz,H-6),5.11(1H,m,H-11),5.02(1H,d,J=9.6 Hz,H-12),3.54(1H,m,H-3),1.02(3H,d,J =9.6 Hz,H-21),0.91(3H,s,H-19),0.83(3H,d,J=9.6 Hz,H-26),0.81(3H,d,J=6.3 Hz,H-27),0.79(3H,t,J=9.6 Hz,H-29),0.68(3H,s,H-18)。13C-NMR-DEPT(150 MHz,acetone-d6δ:39.7(C-1,s),33.4(C-2,s),74.1(C-3,d),42.5(C-4,s),140.9(C-5,s),123.2(C-6,s),25.3(C-7,d),52.4(C-8,s),51.3(C-9,s),35.7(C-10,s),129.4(C-11,s),136.4(C-12,d),42.3(C-13,s),58.1(C-14,s),24.2(C-15,t),30.4(C-16,d),56.1(C-17,s),12.3(C-18,t),21.5(C-19,s),36.1(C-20,d),19.2(C-21,s),41.2(C-22,s),25.8(C-23,d),47.1(C-24,s),29.1(C-25,s),21.4(C-26,d),19.3(C-27,s),24.3(C-28,s),12.9(C-29,s)。以上数据与文献(李南,2021)基本一致,故鉴定化合物1为pleuchiol。

  • 化合物2 黄色粉末。HR-ESI-MS m/z:486.701 3 [M+H]+1H-NMR(600 MHz,acetone-d6δ:6.71(1H,ddd,J=9.6,4.8,2.2 Hz,H-3),5.81(1H,dd,J=9.6,4.8 Hz,H-2),4.03(1H,br s,H-12),2.97(1H,d,J=9.6 Hz,H-6)。13C-NMR-DEPT(150 MHz,acetone-d6δ:205.7(C-1,s),131.4(C-2,s),141.6(C-3,s),37.6(C-4,d),75.1(C-5,s),56.8(C-6,s),58.3(C-7,s),36.7(C-8,s),30.1(C-9,d),53.1(C-10,t),29.7(C-11,s),74.1(C-12,d),49.3(C-13,s),44.6(C-14,s),23.9(C-15,d),27.8(C-16,s),45.1(C-17,s),13.3(C-18,d),16.1(C-19,t),41.2(C-20,d),13.1(C-21,s),79.3(C-22,s),31.4(C-23,s),159.3(C-24,s),127.3(C-25,s),169.1(C-26,q),58.2(C-27,s),21.8(C-28,s)。以上数据与文献(Kuang et al.,2010)基本一致,故鉴定化合物2为withastramonolide。

  • 化合物3 白色粉末。HR-ESI-MS m/z:429.423 9 [M + H]+1H-NMR(600 MHz,acetone-d6δ:5.73(1H,s,H-6),3.81(1H,m,H-3),1.16(3H,s,H-19),0.87(3H,d,J=9.6 Hz,H-21),0.83(3H,t,J=9.6 Hz,H-29),0.81(3H,d,J=9.6 Hz,H-26),0.73(3H,d,J=4.8 Hz,H-27),0.68(3H,s,H-18)。13C-NMR-DEPT(150 MHz,acetone-d6δ:37.1(C-1,s),30.6(C-2,s),69.2(C-3,s),40.8(C-4,s),164.7(C-5,s),125.3(C-6,s),201.4(C-7,s),46.1(C-8,s),50.7(C-9,s),39.1(C-10,d),20.6(C-11,s),39.1(C-12,s),42.7(C-13,s),50.3(C-14,d),27.6(C-15,s),29.1(C-16,t),55.2(C-17,s),12.1(C-18,d),18.4(C-19,s),35.7(C-20,s),20.1(C-21,s),34.1(C-22,s),25.8(C-23,s),46.1(C-24,q),30.2(C-25,t),20.5(C-26,s),20.1(C-27,q),22.8(C-28,s),12.1(C-29,t)。以上数据与文献(周勤梅等,2016)基本一致,故鉴定化合物3为7-ketositosterol。

  • 化合物4 白色粉末。HR-ESI-MS m/z:427.815 9 [M + H]+1H-NMR(600 MHz,acetone-d6δ:4.71(1H,s,H-29α),4.62(1H,s,H-29β),3.73(1H,d,J=9.6 Hz,H-3),3.09(1H,dd,J=9.6,4.8 Hz,H-3),1.73(3H,br s,H-30),1.13(3H,s,H-26),1.02(3H,s,H-23),0.85(3H,s,H-24),0.79(3H,s,H-25),0.68(3H,s,H-27)。13C-NMR-DEPT(150 MHz,acetone-d6δ:43.2(C-1,s),29.1(C-2,s),85.1(C-3,d),39.7(C-4,s),56.1(C-5,s),19.1(C-6,s),35.2(C-7,s),40.6(C-8,d),51.3(C-9,s),40.3(C-10,s),20.7(C-11,s),26.1(C-12,s),40.2(C-13,s),43.1(C-14,s),29.1(C-15,t),31.2(C-16,s),50.4(C-17,s),50.9(C-18,s),51.2(C-19,d),149.3(C-20,s),30.4(C-21,s),31.6(C-22,s),29.7(C-23,d),17.1(C-24,s),17.2(C-25,s),17.9(C-26,s),15.3(C-27,s),59.3(C-28,t),109.4(C-29,q),20.1(C-30,q)。以上数据与文献(Omar et al.,2019)基本一致,故鉴定化合物4为白桦酯醇。

  • 化合物5 白色针晶。HR-ESI-MS m/z:471.142 9 [M+H]+1H-NMR(600 MHz,acetone-d6δ:4.91(1H,d,J=4.8 Hz,H-29α),4.52(1H,dd,J=9.6,4.8 Hz,H-29β),3.69(3H,s,3-OCH3),3.17(1H,td,J=9.6,4.8 Hz,H-3),2.93(1H,td,J=9.6,4.8 Hz,H-19),1.84(3H,s,H-30),1.57(3H,s,H-27),1.13(3H,s,H-26),0.87(3H,s,H-25),0.74(3H,s,H-24),0.65(3H,s,H-23)。13C-NMR-DEPT(150 MHz,acetone-d6δ:39.1(C-1,s),26.8(C-2,s),80.1(C-3,s),40.3(C-4,d),56.7(C-5,s),19.1(C-6,s),35.1(C-7,s),41.3(C-8,s),52.4(C-9,s),36.8(C-10,s),21.7(C-11,d),26.2(C-12,s),39.1(C-13,d),43.5(C-14,s),30.2(C-15,d),31.8(C-16,s),57.2(C-17,s),51.2(C-18,s),46.8(C-19,s),151.4(C-20,s),31.1(C-21,s),36.9(C-22,s),29.1(C-23,s),16.1(C-24,s),15.8(C-25,s),15.6(C-26,t),15.3(C-27,s),175.3(C-28,s),108.4(C-29,t),20.1(C-30,s),50.2(3-OCH3,q)。以上数据与文献(李曼姝等,2021)基本一致,故鉴定化合物5为桦木酸甲酯。

  • 化合物6 白色结晶。HR-ESI-MS m/z:169.316 2 [M+H]+1H-NMR(600 MHz,acetone-d6δ:7.61(1H,d,J=9.6 Hz,H-5),7.45(1H,s,H-2),6.93(1H,d,J=9.6 Hz,H-6),4.03(9H,s,4-OCH3)。13C-NMR-DEPT(150 MHz,acetone-d6δ:151.3(C-1,s),113.4(C-2,s),146.2(C-3,t),148.1(C-4,d),124.1(C-5,s),113.2(C-6,d),55.8(1-OCH3,q),55.8(2-OCH3,q),55.0(4-OCH3,q)。以上数据与文献(李曼姝等,2021)基本一致,故鉴定化合物6为1,2,4-trimethoxybenzene。

  • 化合物7 白色粉末。HR-ESI-MS m/z:143.109 3 [M+H]+1H-NMR(600 MHz,acetone-d6δ:6.91(2H,s,H-2,3),3.76(6H,s,1′,2′-OCH3)。13C-NMR-DEPT(150 MHz,acetone-d6δ:169.2(C-1,s),133.1(C-2,t),133.1(C-3,s),169.2(C-4,d),51.6(1′-OCH3,q),51.6(2′-OCH3,q)。以上数据与文献(罗伟等,2021)基本一致,故鉴定化合物7为顺丁烯二酸二甲酯。

  • 化合物8 黄色粉末。HR-ESI-MS m/z:298.681 5 [M + H]+1H-NMR(600 MHz,acetone-d6δ:6.71(1H,s,H-11),6.62(1H,dd,J=9.6,4.8 Hz,H-15),5.47(1H,dd,J=9.6,4.8 Hz,H-16α),5.09(1H,dd,J=9.6,4.8 Hz,H-16β),2.91(1H,J=9.6,4.8,2.2 Hz,H-2β),2.37(1H,ddd,J=9.6,4.8,2.2 Hz,H-1),2.23(3H,s,H-17),2.02(1H,ddd,J=9.6,4.8,2.2 Hz,H-1),1.91(2H,ddd,J=9.6,4.8,2.2 Hz,H-6),1.68(2H,ddd,J=9.6,4.8,2.2 Hz,H-7),1.27(3H,s,H-20),1.21(3H,s,H-18),1.08(3H,s,H-19)。13C-NMR-DEPT(150 MHz,acetone-d6δ:38.2(C-1,s),35.1(C-2,t),54.1(C-3,d),48.3(C-4,s),49.1(C-5,d),19.8(C-6,t),30.4(C-7,s),124.1(C-8,d),140.2(C-9,s),36.9(C-10,d),108.3(C-11,q),152.4(C-12,t),120.1(C-13,s),144.8(C-14,t),134.8(C-15,s),120.4(C-16,q),13.1(C-17,d),25.1(C-18,s),27.2(C-19,s),20.6(C-20,q)。以上数据与文献(Craveiro &Silveira,1982)基本一致,故鉴定化合物8为 sonderianol。

  • 化合物9 白色油状物。 HR-ESI-MS m/z:279.208 3 [M+H]+1H-NMR(600 MHz,acetone-d6δ:7.82( 2H,dd,J=9.6,4.8 Hz,H-3,6),7.63(2H,dd,J=9.6,4.8 Hz,H-4,5),4.27(4H,t,J=9.6 Hz,H-1′),1.83(2H,m,H-2′),1.52(4H,J=9.6 Hz,H-3′),1.03(6H,J=9.6 Hz,H-4′)。13C-NMR-DEPT(150 MHz,acetone-d6δ:131.6(C-1,s),131.6(C-2,s),127.3(C-3,d),128.6(C-4,s),128.6(C-5,s),127.3(C-6,d),64.9(C-1′,t),29.1(C-2′,s),20.8(C-3′,q),14.2(C-4′,t)。以上数据与文献(Ma et al.,2021)基本一致,故鉴定化合物9为dibutyl phthalate。

  • 化合物10 白色粉末。HR-ESI-MS m/z:384.316 8 [M + H]+1H-NMR(600 MHz,acetone-d6δ:7.02(2H,d,J=4.8 Hz,H-2,2′),6.93(2H,dd,J=9.6,4.8 Hz,H-6,6′),6.81(2H,d,J=9.6 Hz,H-5,5′),4.68(2H,d,J=9.6 Hz,H-7,7′),4.17(2H,m,H-9α,9′α),3.91(6H,s,3,3′-OCH3),3.73(2H,m,H-9β,9′β),3.09(2H,m,H-8,8′)。13C-NMR-DEPT(150 MHz,acetone-d6δ:140.1(C-1,s),108.7(C-2,d),151.2(C-3,s),146.8(C-4,d),115.8(C-5,s),119.4(C-6,s),88.2(C-7,t),56.1(C-8,s),73.1(C-9,s),140.2(C-1′,s),108.7(C-2′,d),151.2(C-3′,t),146.8(C-4′,s),115.8(C-5′,s),119.4(C-6′,s),88.2(C-7′,s),56.1(C-8′,s),73.1(C-9′,t),57.1(3-OCH3,q),57.1(3′-OCH3,q)。以上数据与文献(郑琇梅等,2020)基本一致,故鉴定化合物10为 pinoresinol。

  • 化合物11:无色针晶。HR-ESI-MS m/z:167.317 2 [M + H]+1H-NMR(600 MHz,acetone-d6δ:8.04(2H,d,J=9.6 Hz,H-2,6),6.93(2H,d,J=9.6 Hz,H-3,5),4.41(2H,q,J=9.6 Hz,H-2′),1.37(3H,t,J=9.6 Hz,H-3′)。13C-NMR-DEPT(150 MHz,acetone-d6δ:122.7(C-1,d),131.8(C-2,s),114.8(C-3,s),160.1(C-4,d),114.8(C-5,d),131.8(C-6,d),167.1(C-1′,t),61.4( C-2′,q),16.2(C-3′,q)。以上数据与文献(李余钊等,2020)基本一致,故鉴定化合物11为对羟基苯甲酸乙酯。

  • 化合物12 色油状物。HR-ESI-MS m/z:204.104 6 [M+H]+1H-NMR(600 MHz,acetone-d6δ:7.71(1H,d,J=4.8 Hz,H-4),7.52(1H,d,J=9.6 Hz,H-3),7.38(2H,d,J=4.8 Hz,H-2′),6.91(2H,d,J=9.6 Hz,H-3′),6.83(1H,d,J=9.6 Hz,H-5),6.27(1H,d,J=9.6 Hz,H-2),3.64(3H,s,3-OCH3)。13C-NMR-DEPT(150 MHz,acetone-d6δ:171.2(C-1,d),115.1(C-2,s),147.2(C-3,s),159.4(C-4,d),116.2(C-5,s),127.1(C-1′,d),130.8(C-2′,d),117.4(C-3′,t),134.1(C-4′,d),117.4(C-5′,t),130.8(C-6′,t),51.8(3-OCH3,q)。以上数据与文献(Son et al.,2005)基本一致,故鉴定化合物12为avenalumic acid methyl ester。

  • 化合物13 黄色粉末。HR-ESI-MS m/z:343.206 4 [M+H]+1H-NMR(600 MHz,acetone-d6δ:8.22(1H,d,J=4.8,H-2′),7.91(1H,dd,J=9.6,4.8 Hz,H-6′),7.09(1H,d,J=9.6 Hz,H-5′),6.57(2H,dd,J=4.8,2.2 Hz,H-7,9)。13C-NMR-DEPT(150 MHz,acetone-d6δ:137.2(C-1,d),151.2(C-2,s),140.2(C-3,d),180.7(C-4,s),158.1(C-5,d),100.3(C-6,s),165.2(C-7,s),92.1(C-8,s),163.1(C-9,t),107.2(C-10,t),123.6(C-1′,s),116.8(C-2′,s),152.4(C-3′,d),158.1(C-4′,t),113.1(C-5′,d),122.4(C-6′,t),59.7(3-OCH3,q),55.8(7-OCH3,q),57.4(4′-OCH3,q)。以上数据与文献(余茜,2021)基本一致,故鉴定化合物13为5,3′-dihydroxy-3,7,4′-trimethoxyflavone。

  • 化合物14 无色油状物。HR-ESI-MS m/z:220.281 3 [M + H]+1H-NMR(600 MHz,acetone-d6δ:4.76(1H,m,H-14β),4.71(1H,m,H-14a),2.36(1H,dd,J=9.6,4.8 Hz,H-4β),2.17(1H,m,H-6),2.11(1H,m,H-4a),2.02(1H,m,H-3β),1.83(1H,m,H-7β),1.81(1H,m,H-8β),1.72(1H,m,H-7α),1.63(1H,m,H-8α),1.44(1H,m,H-10),1.31(3H,s,H-15),1.14(3H,s,H-12),1.11(3H,s,H-13),0.98(1H,m,H-3α),0.83(1H,m,H-2),0.51(1H,dd,J=9.6,4.8 Hz,H-1)。13C-NMR-DEPT(150 MHz,acetone-d6δ:29.7(C-1,s),28.3(C-2,d),25.1(C-3,s),38.7(C-4,s),154.2(C-5,d),54.1(C-6,t),27.1(C-7,s),42.3(C-8,d),80.8(C-9,t),56.1(C-10,s),21.3(C-11,s),29.1(C-12,s),17.1(C-13,t),107.3(C-14,s),27.1(C-15,t)。以上数据与文献(余茜,2021)基本一致,故鉴定化合物14为spathulenol。

  • 化合物15 白色晶体。HR-ESI-MS m/z:233.104 1 [M + H]+1H-NMR(600 MHz,acetone-d6δ:7.13(1H,J=9.6 Hz,d,H-8),6.83(1H,J=9.6 Hz,d,H-6),5.73(1H,s,H-3),4.36( 2H,s,H-11),2.51(3H,s,H-14),2.42(3H,s,H-13)。13C-NMR-DEPT(150 MHz,acetone-d6δ:125.3(C-1,t),166.8(C-2,s),110.7(C-3,d),179.6(C-4,s),140.2(C-5,d),120.3(C-6,s),162.1(C-7,s),103.4(C-8,t),160.5(C-9,d),114.3(C-10,s),51.3(C-11,t),207.3(C-12,s),29.7(C-13,t),21.3(C-14,d)。以上数据与文献(张再等,2021)基本一致,故鉴定化合物15为2-甲基-5-丙基酮-7-羟基色原酮。

  • 化合物16 黄色粉末。HR-ESI-MS m/z:254.324 6 [M+H]+1H-NMR(600 MHz,acetone-d6δ:8.52(1H,d,J=4.8 Hz,H-5),8.02(2H,d,J=9.6 Hz,H-2′,6′),7.21(1H,d,J=9.6 Hz,H-8),7.18(3H,d,J=9.6 Hz,H-6,3′,5′),6.93(1H,s,H-3)。13C-NMR-DEPT(150 MHz,acetone-d6δ:135.6(C-1,s),164.1(C-2,s),105.3(C-3,s),176.3(C-4,d),128.5(C-5,d),115.4(C-6,s),165.3(C-7,t),104.6(C-8,t),161.1(C-9,d),118.3(C-10,t),125.2(C-1′,d),130.4(C-2′,s),118.1(C-3′,q),163.1(C-4′,s),118.1(C-5′,s),130.4(C-6′,q)。以上数据与文献(Kitagawa et al.,1998)基本一致,故鉴定化合物16为7,4′-dihydroxyflavone。

  • 化合物17 棕色固体。 HR-ESI-MS m/z:345.124 8 [M+H]+1H-NMR(600 MHz,acetone-d6δ:12.8(1H,s,6-OH),6.34(1H,br s,H-3),6.09(1H,d,J=4.8 Hz,H-5),5.13(1H,d,J=9.6 Hz,H-1′),3.92(3H,s,2-OCH3),3.83(1H,m,H-6′a),3.72(1H,m,H-6′β),3.39~3.44(3H,m,H-2′,3′,5′),3.25(1H,m,H-4′)。13C-NMR-DEPT(150 MHz,acetone-d6δ:102.4(C-1,d),164.3(C-2,s),91.8(C-3,s),164.1(C-4,q),95.8(C-5,s),163.1(C-6,q),202.6(C-7,s),33.1(C-8,d),102.3(C-1′,s),74.2(C-2′,q),76.8(C-3′,t),70.1(C-4′,t),77.1(C-5′,t),61.2(C-6′,s),55.8(2-OCH3,q)。以上数据与文献(Afshar et al.,2017)基本一致,故鉴定化合物17为 annphenone。

  • 化合物18 白色粉末。HR-ESI-MS m/z:169.275 1 [M+H]+1H-NMR(600 MHz,acetone-d6δ:7.53(1H,dd,J=9.6,4.8 Hz,H-6),7.41(1H,s,H-2),7.03(1H,d,J=9.6 Hz,H-5),3.96(3H,s,4-OCH3)。13C-NMR-DEPT(150 MHz,acetone-d6δ:122.4(C-1,t),115.8(C-2,d),147.1(C-3,d),150.8(C-4),s,110.4(C-5,d),130.4(C-6,t),57.3(4-OCH3,q),168.3(7-COOH,q)。以上数据与文献(刘欣媛等,2018)基本一致,故鉴定化合物18为3-羟基-4-甲氧基苯甲酸。

  • 化合物19 白色粉末。 HR-ESI-MS m/z:303.104 3 [M + H]+1H-NMR(600 MHz,acetone-d6δ:6.91~6.86(3H,m,H-2′,5′,6′),5.93( 2H,m,H-6,8),5.36(1H,dd,J=4.8,2.2 Hz,H-2),3.92(3H,s,7-OCH3),3.16(2H,m,H-3)。13C-NMR-DEPT(150 MHz,acetone-d6δ:63.2(C-1,s),79.1(C-2,t),43.6(C-3,t),196.4(C-4,d),161.7(C-5,q),95.1(C-6,t),166.8(C-7,s),94.1(C-8,s),163.2(C-9,s),103.1(C-10,t),130.2(C-1′,q),113.8(C-2′,d),146.1(C-3′,t),146.3(C-4′,d),114.1(C-5′,s),117.2(C-6′,d),56.1(7-OCH3,q)。以上数据与文献(谢安然等,2021)基本一致,故鉴定化合物19为5,3′,4′-三羟基-7-甲氧基二氢黄酮。

  • 化合物20 黄色油状物。HR-ESI-MS m/z:279.316 7 [M+H]+1H-NMR(600 MHz,acetone-d6δ:7.81(2H,m,H-3,6),7.46(2H,m,H-4,5),4.29(4H,t,J=9.6 Hz,H-1′,1″),1.83(4H,m,H-2′,2″),1.51(4H,m,H-3′,3″),1.03(6H,t,J=9.6 Hz,H-4′,4″)。13C-NMR-DEPT(150 MHz,acetone-d6δ:133.1(C-1,s),133.1(C-2,s),130.2(C-3,s),132.6(C-4,d),132.6(C-5,s),130.2(C-6,d),66.4(C-1′,s),31.2(C-2′,d),20.1(C-3′,s),14.6(C-4′,s),66.4(C-1″,s),31.2(C-2″,s),20.1(C-3″,d),14.6(C-4″,d)。以上数据与文献(邹园生等,2019)基本一致,故鉴定化合物20为邻苯二甲酸二丁酯。

  • 化合物21 白色固体。HR-ESI-MS m/z:187.416 2 [M+H]+1H-NMR(600 MHz,acetone-d6δ:9.24( 1H,s,3,5-OH),9.02(1H,s,3-OH),6.87(1H,s,H-2,6),3.18(3H,s,4-OCH3)。13C-NMR-DEPT(150 MHz,acetone-d6δ:120.1(C-1,s),146.4(C-2,s),109.1(C-3,d),139.1(C-4,s),109.1(C-5,d),146.4(C-6,s),59.4(4-OCH3,q)。以上数据与文献(Virginie et al.,2018)基本一致,故鉴定化合物21为4-O-甲基没食子酸。

  • 化合物22 黄色油状物。HR-ESI-MS m/z:391.203 7 [M + H]+1H-NMR(600 MHz,acetone-d6δ:8.26(4H,s,H-3,4,6,7),4.34(4H,m,H-1′,1″),1.81(2H,m,H-2′,2″),1.03(6H,t,J=9.6 Hz,H-8′,8″),0.87(6H,t,J=9.6 Hz,H-6′,6″)。13C-NMR-DEPT(150 MHz,acetone-d6δ:165.4(C-1,s),136.3(C-2,d),129.4(C-3,d),129.4(C-4,t),136.3(C-5,s),129.4(C-6,s),129.4(C-7,s),165.4(C-8,s),67.8(C-1′,s),40.3(C-2′,t),32.8(C-3′,d),30.2(C-4′,d),24.5(C-5′,q),15.6(C-6′,t),25.1(C-7′,s),12.3(C-8′,d),67.8(C-1″,d),40.3(C-2″,t),32.8(C-3″,s),30.2(C-4″,q,24.5(C-5″,s),15.6(C-6″,s),25.1(C-7″,t),12.3(C-8″,q)。以上数据与文献(Li et al.,2021)基本一致,故鉴定化合物22为对苯二甲酸二辛酯。

  • 2.2 抑菌活性测试结果

  • 2.2 抑菌活性测试结果

  • 由表1可知,化合物2对绿脓杆菌、枯草芽孢杆菌,化合物3对枯草芽孢杆菌,化合物8对绿脓杆菌、金黄色葡萄球菌、枯草芽孢杆菌,化合物17对绿脓杆菌、金黄色葡萄球菌均有抑制作用。其中,化合物2对枯草芽孢杆菌的抑制作用与卡那霉素无显著差异(P>0.05)。

  • 表1 化合物抑菌活性

  • Table1 Antibacterial activities of compounds

  • 注: 与阳性组比较,*表示P>0.05,— 表示无抑菌作用。

  • Note: Compared with positive group, *indicates P > 0.05, — indicates no antibacterial effect.

  • 3 讨论与结论

  • 椿根皮具有良好的抑菌抗炎活性,但关于其化学成分的研究报道较少。为了探讨其抑菌的物质基础,本文从椿根皮中分离鉴定出22个化合物,均为首次从椿根皮中分离得到,结构主要涉及酚类、黄酮、甾醇、生物碱等。而苦木科植物中单体化合物的报道主要包括苦木素、生物碱、木脂素、黄酮、三萜、蒽醌等,揭示同科不同植物的化学成分可能存在较大不同。

  • 随着食品药品行业“禁抗、减抗”的呼吁,天然抑菌活性剂的开发利用成为目前研究的热点。王婉卿等(2020)研究表明椿根皮提取物对绿脓杆菌、金黄色葡萄球菌、白色念珠菌和大肠杆菌具有良好的抑制活性,但其未对发挥抑菌活性的物质基础进行阐述。本研究的抑菌活性测试结果显示,化合物2对枯草芽孢杆菌的抑菌圈直径大于20 mm,在药物敏感性等级划分中属于极度敏感,并且MIC仅为1.0 mg·mL-1,提示化合物2可能为主要的抑菌活性成分。此外,化合物3817也具有良好的抑菌活性,可扩展抑菌圈范围,为潜在的抑菌抗炎成分。以上抑菌物质的结构种类涉及黄酮、酚类苯乙酮等,表明椿根皮抑菌活性是多种类成分协同作用的效果。本研究结果丰富了椿根皮化学成分的资料库,为抑菌活性的药物研发提供了一定的帮助。

  • 参考文献

    • AFSHAR FH, DELAZA RA, NAZEMIYEH H, et al. , 2017. Melilotoside derivatives from Artemisia splendens (Asteraceae) [J]. Rec Nat Prod, 11(1): 43-51.

    • CRAVEIRO AA, SILVEIRA ER, 1982. Two cleistanthane type diterpenes from Croton sonderianus [J]. Phytochemistry, 21(10): 2571-2574.

    • DONG H, GOU YL, CAO SG, et al. , 1999. Eicosenones and methylated flavonols from Amomum koenigii [J]. Phytochemistry, 50(5): 899-907.

    • DUYQ, LIN B, YAN ZY, et al. , 2019. Enantiomeric 8, 4′-type oxyneolignans from the root barks of Ailanthus altissima (Mill. ) Swingle and their neuroprotective effects against H2O2-induced SH-SY5Y cells injury [J]. Fitoterap, 139(11): 104403.

    • DU YQ, YAN ZY, CHEN JJ, et al. , 2019. The identification of phenylpropanoids isolated from the root bark of Ailanthus altissima (Mill. ) Swingle [J]. Nat Prod Res, 1643(7): 861-863.

    • Editorial Committee of Flora of China Chinese Academy of Sciences, 1998. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press, 23: 38-41. [中国科学院中国植物志编委会, 1998. 中国植物志 [M]. 北京: 科学出版社, 23: 76-79. ]

    • KITAGAWA I, CHEN WZ, HORI K, et al. , 1998. Chemical studies of Chinese licorice-roots. Ⅱ. five new flavonoid constituents from the roots of Glycyrrhiza aspera PALL. collected in Xinjiang [J]. Chem Pharm Bull, 46 (10): 1511-1517.

    • KUANG HX, YANG BY, TANG L, et al. , 2010. Baimantuoluosides A-C, three new withanolide glucosides from the flower of Datura metel L. [J]. Helv Chim Acta, 92(2): 1315-1323.

    • LI DX, ZENG XJ, YANG LM, 2013. Preliminary study on bacteriostasis of the Hollyhock flower by flow cytometry [J]. Mod J Integr Trad Chin W Med, 26 (8): 683-686. [李东霞, 曾祥吉, 杨丽敏, 2013. 流式细胞术检测蜀葵花抑菌作用的初步研究 [J]. 现代中西医结合杂志, 22(36): 3991-3993. ]

    • LI MS, KE YQ, ZHANG ZQ, et al. , 2021. Study on chemical constituents from tems and leaves of Sabia parviflora and their hepatoprotective activity [J]. Chin Trad Herb Drugs, 52(23) : 7096-7104. [李曼姝, 柯银铅, 张紫琴, 等, 2021. 小花清风藤茎叶化学成分及其保肝活性研究 [J]. 中草药, 52(23): 7096-7104. ]

    • LI N, 2021. Chemical constituents from Uraria crinita and their anti-renal interstitial fibrosis activity in vitro [J]. Chin Trad Pat Med, 43(2) : 393-399. [李南, 2021. 虎尾轮根化学成分及其体外抗肾间质纤维化活性 [J]. 中成药, 43(2): 393-399. ]

    • LI YZ, WEN YZ, YANG XZ, et al. , 2020. Chemical constituents from ethyl acetate extract of Eupatorium adenophorum [J]. Chin Trad Herb Drugs, 51 (4): 932-936. [李余钊, 文琰章, 杨新洲, 等, 2020. 紫茎泽兰醋酸乙酯部位化学成分研究 [J]. 中草药, 51(4): 932-936. ]

    • LI YP, PAN ZH, FU YX, et al. , 2022. Anti-inflammatory constituents of Clerodendranthus spicatus [J]. Guihaia, 42(9): 1480-1486. [李毅鹏, 潘争红, 符毓夏, 等, 2021. 猫须草抗炎活性成分研究 [J/OL]. 广西植物, 42(9): 1480-1486. ]

    • LI YK, 1991. Experimental methods of traditional Chinese medicine [J]. Shanghai: Shanghai Science and Technology Press: 286-289. [李仪奎, 1991. 中药药理实验方法学 [M]. 上海: 上海科学技术出版社: 286-289. ]

    • LIU CH, ZHANG JJ, 2003. Treatment of radiation proctitis with modified Zhenren Yangzangtang combined with root bark of the Ailanthus altissima (Mill. ) Swingle powder [J]. Shandong J Trad Chin Med, 22(12) : 731-732. [刘昌海, 张家驹, 2003. 真人养脏汤合椿根皮散治疗放射性直肠炎 20例 [J]. 山东中医杂志, 22(12): 731-732. ]

    • LIU XY, JI CJ, PENG WW, 2018. Chemical constituents from Citrus aurantium L. [J]. Chin Pharm J, 53 (19): 1627-1631. [刘欣媛, 嵇长久, 彭文文, 2018. 中药枳壳的化学成分研究 [J]. 中国药学杂志, 53(19): 1627-1631. ]

    • LUO W, TANG LJ, YUAN JD, et al. , 2021. Chemical constituents of Cirsium pendulum [J]. Chin Trad Herb Drugs, 52(22): 6781-6789. [罗伟, 汤良杰, 袁建丹, 等, 2021. 烟管蓟化学成分研究 [J]. 中草药, 52(22): 6781-6789. ]

    • MA S, ZHANG JX, ZHAO LQ, et al. , 2021. Analysis of chemical constituents in fruiting body of Suillus luteus [J]. Chin Mod Chin Mat Med, 23(8): 1357-1362. [马帅, 张金秀, 赵立强, 等, 2021. 黄乳牛肝菌化学成分分析 [J]. 中国现代中药, 23(8): 1357-1362. ]

    • OMAR AM, DIBWE DF, TAWILA AM, et al. , 2019. Chemical constituents of Anneslea fragrans and their antiausterity activity against the PANC-1 human pancreatic cancer cell line [J]. J Nat Prod, 82(11): 3133-3139.

    • QI X, CHEN ZH, GAO L, et al. , 2011. Isolation and structure identification of alkaloid and quassinoids from root bark of Ailanthus altissima [J]. Chin Trad Herb Drugs, 42(6): 1057-1060. [齐鑫, 陈智华, 高璐, 等, 2011. 椿根皮中生物碱及苦木素类化合物的分离与鉴定 [J]. 中草药, 42(6): 1057-1060. ]

    • SON AR, CHOI JY, KIM JA, et al. , 2005. Isolation of melanogenesis inhibitors from Ponciri fructus [J]. Korean J Pharmacogn, 36(1): 1-8.

    • VIRGINIE E, GESQUIERE L MT, JOSEPH T, et al. , 2018. Alchornoic acid derivatives from the fruits of Alchornea cordifolia (Schumach. & Thonn. ) Muell. Arg. (Euphorbiaceae) [J]. Phytochem Lett, 23(1): 62-65.

    • WANG WQ, WANG W, WANG L, 2020. Study on antimicrobial test in vitro and active fraction of Cortex ailanthi [J]. JETCM, 29 (7): 1209-1212. [王婉卿, 王伟, 王雷, 2020. 椿根皮体外抑菌和活性部位的研究 [J]. 中国中医急症, 29(7): 1209-1212. ]

    • XIE AR, WEI W, HAO EW, et al. , 2022. Chemical constituents from ethyl acetate extract in Saccharum ficinarum leaves [J]. Guihaia, 42(11): 1884-1891. [谢安然, 韦玮, 郝二伟, 等, 2022. 甘蔗叶乙酸乙酯部位化学成分研究 [J]. 广西植物, 42(11): 1884-1891. ]

    • YAN ZY, LV TM, WANG YX, et al. , 2020. Terpenylated coumarins from the root bark of Ailanthus altissima (Mill. ) Swingle [J]. Phytochemistry, 175(7): 2361-2367.

    • YU Q, 2021. Study on the chemical constituents from the aerial parts of Aralia californica [J]. J Guangdong Pharm Univ, 37(1): 1-5. [ 余茜, 2021. 加州楤木地上部位化学成分研究 [J]. 广东药科大学学报, 37(1): 1-5. ]

    • ZHANG Z, NI SW, XU X, et al. , 2021. Chemical constituents of Cassia occidentalis [J]. Chin J Chin Mat Med, 46(15) : 3873-3876. [张再, 倪绍伟, 徐雪, 等, 2021. 望江南的化学成分研究 [J]. 中国中药杂志, 46(15): 3873-3876. ]

    • ZHENG XM, PAN D, CAO J, et al. , 2020. Chemical constituents from Arisaema amurense [J]. Chin Trad Pat Med, 42 (1): 112-115. [ 郑琇梅, 潘多, 曹杰, 等, 2020. 东北天南星化学成分的研究 [J]. 中成药, 42(1): 112-115. ]

    • ZHOU QM, PENG C, LU TY, et al. , 2016. Chemical constituents from Fritillaria unibracteata [J]. J Chin Med Mat, 39 (10) : 2237-2239. [周勤梅, 彭成, 陆廷亚, 等, 2016. 暗紫贝母化学成分研究 [J]. 中药材, 39(10): 2237-2239. ]

    • ZHOU XH, YUAN YM, YU X, et al. , 2021. Chemical constituents from Ailanthus altissima and their antitumor activities in vitro [J]. Chin Trad Pat Med, 43(7): 1782-1787. [ 周晓欢, 袁亚敏, 余玺, 等, 2021. 椿根皮化学成分及其体外抗肿瘤活性 [J]. 中成药, 43(7): 1782-1787. ]

    • ZHU YF, ZHOU QM, FENG GB, et al. , 1999. Antimicrobial test in vitro of Cortex toonae and Cortex ailanthi [J]. Chin Mat Med Nat Med, 16(6) : 19-21. [朱育凤, 周琴妹, 丰国炳, 等, 1999. 香椿皮与臭椿皮的体外抗菌作用比较 [J]. 中药与天然药物, 16(6): 19-21. ]

    • ZOU YS, ZEREN DW, LIN CZ, et al. , 2019. Chemical constituents of Delphinium brunonianum [J]. J Chin Med Mat, 42 (8): 1806-1809. [邹园生, 泽仁达瓦, 林朝展, 等, 2019. 囊距翠雀花化学成分研究 [J]. 中药材, 42(8): 1806-1809. ]

  • 参考文献

    • AFSHAR FH, DELAZA RA, NAZEMIYEH H, et al. , 2017. Melilotoside derivatives from Artemisia splendens (Asteraceae) [J]. Rec Nat Prod, 11(1): 43-51.

    • CRAVEIRO AA, SILVEIRA ER, 1982. Two cleistanthane type diterpenes from Croton sonderianus [J]. Phytochemistry, 21(10): 2571-2574.

    • DONG H, GOU YL, CAO SG, et al. , 1999. Eicosenones and methylated flavonols from Amomum koenigii [J]. Phytochemistry, 50(5): 899-907.

    • DUYQ, LIN B, YAN ZY, et al. , 2019. Enantiomeric 8, 4′-type oxyneolignans from the root barks of Ailanthus altissima (Mill. ) Swingle and their neuroprotective effects against H2O2-induced SH-SY5Y cells injury [J]. Fitoterap, 139(11): 104403.

    • DU YQ, YAN ZY, CHEN JJ, et al. , 2019. The identification of phenylpropanoids isolated from the root bark of Ailanthus altissima (Mill. ) Swingle [J]. Nat Prod Res, 1643(7): 861-863.

    • Editorial Committee of Flora of China Chinese Academy of Sciences, 1998. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press, 23: 38-41. [中国科学院中国植物志编委会, 1998. 中国植物志 [M]. 北京: 科学出版社, 23: 76-79. ]

    • KITAGAWA I, CHEN WZ, HORI K, et al. , 1998. Chemical studies of Chinese licorice-roots. Ⅱ. five new flavonoid constituents from the roots of Glycyrrhiza aspera PALL. collected in Xinjiang [J]. Chem Pharm Bull, 46 (10): 1511-1517.

    • KUANG HX, YANG BY, TANG L, et al. , 2010. Baimantuoluosides A-C, three new withanolide glucosides from the flower of Datura metel L. [J]. Helv Chim Acta, 92(2): 1315-1323.

    • LI DX, ZENG XJ, YANG LM, 2013. Preliminary study on bacteriostasis of the Hollyhock flower by flow cytometry [J]. Mod J Integr Trad Chin W Med, 26 (8): 683-686. [李东霞, 曾祥吉, 杨丽敏, 2013. 流式细胞术检测蜀葵花抑菌作用的初步研究 [J]. 现代中西医结合杂志, 22(36): 3991-3993. ]

    • LI MS, KE YQ, ZHANG ZQ, et al. , 2021. Study on chemical constituents from tems and leaves of Sabia parviflora and their hepatoprotective activity [J]. Chin Trad Herb Drugs, 52(23) : 7096-7104. [李曼姝, 柯银铅, 张紫琴, 等, 2021. 小花清风藤茎叶化学成分及其保肝活性研究 [J]. 中草药, 52(23): 7096-7104. ]

    • LI N, 2021. Chemical constituents from Uraria crinita and their anti-renal interstitial fibrosis activity in vitro [J]. Chin Trad Pat Med, 43(2) : 393-399. [李南, 2021. 虎尾轮根化学成分及其体外抗肾间质纤维化活性 [J]. 中成药, 43(2): 393-399. ]

    • LI YZ, WEN YZ, YANG XZ, et al. , 2020. Chemical constituents from ethyl acetate extract of Eupatorium adenophorum [J]. Chin Trad Herb Drugs, 51 (4): 932-936. [李余钊, 文琰章, 杨新洲, 等, 2020. 紫茎泽兰醋酸乙酯部位化学成分研究 [J]. 中草药, 51(4): 932-936. ]

    • LI YP, PAN ZH, FU YX, et al. , 2022. Anti-inflammatory constituents of Clerodendranthus spicatus [J]. Guihaia, 42(9): 1480-1486. [李毅鹏, 潘争红, 符毓夏, 等, 2021. 猫须草抗炎活性成分研究 [J/OL]. 广西植物, 42(9): 1480-1486. ]

    • LI YK, 1991. Experimental methods of traditional Chinese medicine [J]. Shanghai: Shanghai Science and Technology Press: 286-289. [李仪奎, 1991. 中药药理实验方法学 [M]. 上海: 上海科学技术出版社: 286-289. ]

    • LIU CH, ZHANG JJ, 2003. Treatment of radiation proctitis with modified Zhenren Yangzangtang combined with root bark of the Ailanthus altissima (Mill. ) Swingle powder [J]. Shandong J Trad Chin Med, 22(12) : 731-732. [刘昌海, 张家驹, 2003. 真人养脏汤合椿根皮散治疗放射性直肠炎 20例 [J]. 山东中医杂志, 22(12): 731-732. ]

    • LIU XY, JI CJ, PENG WW, 2018. Chemical constituents from Citrus aurantium L. [J]. Chin Pharm J, 53 (19): 1627-1631. [刘欣媛, 嵇长久, 彭文文, 2018. 中药枳壳的化学成分研究 [J]. 中国药学杂志, 53(19): 1627-1631. ]

    • LUO W, TANG LJ, YUAN JD, et al. , 2021. Chemical constituents of Cirsium pendulum [J]. Chin Trad Herb Drugs, 52(22): 6781-6789. [罗伟, 汤良杰, 袁建丹, 等, 2021. 烟管蓟化学成分研究 [J]. 中草药, 52(22): 6781-6789. ]

    • MA S, ZHANG JX, ZHAO LQ, et al. , 2021. Analysis of chemical constituents in fruiting body of Suillus luteus [J]. Chin Mod Chin Mat Med, 23(8): 1357-1362. [马帅, 张金秀, 赵立强, 等, 2021. 黄乳牛肝菌化学成分分析 [J]. 中国现代中药, 23(8): 1357-1362. ]

    • OMAR AM, DIBWE DF, TAWILA AM, et al. , 2019. Chemical constituents of Anneslea fragrans and their antiausterity activity against the PANC-1 human pancreatic cancer cell line [J]. J Nat Prod, 82(11): 3133-3139.

    • QI X, CHEN ZH, GAO L, et al. , 2011. Isolation and structure identification of alkaloid and quassinoids from root bark of Ailanthus altissima [J]. Chin Trad Herb Drugs, 42(6): 1057-1060. [齐鑫, 陈智华, 高璐, 等, 2011. 椿根皮中生物碱及苦木素类化合物的分离与鉴定 [J]. 中草药, 42(6): 1057-1060. ]

    • SON AR, CHOI JY, KIM JA, et al. , 2005. Isolation of melanogenesis inhibitors from Ponciri fructus [J]. Korean J Pharmacogn, 36(1): 1-8.

    • VIRGINIE E, GESQUIERE L MT, JOSEPH T, et al. , 2018. Alchornoic acid derivatives from the fruits of Alchornea cordifolia (Schumach. & Thonn. ) Muell. Arg. (Euphorbiaceae) [J]. Phytochem Lett, 23(1): 62-65.

    • WANG WQ, WANG W, WANG L, 2020. Study on antimicrobial test in vitro and active fraction of Cortex ailanthi [J]. JETCM, 29 (7): 1209-1212. [王婉卿, 王伟, 王雷, 2020. 椿根皮体外抑菌和活性部位的研究 [J]. 中国中医急症, 29(7): 1209-1212. ]

    • XIE AR, WEI W, HAO EW, et al. , 2022. Chemical constituents from ethyl acetate extract in Saccharum ficinarum leaves [J]. Guihaia, 42(11): 1884-1891. [谢安然, 韦玮, 郝二伟, 等, 2022. 甘蔗叶乙酸乙酯部位化学成分研究 [J]. 广西植物, 42(11): 1884-1891. ]

    • YAN ZY, LV TM, WANG YX, et al. , 2020. Terpenylated coumarins from the root bark of Ailanthus altissima (Mill. ) Swingle [J]. Phytochemistry, 175(7): 2361-2367.

    • YU Q, 2021. Study on the chemical constituents from the aerial parts of Aralia californica [J]. J Guangdong Pharm Univ, 37(1): 1-5. [ 余茜, 2021. 加州楤木地上部位化学成分研究 [J]. 广东药科大学学报, 37(1): 1-5. ]

    • ZHANG Z, NI SW, XU X, et al. , 2021. Chemical constituents of Cassia occidentalis [J]. Chin J Chin Mat Med, 46(15) : 3873-3876. [张再, 倪绍伟, 徐雪, 等, 2021. 望江南的化学成分研究 [J]. 中国中药杂志, 46(15): 3873-3876. ]

    • ZHENG XM, PAN D, CAO J, et al. , 2020. Chemical constituents from Arisaema amurense [J]. Chin Trad Pat Med, 42 (1): 112-115. [ 郑琇梅, 潘多, 曹杰, 等, 2020. 东北天南星化学成分的研究 [J]. 中成药, 42(1): 112-115. ]

    • ZHOU QM, PENG C, LU TY, et al. , 2016. Chemical constituents from Fritillaria unibracteata [J]. J Chin Med Mat, 39 (10) : 2237-2239. [周勤梅, 彭成, 陆廷亚, 等, 2016. 暗紫贝母化学成分研究 [J]. 中药材, 39(10): 2237-2239. ]

    • ZHOU XH, YUAN YM, YU X, et al. , 2021. Chemical constituents from Ailanthus altissima and their antitumor activities in vitro [J]. Chin Trad Pat Med, 43(7): 1782-1787. [ 周晓欢, 袁亚敏, 余玺, 等, 2021. 椿根皮化学成分及其体外抗肿瘤活性 [J]. 中成药, 43(7): 1782-1787. ]

    • ZHU YF, ZHOU QM, FENG GB, et al. , 1999. Antimicrobial test in vitro of Cortex toonae and Cortex ailanthi [J]. Chin Mat Med Nat Med, 16(6) : 19-21. [朱育凤, 周琴妹, 丰国炳, 等, 1999. 香椿皮与臭椿皮的体外抗菌作用比较 [J]. 中药与天然药物, 16(6): 19-21. ]

    • ZOU YS, ZEREN DW, LIN CZ, et al. , 2019. Chemical constituents of Delphinium brunonianum [J]. J Chin Med Mat, 42 (8): 1806-1809. [邹园生, 泽仁达瓦, 林朝展, 等, 2019. 囊距翠雀花化学成分研究 [J]. 中药材, 42(8): 1806-1809. ]