DOI: 10.11931/guihaia.gxzw201808011

引文格式:程冬梅,张志勇,周赛霞,等.三种常绿阔叶树光系统 II 在低温胁迫下的光抑制及恢复 [J]. 广西植物,2019,39(12): 1666-1672.

CHENG DM, ZHANG ZY, ZHOU SX, et al. Photoinhibition and recovery of photosystem II of three broad-leaved evergreens under low temperature stress [J]. Guihaia, 2019, 39(12): 1666–1672.

三种常绿阔叶树光系统 II 在低温胁迫下的光抑制及恢复

程冬梅*,张志勇,周赛霞,彭焱松,张兆祥

(江西省、中国科学院庐山植物园,江西省植物迁地保护与利用重点实验室,江西九江 332900)

摘 要:冬季低温胁迫对亚热带常绿阔叶树光合活性的主要影响之一,体现在光合机构的低温光抑制。为 了阐明冬季低温胁迫下常绿阔叶树光系统 II 的光抑制程度及光保护机制,该文研究了冬季自然低温胁迫 (零下低温冻害和零上低温寒害)对红叶石楠、枇杷和猴樟三种亚热带常绿阔叶树光合机构光系统 II (PSII)光抑制的影响以及春季气温回暖后的恢复情况。结果表明:冻害和寒害低温胁迫使猴樟的 PSII活 性显著降低,PSII受到较严重的光抑制,低温胁迫解除后 PSII活性未能完全恢复。红叶石楠 PSII活性下降 程度和光抑制程度最轻,春季 PSII活性显著上升,光抑制显著下降。枇杷 PSII活性和光抑制程度介于猴樟 和红叶石楠之间。低温胁迫下红叶石楠的非光化学猝灭(NPQ)接近常温水平;枇杷的 NPQ 略有降低,春季 恢复正常;猴樟 NPQ 最低,春季低温解除后仍不能完全恢复。此外,三种常绿阔叶树在冬季低温胁迫和春 季恢复时期的 NPQ 与 PSII 的光抑制程度存在显著的负相关关系。综合以上结果分析表明,冬季低温对红 叶石楠 PSII影响不大,对枇杷有一定影响但春季气温回暖后可以及时恢复,对猴樟 PSII 有显著的光抑制且 恢复过程较慢,同时 NPQ 对保护常绿阔叶树 PSII 免受冬季低温光抑制有重要的贡献。 关键词:光合作用生理,光系统 II,光抑制,低温胁迫,非光化学淬灭,光保护 中图分类号:0945.78 文献标识码:A 文章编号:1000-3142(2019)12-1666-07

Photoinhibition and recovery of photosystem II of three broad-leaved evergreens under low temperature stress

CHENG Dongmei*, ZHANG Zhiyong, ZHOU Saixia, PENG Yansong, ZHANG Zhaoxiang

(Provincial Key Laboratory of Plant Ex-Situ Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, Jiangxi, China)

Abstract: The limits on photosynthesis of subtropical evergreen trees imposed by winter low temperature are mainly from photoinhibition of photosynthetic apparatus. To understand the extent of photoinhibition of photosystem II (PS II) and the

收稿日期: 2019-01-21

基金项目: 江西省重点研发计划项目(20161BBF60054);中国科学院重点部署项目(KFJ-3W-N01-143);江西省科研基础条件和能力 建设项目(2017ZDD01002) [Supported by Key Research and Development Program of Jiangxi (20161BBF60054); Key Program of Chinese Academy of Sciences (KFJ-3W-N01-143); Scientific Infrastructure and Capacity Building of Jiangxi Province (2017ZDD01002)]。

作者简介: 程冬梅(1985-),女,青海民和人,博士,助理研究员,研究方向为光合作用调控,(E-mail)chengdongmey@163.com。

通信作者

mechanism of photoprotection of evergreen trees under winter low temperature stress, PS II photoinhibition and recovery were studied in three broad-leaved evergreen tree species *Photinia* × *fraseri*, *Eriobotrya japonica* and *Cinnamomum bodinieri*. The results were as follows: PS II of *Cinnamomum bodinieri* was severely depressed and suffered photoinhibition under freezing and chilling temperature, and function of PS II was unable to fully recover at spring normal temperature. *Photinia* × *fraseri* showed the most unaffected PS II function and the least photoinhibition, whereas the situation in *Eriobotrya japonica* was in the intermediate. Accordingly, *Photinia* × *fraseri* maintained the level of non-photochemical quenching (*NPQ*) almost as high as at normal temperature, and *NPQ* of *Eriobotrya japonica* showed a little decrease but recovered at normal temperature condition. *Cinnamomum bodinieri* displayed the lowest *NPQ* under low temperature and was unable to totally recover. Furthermore, all the three tree species showed a strong negative relationship between *NPQ* and PS II photoinhibition, which was indicated by the maximum potential photochemical efficiency of PS II (F_u/F_m) and the quantum yield of non-regulated energy dissipation of PS II [Y(NO)]. Overall, the results demonstrate that *Photinia* × *fraseri* is more resistant to low temperature stress than *Eriobotrya japonica* and *Cinnamomum bodinieri* in terms of PS II. At the same time, *NPQ* plays an important role for protecting PS II of these trees from photoinhibition under low temperature.

Key words: physiology of photosynthesis, photosystem II (PS II), photoinhibition, low temperature stress, non-photochemical quenching (NPQ), photoprotection

低温是限制植物地理分布和生理活动的重要 环境因素 (Sharma et al., 2005; Ensminger et al., 2012)。低温冻害和寒害不仅造成植物细胞水分 结晶、渗透压改变、膜系统受损,还导致酶活性降 低、代谢变缓、光合机构受氧化胁迫活性降低 (Graham & Patterson, 1982; Öquist & Hüner, 2003)。叶绿体类囊体膜上的光合机构光系统 II (PSⅡ)对环境变化最为敏感(Aro et al., 1993; Tyystjärvi, 2013),当植物在低温等环境胁迫条件 下吸收和传递过剩光能,产生的大量活性氧使 PS Ⅱ反应中心 D1 蛋白氧化损伤速率大于修复速率, 导致光化学效率降低,引起光抑制现象(Vass & Cser, 2009; Sonoike, 2011; 杨万基等, 2018)。非 光化学猝灭(NPO)是植物应对氧化胁迫的重要防 御机制,捕光天线复合物将吸收的过剩光能以热 能耗散,避免活性氧的积累(Takahashi & Murata, 2008; Murchie & Niyogi, 2011; Pinnola & Bassi, 2018)

不同于落叶树,常绿树在冬季仍保留叶片进行 光合作用,低温使 CO₂固定相关酶活性降低, NADPH 还原力积累,导致叶绿体内产生大量活性 氧(Sharma et al., 2005; Verhoeven, 2013)。因此, 大部分松柏类常绿树在冬季 PS II 活性显著降低, *NPQ* 受调控显著上升(Bigras et al., 2001; Derks et al., 2015)。这种 PS II 冬季持续性光抑制现象是植 物应对冬季低温的一种重要的保护机制(Öquist & Hüner 2003; Míguez et al., 2017)。近年来研究报 道,零上低温对热带、亚热带常绿阔叶树 PS II 发生 显著的光抑制(胡文海等,2005; Huang et al., 2010; Li et al., 2018)。但是目前对红叶石楠(Photinia × fraseri)、枇杷(Eriobotrya japonica)、猴樟 (Cinnamomum bodinieri)等亚热带常绿阔叶树在零 下低温冻害后 PS II 的光抑制程度以及 NPQ 在光保 护作用方面的报道仍比较少见。本文主要研究了 红叶石楠、枇杷、猴樟三种常绿阔叶树在低温冻害 和寒害胁迫下 PS II 的光抑制及活性恢复,并对 NPQ 在保护 PS II 免受光抑制中的作用进行了探讨。

1 材料与方法

1.1 植物材料

以江西省中国科学院庐山植物园分园鄱阳湖 植物园(116°5.2′E,29°40.5′N,海拔25m)种植 的八年生成熟的红叶石楠(Photinia × fraseri)、枇 杷(Eriobotrya japonica)和猴樟(Cinnamomum bodinieri)为研究材料,分别于2018年冬春季节低温胁 迫和恢复期间上午09:00—11:00取向阳面同一 位置成熟枝叶,暗适应30min后立即用LI-COR 6800便携式光合仪对叶片进行叶绿素荧光测定。 每种材料至少进行3个叶片重复观测。

1.2 温度条件

2018 年 1 月 27 日至 30 日鄱阳湖植物园遭受 连续降雪和冻雨导致的零下低温冻害;2 月 8 日气 温回升至零上低温寒害;4 月 9 日气温基本恢复正 常,可作为低温胁迫解除和光合活性恢复的对照 条件。分别于 1 月 30、2 月 8 日、4 月 9 日进行试 验,三天的日最低气温分别为-5.3、4.5、9.2 ℃,日 平均气温分别为-1.1、7.2、18.5 ℃。气温数据由 植物园气象站观测获得。

1.3 叶绿素荧光检测

暗适应叶片观测最小荧光 F_o 和10 000 μmol photons · m⁻² · s⁻¹饱和脉冲下最大荧光 F_m ,并计算 PS II 潜在最大光化学量子产量 $F_v/F_m = (F_m - F_o)/F_m$ 。然后开启光化光,检测光适应时最小荧光 F_o 、载后开启光化光,检测光适应时最小荧光 F_o 、最大荧光 F_m '和稳态荧光 F_s ,分别计算PS II 实 际光化学量子产量 $\Phi(\Pi) = (F_m' - F_s)/F_m'$;PS II 相对电子传递速率 $rETR(\Pi) =$ 光合有效辐射 $(PAR) \times \Phi(\Pi) \times 0.84 \times 0.5$;非光化学猝灭 NPQ = $(F_m - F_m')/F_m'$; $qN = 1 - (F_m' - Fo')/(F_m - F_o)$; PS II 非调节性能量耗散量子产量 $Y(NO) = F_s/F_m$ 。 将叶片在 0、25、50、100、150、300、500、1 000、 1 500、2 000 μmol photons · m⁻² · s⁻¹光合有效辐射 下保持 90~120 s,测得各叶绿素荧光参数的快速 光响应曲线。

1.4 曲线拟合

根据 Jasby & Platt (1976)的方程 $P = P_m \times tanh$ ($\alpha \times PAR/P_m$)对 $rETR(\Pi)$ 快速光响应曲线进行拟 合。其中: α 为曲线的初始斜率,反映了光能利用效 率; P_m 是拟合出来的潜在最大相对电子传递速率; 半饱和光强 $Ik = P_m/\alpha$,反映了样品耐受强光的能 力。曲线用最小二乘法通过 Origin 8.5 软件拟合。

1.5 数据分析

实验数据用 Microsoft Excel 2015 软件统计平均值和标准差,用 Origin 8.5 软件作图。

2 结果与分析

2.1 PS Ⅱ 的活性变化

图1为零下低温冻害(1月30日)、零上低温

寒害(2月8日)和恢复(4月9日)时期红叶石楠、 枇杷和猴樟 PS II 实际光化学量子产量 Φ(II)和 PS II 相对电子传递速率 rETR(II) 的光响应曲线, 以此来反映低温对 PSⅡ活性的影响。结果显示, 冻害使三种树 PSⅡ的活性都受到不同程度的下 降。红叶石楠冻害后 Φ(Ⅱ) 与恢复期接近, rETR (Ⅱ)保持较高水平,甚至高于恢复时期。枇杷冻 害后的 Φ(Ⅱ)和 rETR(Ⅱ)比红叶石楠略低。猴 樟 PS II 受影响最严重, Φ (Ⅱ)和 *rETR*(Ⅱ)最低。 零上低温寒害下三种树的 PSⅡ活性仍维持在冻害 时期的水平甚至更低。春季气温回升至 18.5 ℃后 (4月9日),红叶石楠和枇杷 Φ(Ⅱ)恢复至正常 水平,而猴樟 $\Phi(II)$ 与 *rETR*(II) 不能全部恢复。 对 rETR(Ⅱ)快速光响应曲线进行拟合后,猴樟初 始斜率 α 和最大光合速率 P_m 在低温胁迫时明显 低于红叶石楠和枇杷,温度恢复后猴樟最大光合 速率 P_m 和耐受强光的能力 Ik 仍然低于红叶石楠 和枇杷(表1)。

2.2 PSⅡ的光抑制及恢复

图 2 显示了低温胁迫及恢复过程中三种树 PS II 光抑制变化。冻害和寒害下红叶石楠维持较 高的 F_v/F_m 和较低的 Y(NO),表明 PS II 仅受到轻 微的光抑制,且在温度恢复正常后光抑制也完全 恢复。冻害使枇杷的 F_v/F_m 和 Y(NO)分别低于和 高于红叶石楠,寒害下枇杷的 PS II 光抑制有所减 轻,气温恢复后 PS II 的光抑制也得到完全恢复。 冻害对猴樟的 PS II 产生非常显著的光抑制, F_v/F_m 和 Y(NO)分别达到了最低和最高值,而且光抑制 程度随着冻害的解除和冷害的持续而继续加深, 直到气温恢复正常后光抑制程度才有部分恢复。

2.3 NPQ 与 PS Ⅱ 光抑制的关系

非光化学猝灭(NPQ)是植物进行光保护的重要机制,可以通过叶绿素荧光参数 NPQ 和 qN 来反映。图3显示了红叶石楠、枇杷和猴樟在零下低温冻害、零上低温寒害和气温恢复时期叶绿素荧光参数 NPQ 和 qN 的光响应曲线变化。结果显示冻害和寒害胁迫下三种树的 NPQ 和 qN 均有不同程度的降低,气温恢复后 NPQ 和 qN 也随之得到不同程度的恢复。相对而言,冻害和寒害低温胁迫对红叶石楠的 NPQ 和 qN 影响较小,枇杷 NPQ

图 1 红叶石楠、枇杷和猴樟在冻害(1月30日)、寒害(2月8日)、春季常温(4月9日)下 PSⅡ活性变化 Fig. 1 Effects of freezing (Jan. 30), chilling (Feb. 8) and recovery (Apr. 9) temperatures on PSⅡ activity of *Photinia* × *fraseri*, *Eriobotrya japonica* and *Cinnamomum bodinieri*

表 1 红叶石楠、枇杷和猴樟快速光响应曲线拟合参数

Table 1	Fitted parameters for rapid light response curve from Photinia \times fraseri
	Eriobotrya japonica and Cinnamomum bodinieri

名称 Species	日期 Date	最大相对电子传递速率 P_m	初始斜率 α	半饱和光强 <i>lk</i>
红叶石楠	1月30日Jan.30	40.24	0.23	173.23
Pholinia × fraseri	2月8日Feb.8	39.31	0.21	187.04
	4月9日 Apr. 9	24.19	0.19	125.61
枇杷	1月30日Jan.30	42.18	0.19	224.24
Eriobotrya japonica	2月8日Feb.8	41.64	0.22	186.08
	4月9日Apr.9	42.48	0.28	150.03
猴樟	1月30日Jan.30	25.06	0.16	154.42
Cinnamomum bodinieri	2月8日Feb.8	30.85	0.08	401.54
	4月9日Apr.9	18.13	0.22	80.86

和 qN 低于红叶石楠, 猴樟的 NPQ 和 qN 最低。气温恢复后, 红叶石楠和枇杷的 NPQ 和 qN 均恢复

到较高水平,猴樟的 NPQ 和 qN 仍不能完全恢复。 将冻害、寒害、正常温度三种条件下红叶石楠、枇 Г

图 2 红叶石楠、枇杷和猴樟在冻害(1月30日)、寒害(2月8日)、 春季常温(4月9日)下 F_v/F_m(A)和Y(NO)(B)变化

Fig. 2 Effects of freezing (Jan. 30), chilling (Feb. 8) and recovery (Apr. 9) temperatures on $F_v/F_m(\mathbf{A})$ and Y(NO) (**B**) of Photinia × fraseri, Eriobotrya japonica and Cinnamonum bodinieri

图 3 红叶石楠、枇杷和猴樟在冻害(1月30日)、寒害(2月8日)、春季常温(4月9日)下 NPQ 变化 Fig. 3 Effects of freezing (Jan. 30), chilling (Feb. 8) and recovery (Apr. 9) temperatures on NPQ of Photinia × fraseri, Eriobotrya japonica and Cinnamonum bodinieri

杷和猴樟的 F_v/F_m 与 500 μ mol photons · m⁻² · s⁻¹ 光合有效辐射下的 NPQ、Y(NO)进行分析,发现三 种树在三种条件下 Y(NO) 和 F_v/F_m 均与 NPQ 存在极显著的负相关关系,即 PS II 光抑制程度与非

图 4 NPQ 与 F_v/F_m 和 Y(NO) 呈显著负相关关系 Fig. 4 Significantly negative relationships of NPQ to F_v/F_m and Y(NO)

光化学猝灭存在显著负相关(图4)。

3 讨论与结论

冻害和寒害胁迫对越冬的常绿阔叶树的 PS II 产生光抑制,是导致冬季树木光合活性下降的重 要原因(Verhoeven, 2013)。低温光照条件下产生 的活性氧对光合机构和其他生物大分子造成氧化 损伤,不仅使光合作用活性下降,而且导致叶片黄 化、褐化、坏死(Sharma et al., 2005)。该试验对红 叶石楠、枇杷、猴樟在冬季冻害和寒害低温胁迫下 PS II 的光抑制和恢复进行了研究,证明冬季低温 对三种亚热带常绿阔叶树 PS II 造成的光抑制存在 差异。综合而言,低温对红叶石楠 PS II 的影响最 小,枇杷次之,猴樟 PS II 受到显著的光抑制且恢复 较慢。三种树的 PS II 光抑制程度与 NPQ 的活性 存在负相关。

研究证明, F_v/F_m 和 Y(NO)可以有效反映 PS II 的光抑制程度(Baker, 2008; Huang et al., 2010; Míguez et al., 2015)。此次试验结果显示, 三种常绿阔叶树在低温胁迫和恢复时期 PS II 活性 越高, F_v/F_m 越高, Y(NO) 越低, 证实了这两个叶 绿素荧光参数可以真实有效地反映 PS II 光抑制的 生理状态。红叶石楠在低温胁迫下 PS II 活性未受 显著下降, 而 rETR(II) 在春季气温恢复后却表现 出下降(图 1), 原因可能是受恢复时期 $\Phi(II)$ 光 响应曲线随着光合有效辐射的增加而迅速下降所 影响,因为 *rETR*(II)的计算结果由光合有效辐射 和 Φ (II)共同决定。

尽管三种树在低温胁迫下 PS II 活性下降程度 不同,但 F_{n}/F_{m} 均表现出下降趋势,Y(NO) 均有上 升趋势,即 PS II 都发生了不同程度的光抑制,这表 明三种常绿阔叶树在冬季进行了 PS II 持续性光抑 制的保护机制。这个结果证实了 Míguez et al. (2015)越冬常绿植物普遍在气温阈值为 0 °C 发 生 PS II 持续性光抑制的结论。下一步研究低温 胁迫对 PS I 光抑制的影响将进一步阐明 PS II 与 PS I 在低温胁迫下的光抑制特性与相互关系。

综上所述,冬季冻害和寒害对红叶石楠、枇杷 和猴樟三种亚热带常绿阔叶树 PSII产生不同程度 的光抑制,而且非光化学猝灭的光保护机制对越 冬常绿树种 PSII免受低温光抑制具有重要的生理 学意义。

参考文献:

- ARO EM, VIRGIN I, ANDERSSON B, 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover [J]. BBA-Bioenergetics, 1143(2): 113-134.
- BAKER NR, 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo [J]. Ann Rev Plant Biol, 59 (1): 89-113.
- BIGRAS FJ, RYYPPO A, LINDSTROM A, et al., 2001. Cold acclimation and deacclimation of shoots and roots of conifer

seedlings [M]. Dordrecht: Springer: 57-88.

- DERKS A, SCHAVEN K, BRUCE D, 2015. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change [J]. BBA-Bioenergetics, 1847(4–5): 468–485.
- ENSMINGER I, BERNINGER F, STREB P, 2012. Response of photosynthesis to low temperature [M]. UK: Cambridge University Press: 272–289.
- GRAHAM D, PATTERSON BD, 1982. Responses of plants to low, nonfreezing temperatures: Proteins, metabolism, and acclimation [J]. Ann Rev Plant Biol, 33(1): 347–372.
- HU WH, XIAO YA, LONG WW, 2005. Effects of night low temperature and sunlight on photoinhibition and photosystem II functions in leaves of *Pittosporum tobira* (Thunb.) Ait. and *Ficus microcarpa* L. [J]. Plant Physiol Comm, 41(4): 467–470. [胡文海,肖宜安,龙婉婉, 2005. 夜间低温后日间 光照对海桐和榕树叶片的光抑制以及光系统II功能的影响 [J]. 植物生理学通讯, 41(4): 467–470.]
- HUANG W, ZHANG SB, CAO KF, 2010. Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII [J]. Plant Cell Physiol, 51(11): 1922–1928.
- JASBY AD, PLATT T, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton [J]. Limnol Oceanogr, 21(4): 540-547.
- LI ZZ, LI XM, RUBERT-NASON FK, et al., 2018. Photosynthetic acclimation of an evergreen broadleaved shrub (*Am-mopiptanthus mongolicus*) to seasonal climate extremes on the Alxa Plateau, a cold desert ecosystem [J]. Trees, 32(5): 603-614.
- MÍGUEZ F, FERNÁNDEZ-MARÍN B, BECERRIL JM, et al., 2015. Activation of photoprotective winter photoinhibition in plants from different environments: A literature compilation and meta-analysis [J]. Physiol Plant, 155(4): 414–423.

MÍGUEZ F, FERNÁNDEZ-MARÍN B, BECERRIL JM, et al.,

2017. Diversity of winter photoinhibitory responses: A case study in co-occurring lichens, mosses, herbs and woody plants from subalpine environments [J]. Physiol Plant, 160(3): 282–296.

- MURCHIE EH, NIYOGI KK, 2011. Manipulation of photoprotection to improve plant photosynthesis [J]. Plant Physiol, 155(1): 86–92.
- ÖQUIST G, HÚNER NP, 2003. Photosynthesis of overwintering evergreen plants [J]. Ann Rev Plant Biol, 54 (1): 329–355.
- PINNOLA A, BASSI R, 2018. Molecular mechanisms involved in plant photoprotection [J]. Biochem Soc T, 46(2): 467–482.
- SHARMA P, SHARMA N, DESWA R, 2005. The molecular biology of the low-temperature response in plants [J]. Bioessays, 27(10): 1048–1059.
- SONOIKE K, 2011. Photoinhibition of photosystem I [J]. Physiol Plant, 142(1): 56-64.
- TAKAHASHI S, MURATA N, 2008. How do environmental stresses accelerate photoinhibition? [J] Trends Plant Sci, 13(4): 178–182.
- TYYSTJÄRVI E, 2013. Photoinhibition of photosystem II [M]. Cambridge: Academic Press: 243-303.
- VASS I, CSER K, 2009. Janus-faced charge recombinations in photosystem II photoinhibition [J]. Trends Plant Sci, 14(4): 200–205.
- VERHOEVEN AS, 2013. Sustained energy dissipation in winter evergreens [J]. New Phytol, 201(1): 57–65.
- YANG WJ, JIANG XM, GAO X, et al., 2018. Effects of 28homobrassinolide on photosynthetic and fluorescence characteristics of pepper seedlings under low temperature with dim light [J]. J S Agric, 49(4:): 741-747. [杨万基, 蒋欣 梅, 高欣, 等, 2018. 28-高芸苔素内酯对低温弱光胁迫 辣椒幼苗 光合和荧光特性的影响 [J]. 南方农业学报, 49(4): 741-747.]