细尖光萼苔挥发性成分的分析

杜泽乡1,莫善列2,龚受基1,吴鹏程3

(1. 桂林医学院, 广西 桂林 541001; 2. 广西中医学院, 南宁 530001; 3. 中国科学院 植物研究所, 北京 100093)

摘 要:采用水蒸气蒸馏法从细尖光萼苔提取挥发性成分,运用 GC-MS 联用技术对挥发性成分进行鉴定,用色谱峰面积归一化法计算各成分的相对含量,鉴定了细尖光萼苔挥发性成分 20 种。

关键词:光萼苔;挥发性成分;气相色谱一质谱

中图分类号: Q946 文献标识码: A 文章编号: 1000-3142(2008)03-0422-02

Chemical constituents of volatile oil from *Porella paraphyllia*

DU Ze-Xiang¹, MO Shan-Lie², GONG Shou-Ji¹, WU Peng-Cheng³

(1. Guilin Medical University, Guilin 541001, China; 2. Guangxi Traditional Chinese Medical University, Nanning 530001, China; 3. Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China)

Abstract: The volatile oil from *Porella paraphyllia* was obtained by steam distillation, with the content of 0.1%. Twenty chemical constituents were separated and identified by GC-MS, and their relative contents were determined by peak area normalization. Among them, α -Pinene and γ -elemene are the main bioactive constituents in the volatile oil. **Key words**: *Porella paraphyllia*; volatile oil; GC-MS

苔藓植物是植物界的一个重要门类,随着近年 来对苔藓植物的化学和生物学研究的不断深入,越 来越多的结构新颖或生物活性良好的化合物从苔藓 中分离得到(Asakawa,1995;王凤祥等,1997)。光 萼苔属植物普遍具有抗菌作用,从光萼苔属植物 (Porella cordeana)中分离到的倍半萜马兜铃酮 (aris-olone)具有 DNA 修复毒性,某些植物含有倍 半萜内酯,具有抗炎、解痉、抑菌、强心、降血脂、抗原 虫和抗肿瘤等活性(John 等,2002; Toshihiro 等, 2000)。我国有丰富的光萼苔属植物资源,通过研究 光萼苔的化学成分为进一步的开发利用提供理论依 据。挥发油的提取常用水蒸汽蒸馏法,挥发油的定 性分析则采用气相色谱-质谱(GS-MS)联用法,该法 已经成为对组成极为复杂的挥发油研究的有力手段 (吴立军等,1988)。笔者通过气-质联用仪对细尖光 萼苔(Porella paraphyllia)中的挥发性成分进行了 分析,从中鉴定出了20多种成分,都是首次从该植

物中得到的。

1 仪器和试剂

2 方法

2.1 水蒸汽蒸馏法提取挥发油

参考吴立军等(1988)的方法,将细尖光萼苔 26 g 药材粉碎后,将原料粗粉在挥发油提取器中加水浸泡,加热提取,收集蒸馏液,分水收集挥发油部分,经无水硫酸钠干燥后得挥发油,该挥发油为淡绿色透明油状物,收率为 0.1%。

收稿日期: 2007-12-26 修回日期: 2008-03-19

基金项目: 广西教育厅基金(2000626)[Supported by Education Department of Guangxi(2000626)]

作者简介: 杜泽乡(1958-),女,广西桂林人,副教授,长期从事天然药物的研究,(E-mail)duzexiang58@126.com。

2.2 色谱条件

HP-5MS 毛细管柱 (30 m×0. 25 mm, 0. 25 μ m),程序升温:80 ℃(3 min) 20 ℃/min 160 ℃(5 min) 10 ℃/min 250 ℃(2 min) 15 ℃/min 280 ℃(2 min);载气 He;分流进样,分流比 1:10;进样温度 250 ℃,EI 电离,离子源温度 230 ℃;电离功率 70 eV;质量扫描范围:45~550 AMU;进样量 0.5 μ L。

3 结果

细尖光尊苔中挥发油经 GC-MS 分离分析的总 离子流图如图 1,分离出 35 个组分。各峰经质谱扫描 后所得的质谱图,采用计算机检索谱库,依据相似度 的概率,给出可能结构的分子结构,查阅相关的质谱

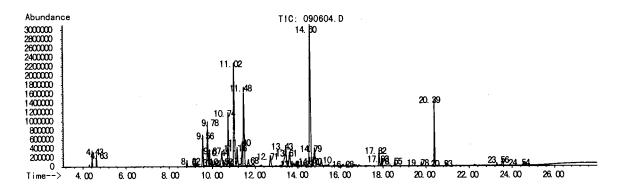


图 1 细尖光萼苔挥发油总离子流

Fig. 1 Total ion chromatogram of volatile oil from Porella paraphyllia

表 1 细尖光萼苔挥发油成分分析结果

Table 1 Identified components of volatile oil from Porella paraphyllia

峰号 Peak No.	保留时间 Retention time(min)	化合物 Compound	分子式 Molecular formula	分子量 Molecular weight	相对含量 Relative content(%)
1	4.43	1s-α-Pinene	C ₁₀ H ₁₆	136	1.18
2	4.63	Camphene	$C_{10} H_{16}$	136	0.91
3	8.82	1,5,5-Trimethyl-6-methylene-cyclohexene	$C_{10} H_{16}$	136	0.55
4	9.31	9,10-dehydro-isolongifolene	$C_{15} H_{22}$	202	0.41
5	9.87	3,7,7-trimethyl-11-methylene- Spiro[5.5] undec-2-ene	C ₁₅ H ₂₄	204	1.94
6	10.11	Caryophyllene	$C_{15} H_{24}$	204	0.62
7	10.75	1-(2,4,5-triethylphenyl)-ethanone	$C_{14} H_{20} O$	204	6.83
8	11. 02	4-amino-2-methyl- Phenol	C ₇ H ₉ NO	123	12.89
9	11. 16	Germacrene D	$C_{15} H_{24}$	204	2.47
10	11. 47	γ-elemene	$C_{15} H_{24}$	204	10.66
11	11.68	α-chamigrene	$C_{15} H_{24}$	204	0.81
12	12.71	1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, (E)-	$C_{15} H_{26} O$	222	1.59
13	13. 43	1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [lar-(lad,4ad,7d,7ad,7bd)]-	C ₁₅ H ₂₄ O	220	4. 43
14	13.61	(-)-Globulol	$C_{15}H_{26}O$	222	2.40
15	13.81	1H-Cycloprop[e] azulen-4-ol, decahydro-1,1,4,7-tetramethyl-, [lar-(laà,4á,4aá,7à,7aá,7bà)]-	C ₁₅ H ₂₆ O	222	0.47
16	14.79	eudesmol	$C_{15}H_{26}O$	222	2.66
17	16.28	Spiro[2,4,5,6,7,7a-hexahydro-2-oxo-4,4,7α-trimetnyl benzofuran]-7,2 '-(oxirane)	C ₁₂ H ₁₆ O ₃	208	0.34
18	18.55	1,2-Benzenedicarboxylic acid, butyl 2-methyl propyl ester	$C_{16}H_{22}O_4$	278	0.56
19	19.78	1,2-Benzenedicarboxylic acid	$C_{16}H_{22}O_4$	278	0.39
20	20.93	(-)-Kaur-16-ene	C ₂₀ H ₃₂	272	0. 27

丛生,高约 25 cm,平滑无毛,通常具 2 节;叶鞘光滑无毛;叶耳披针形,长约 1 mm;叶舌长约 0.5 mm;叶片常内卷,长 2~3(~5) cm,两面密被短毛,上面及边缘杂有长粗毛。穗状花序疏松,长约 4 cm(芒除外),暗紫色;穗轴纤细,常呈蜿蜒状,节间长约 5 mm;小穗长 12~20 mm(芒除外),单生于穗轴每节,含 3~4 小花,具短柄,长 0.5~0.8 mm;小穗轴密被短毛,节间长约 2 mm;颖披针形,顶端渐尖,光滑无毛,具 5 脉,第一颗长 4~4.5 mm,第二颗长 6~6.5 mm;外稃长圆状披针形,具 5 脉,中脉粗糙,背下部两边具短刺毛,基盘具毛,顶端具长 15~26 mm 粗糙、反曲的芒,第一外稃长约 12 mm;内稃近等长于外稃,顶端钝圆具纤毛,两脊上部 1/3 疏具纤毛,下部无毛;花药草绿色长约 1 mm。花果期 8 月。

本种与矮鹅观草(Roegneria humilis Keng et S. L. Chen)相似,但其基生叶叶鞘顶端两侧有披针形叶耳;叶片两面均密被短柔毛,上面及边缘还杂有

长粗毛;穗状花序短,长约 4 cm;花药草绿色,长约 1 mm 而可以区别(耿以礼,1959;杨锡麟等,1987;Wu & Wang,1999;Cai,1997,1999;陈守良等,2006)。所以,我们认为,该新种虽与后一种具有一定的亲缘关系,但其间的区别仍然非常明显,作为独立的新种应该能够成立。本种为中国特有种。

参考文献:

杨锡麟,王朝品. 1987. 中国植物志[M]. 北京:科学出版社,9 (3):6-104

陈守良,朱光华. 2006. 披碱草属.中国植物志[M]. 22:400-429 耿以礼. 1959. 中国主要植物图说——禾本科[M]. 北京:科学 出版社:342-409,421-429

蔡联柄. 1999. 青海植物志[M]. 西宁:青海人民出版社,4:74 -103

Cai LB(蔡联柄). 1997. A taxonomical study the genus Roegneria C. Koch from China(国产鹅观草属研究)[J]. Acta Phytotax Sin (植物分类学报),35(2):148—177

Wu YH, Wang QJ. 1999. Triticeae Dumort[A]. The Grasses of Karakorum and Kunlun Mountains[M]. 69-97

(上接第 423 页 Continue from page 423)

资料,分别对各峰加以鉴定,确认出20个组分。

4 讨论

按上述实验条件进样,得到细尖光苔萼挥发油的 总离子流图。共分离出 35 个色谱峰,根据相应的 MS 谱图,通过数据库的质谱数据系统检索,并参考有关 文献鉴定了其中 20 个峰的成分。以扣除溶剂峰的色 谱图的全部峰面积作为 100%,按峰面积归一化法计 算各化合物在挥发油中的相对含量,结果见表 1。

本研究从细尖光苔萼挥发油中共分离得到 35 个色谱峰,与别的植物相比,细尖光萼苔的挥发油中成分较少,鉴定出了 20 个成分,均为首次从该种植物中首次发现。其中 2,4,5-三甲基苯乙酮、4-氨基甲基-苯酚、榄香烯、1,1,7-三甲基-4-次甲基-1H-环丙基[e]甘菊环烃-7-醇等四种主要成分,占鉴定成分总含量的 66.5%。在鉴定的化合物中,蒎烯具有广谱的抗真菌作用(李开泉等,1986),并且具有镇痉作用(国家医药管理局中草药情报中心站,1986)。榄香烯具有降低肿瘤细胞有丝分裂能力,诱发肿瘤细胞凋忘,抑制肿瘤细胞的生长的生物活性,现在已经处于临床应用(钱军等,1996)。通过对挥发油的成分进行研究,进一步揭示光萼苔的化学成分,为光

尊苔的开发与利用提供参考。

参考文献:

吴立军,吴继洲. 1988. 天然药物化学[M]. 北京:人民卫生出版社,5;261-266

国家医药管理局中草药情报中心站. 1986. 植物药有效成分手册[M]. 北京:人民卫生出版社:182-183

Asakawa Y. 1995. Chemical constituent of hepaticae. Progress in the Chemistry of Ornanic Natural Products [M]. Wein New York: Sprinner Verlag, 65:562

John W, van Klink, Josef Zappa, et al. 2002. Pinguisane-Type Sesquiterpenes from the South American Liverwort Porella recurva (Taylor) Kuhnemann[J]. J Biosci, 57:413-417

Li KQ(李开泉), Tang T(唐陶). 1986. Studies on antifungal effectual components of the essential oil of Litsea cubeba[山苍子油抗真菌有效成分的研究][J]. Chin J Hospital Pharm(中国医院药学杂志),6(11):3-4

Qian J(钱军), Qin SK(秦叔逵). 1996. Antitumor dug-the pharmacoligical and clinical effect of elemene(抗癌新药—— 榄香烯的药理及临床)[J]. Chin J Clin Oncol (中国肿瘤临床), 23 (6), 453—455

Toshihiro Hashimoto, Hiroshi Irita, Masami Tanaka, et al. 2000. Pinguisane and dimeric pinguisane-type sesquiterpenoids from the Japanese liverwort Porella acuti folia subsp. Tosana[J]. Phytochemistry, 53:593-604

Wang FQ(王凤强), Lou HX(娄红祥). 1997. Progress in the studies on chemical constituents and bioactivities of Mosses[J]. World Phytomedicines(国外医药(植物药分册)),6:1-5