DOI: 10.11931/guihaia.gxzw202203052

朱显亮,唐健民,陶英,等,2023. 石灰土和酸性土生境下金花茶组植物叶片钙形态差异 [J]. 广西植物,43(3): 442-451. ZHU XL,TANG JM,TAO Y,et al.,2023. Difference in calcium speciation in leaves of golden *Camellia* species from calcareous soil and acidic soil habitats [J]. Guihaia,43(3): 442-451.

石灰土和酸性土生境下金花茶组植物叶片钙形态差异

朱显亮1. 唐健民1. 陶 英2. 秦惠珍1. 刘可慧1,2. 韦 霄1. 柴胜丰1*

(1. 广西植物功能物质与资源持续利用重点实验室, 广西壮族自治区 广西植物研究所, 中 国 科 学 院 广西植物研究所, 广西 桂林 541006; 2. 广西师范大学 生命科学学院, 广西 桂林 541006)

摘 要:为探究不同生境下金花茶组植物的叶片钙形态特征,该研究以 10 种石灰土生境和 4 种酸性土生境的金花茶为对象,测定了其生境土壤的钙含量和 pH 值,以及该生境下金花茶组植物叶中的硝酸钙和氯化钙、水溶性有机酸钙、果胶酸钙、磷酸钙和碳酸钙、草酸钙、硅酸钙和总钙的含量。结果表明:(1)石灰土生境的土壤钙含量和土壤 pH 均极显著(P<0.01)高于酸性土。(2)在石灰土生境中,金花茶组植物的叶钙形态以草酸钙(41.17%)为主,而在酸性土生境中则以果胶酸钙(43.10%)为主,除硝酸钙和氯化钙、果胶酸钙外,石灰土金花茶的各叶钙形态和总钙含量均极显著(P<0.01)高于酸性土金花茶。(3)相关性分析结果显示,大部分叶钙形态含量与土壤 pH 和土壤钙含量呈极显著(P<0.01)正相关,表明土壤环境对金花茶组植物叶钙形态特征具有重要影响。(4)单因素方差分析结果显示,各叶钙形态含量在物种间存在极显著(P<0.01)差异,表明金花茶组植物在物种分化过程中叶钙形态特征具有多样性。(5)基于叶钙形态特征的聚类分析显示,14 种金花茶可归为 3 大类。总体而言,不同生境背景下金花茶组植物的叶钙形态差异可能是土壤环境和遗传因素共同作用的结果。该研究结果有助于深入理解金花茶组植物对土壤钙的适应机制,为其保育措施制定提供了参考。

关键词:金花茶,土壤环境,钙适应,聚类分析,喀斯特植物

中图分类号: 0945.79 文献标识码: A 文章编号: 1000-3142(2023)03-0442-10

Difference in calcium speciation in leaves of golden *Camellia* species from calcareous soil and acidic soil habitats

ZHU Xianliang¹, TANG Jianmin¹, TAO Ying², QIN Huizhen¹, LIU Kehui^{1,2}, WEI Xiao¹, CHAI Shengfeng^{1*}

(1. Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China; 2. College of Life

Sciences, Guangxi Normal University, Guilin 541006, Guangxi, China)

收稿日期: 2022-05-07

基金项目: 国家自然科学基金(32060248,31860169); 广西重点研发计划项目(桂科 AB21196018)。

第一作者: 朱显亮(1996-),硕士,研究实习员,研究方向为保育生物学,(E-mail)xianliangzhu2021@126.com。

^{*}通信作者: 柴胜丰,博士,研究员,主要从事珍稀濒危植物保育及可持续利用研究,(E-mail)sfchai@ 163.com。

Abstract: In order to study the calcium speciation characteristics in leaves of golden Camellia species under different habitats, 10 species of golden Camellia from calcareous soil habitats and four species from acidic soil habitats were used as the research objects. The calcium content (Soil-Ca) and pH (Soil-pH) of habitat soil, and the contents of calcium nitrate and calcium chloride (AIC-Ca), water soluble organic acid calcium (H,O-Ca), calcium pectate (NaCl-Ca), calcium phosphate and calcium carbonate (HAC-Ca), calcium oxalate (HCl-Ca), calcium silicate (Res-Ca), and total calcium (Tot-Ca) of leaves were measured. The results were as follows: (1) the Soil-Ca and Soil-pH of calcareous soil were extremely significantly (P < 0.01) higher than those of acidic soil. (2) The leaf calcium speciation of golden Camellia species from calcareous soil habitats was primarily HCl-Ca (41.17%), while species from acidic soil habitats was primarily NaCl-Ca (43.10%), and all calcium speciation and total calcium content in leaves of species from calcareous soil were extremely significantly (P<0.01) higher than that from acidic soil except for AIC-Ca and NaCl-Ca. (3) Correlation analysis showed that most of the content of calcium speciation in leaves was extremely significantly (P<0.01) and positively correlated with Soil-Ca and Soil-pH, indicating that soil environment had an important influence on the leaf calcium speciation characteristics of golden Camellia species. (4) According to one-way ANOVA. the content of each leaf calcium speciation was extremely significant (P<0.01) difference among the species in golden Camellia revealing that the calcium speciation characteristics had a considerable variation during the species differentiation. (5) Cluster analysis based on calcium speciation characteristics showed that the 14 species of golden Camellia could be grouped into three categories. In summary, the differences in leaf calcium speciation of plants of golden Camellia species in different habitats may be the consequence of a combination of soil environmental and genetic factors. The results of this study will help to understand the adaptation mechanism of golden Camellia species to soil calcium and provide a reference for the formulation of conservation measures.

Key words: golden Camellia, soil environment, calcium adaptation, cluster analysis, karst plant

钙是植物生长必不可少的营养元素,可以促 进植物的生长发育、光合作用、抗逆性等,但过量 的钙会产生细胞毒害,其对植物而言具有两面性 (Min et al., 2009)。钙在植物体中主要以硝酸钙 和氯化钙、水溶性有机酸钙、果胶酸钙、磷酸钙和 碳酸钙、草酸钙、硅酸钙等化学形态存在(叶盛等, 2000)。在高钙环境中,一些优势植物通常会进化 出自身的钙适应机制,以此避免产生钙毒害。例 如,植物可以通过泌钙腺体将体内多余的钙分泌 出去(李强等,2007; Borer et al., 2012);或者形成 钙化根,从源头上控制根系对钙的吸收(高有红 等,2017)。此外,还可以通过调节自身某些生理 活性物质的变化来适应高钙环境(张宇斌等, 2008)。喀斯特地区又称岩溶地区,是典型的高钙 环境,钙在喀斯特生态系统中扮演着重要角色 (Huang et al., 2021)。长期以来,这里的大部分植 物形成了喜钙、岩生、旱生等特性(罗绪强等, 2012)。因此,喀斯特生境成为研究植物对高钙环 境适应性方面的热点区域(谢丽萍等,2007:曹建 华等,2011;齐清文等,2013)。

金花茶组(Camellia Sect. Chrysantha) 系山茶科 (Theaceae) 山茶属(Camellia L.) 常绿灌木或小乔

木。由于金花茶种质资源稀缺以及极高的观赏价 值,因此被誉为"植物界大熊猫"和"茶族王后"(韦 霄等,2006)。同时,金花茶在抗肿瘤、抗氧化、防治 三高、抗炎及抗过敏等方面具有较高的药用价值 (孔桂菊等,2016)。在 2021 年 8 月发布的《国家重 点保护野生植物名录》中,金花茶组所有种均被列 入国家二级保护野生植物。目前,已报道且被认可 的中国金花茶组植物种类超过20种,主要分布于广 西西南部,其大部分物种的生境土壤为喀斯特石灰 土,少数为酸性土(中国科学院中国植物志编辑委 员会,1998)。在自然环境中,尚未发现可同时在石 灰土和酸性土生境中生长的金花茶物种(苏宗明和 莫新礼,1988)。因此,根据生境土壤的种类,可分 为石灰土金花茶和酸性土金花茶。但是,人工引种 试验表明,多数石灰土金花茶可以在酸性土中正常 生长,而酸性土金花茶却难以适应石灰土环境(苏 宗明和莫新礼,1988)。金花茶组植物对生境土壤 的高度专一性可能与其对土壤的钙适应机制有关 (柴胜丰等,2021)。然而,以往关于金花茶组植物 的研究多集中于表观形态特征(李凤英等,2013;朱 栗琼等,2021)、药用成分(Yang et al., 2018;李辛雷 等,2019)、栽培技术(黄昌艳等,2016;邓荫伟等,

2017)、遗传多样性(刘凯等,2019;卢家仕等,2021) 等方面,对于不同生境下金花茶组植物的钙适应机 制仍然知之甚少。

本研究以 10 种石灰土金花茶和 4 种酸性土金花茶为对象,测定其生境土壤的钙含量和 pH 值以及该生境下植物叶中各钙形态的含量。主要探究:(1)不同生境下金花茶组植物的叶钙形态是否存在差异;(2)土壤因素是否对叶钙形态产生显著影响;(3)各金花茶组植物的叶钙形态特征。本研究结果将有助于深入理解金花茶组植物对其生境土壤的钙适应机制,以期为金花茶组植物保育措施的制定提供科学依据。

1 材料与方法

1.1 材料

在金花茶组植物的主要自然分布区内选择了 14个物种(表1),包括10种石灰土金花茶,即凹 脉金花茶(Camellia impressinervis, CIM)、龙州金花 茶(C. longzhouensis, CLO)、柠檬金花茶(C. limonia, CLI)、弄岗金花茶(C. grandis, CGR)、毛瓣 金花茶(C. pubipetala, CPU)、崇左金花茶(C. perpetua, CPE)、顶生金花茶(C. terminalis, CTE)、 淡黄金花茶(C. flavida, CFL)、平果金花茶(C. pingguoensis, CPI)、贵州金花茶(C. huana, CHU) 「注:原天峨金花茶(C. tianeensis)已并入贵州金花 茶〕和4种酸性土金花茶,即东兴金花茶(C. tunghinensis, CTU)、金花茶(C. nitidissima, CNI)、显 脉金花茶(C. euphlebia, CEU)、小瓣金花茶(C. parvipetala, CPA)。在各采样点,选择长势基本一 致的3株成年植株,每株从东、南、西、北4个方向 分别采集一年生成熟叶,每株采集叶片约 100 g, 共42个叶样,并相应地采集植株根部周围的表层 (0~20 cm)土壤,每个土样采集约1 kg。

1.2 测定方法

1.2.1 植物叶片钙形态的测定 在实验室将叶样于 105 ℃杀青 30 min,80 ℃烘干 12 h,粉碎过 100 目筛待测。叶片各钙形态测定主要参考齐清文等 (2013)的方法并略作改进。首先,称取(0.500 0±0.000 5)g叶样粉末加到 50 mL 的具盖离心管中;加入 20 mL 80%乙醇于 30 ℃恒温水浴锅中振荡提取 1 h,4 000 r·min⁻¹离心 10 min;取上清液过滤至 50 mL 容量瓶中,接着加入 10 mL 80%乙醇继续提

取2次,每次1h,提取完后离心取上清液过滤,用 5%盐酸定容。然后,依次使用蒸馏水、1 mol·L-1 氯化钠、2%醋酸、0.6%盐酸重复上述步骤,共获得 5种提取液。最后,将剩余残渣转入洁净的高脚烧 杯中,电热板加热使杯内液体挥发干,于 KERRIC 通风橱内加硝酸-高氯酸(4:1,V/V)5 mL,摇匀, 50 ℃电热板上浸泡过夜:次日再加硝酸-高氯酸 (4:1,V/V)10 mL,并在瓶口加一玻璃小漏斗,80 ℃消解 30 min,升温至 150 ℃消解 1 h 后,继续升 温至180 ℃消解,使瓶口产生的棕色烟转为白色 烟;待瓶口白烟冒净,高脚烧杯中液体挥发完全 后,分2次加入0.2%硝酸共15 mL,在电热板上加 热使底部沉淀物充分溶解,冷却后,定量转移至25 mL 容量瓶中,用 0.2% 硝酸定容,摇匀后于 0.45 μm 滤膜过滤,获得残渣钙提取液。同时,消煮空 白和标准样品进行质量控制和结果校正。使用原 子吸收分光光度计法分别测定上述6种提取液中 的硝酸钙和氯化钙(calcium nitrate and calcium chloride, AIC-Ca)、水溶性有机酸钙(water soluble organic acid calcium, H₂O-Ca)、果胶酸钙(calcium pectate, NaCl-Ca)、磷酸钙和碳酸钙(calcium phosphate and calcium carbonate, HAC-Ca)、草酸钙 (calcium oxalate, HCl-Ca)、硅酸钙(calcium silicate, Res-Ca)的含量。叶总钙(total calcium, Tot-Ca)含 量为这6种钙形态含量之和。

1.2.2 土壤指标的测定 土壤样品经过自然风干、除杂、混合、磨细、过 100 目筛,制成分析样品备用。土壤 pH(Soil-pH)用玻璃电极法测定,即称取土样 10 g 于 50 mL 高型烧杯中,加 25 mL 去离子水,用玻璃棒搅拌 1 min,使土粒充分分散,放置 30 min 后采用玻璃电极法测定上清液 pH 值。土壤钙含量(Soil-Ca)用微波消解-火焰原子吸收分光光度法测定,即称取土样 0.1 g,加入 4 mL 浓硝酸和 2 mL 氢氟酸,放置一会,放到微波样品制备仪上进行微波消解,消解完成后用原子吸收分光光度计测定钙含量。

1.3 数据统计和分析

数据统计及分析采用 SPSS v23.0 软件。其中,石灰土金花茶和酸性土金花茶的土壤环境及叶钙形态间的差异比较使用独立样本 T 检验;使用 Spearman 系数计算叶钙形态与土壤指标间的相关性并进行显著性检验;使用单因素方差分析(oneway ANOVA)比较不同金花茶物种间的叶钙形态差异,并采用 Duncan 法进行多重检验。使用 R 语言

表 1 14 种金花茶的采样信息

Table 1 Sampling information of 14 golden Camellia species

生境土壤类型 Habitat soil type	物种 Species	采集地点 Sampling location	土壤 pH Soil pH	土壤钙含量 Soil Ca content (mg・kg ⁻¹)
石灰土 Calcareous soil	凹脉金花茶 CIM	广西弄岗国家级自然保护区 Nonggang National Nature Reserve of Guangxi	6.61±0.48b	2 536.14±942.54cd
	龙州金花茶 CLO	广西弄岗国家级自然保护区 Nonggang National Nature Reserve of Guangxi	$6.99 \pm 0.27 ab$	5 121.01±1 010.38ab
	柠檬金花茶 CLI	广西弄岗国家级自然保护区 Nonggang National Nature Reserve of Guangxi	$6.93 \pm 0.17 ab$	3 491.45±571.24bc
	弄岗金花茶 CGR	广西弄岗国家级自然保护区 Nonggang National Nature Reserve of Guangxi	6.98±0.59ab	5 882.71±1 615.88a
	毛瓣金花茶 CPU	广西龙虎山自然保护区 Longhushan Nature Reserve of Guangxi	7.28±0.13ab	5 958.49±1 488.48a
	崇左金花茶 CPE	广西宁明县亭亮乡 Tingliang Township, Ningming County, Guangxi	$7.00 \pm 0.51 \mathrm{ab}$	3 309.93±964.87bcd
	顶生金花茶 CTE	广西天等县小山乡 Xiaoshan Township, Tiandeng County, Guangxi	$6.90 \pm 0.35 \mathrm{ab}$	$1.952.3 \pm 760.24 \mathrm{cde}$
	淡黄金花茶 CFL	广西南宁市西乡塘区双定镇 Shuangding Town, Xixiangtang District, Nanning City, Guangxi	7.32±0.06a	3 529.01±1 263.73bc
	平果金花茶 CPI	广西平果县太平镇 Taiping Town, Pingguo County, Guangxi	7.53±0.28a	5 385.95±1 361.66a
	贵州金花茶 CHU	广西天峨县坡结乡 Pojie Township, Tian'e County, Guangxi	7.19±0.37ab	4 501.84±1 482.76ab
酸性土 Acidic soil	东兴金花茶 CTU	广西防城金花茶国家级自然保护区 Golden Camellia National Nature Reserve, Fangchenggang, Guangxi	5.00±0.37d	596.56±124.28e
	金花茶 CNI	广西防城金花茶国家级自然保护区 Golden Camellia National Nature Reserve, Fangchenggang, Guangxi	3.82±0.23e	396.87±163.88e
	显脉金花茶 CEU	广西防城金花茶国家级自然保护区 Golden Camellia National Nature Reserve, Fangchenggang, Guangxi	5.21±0.57d	483.54±103.69e
	小瓣金花茶 CPA	广西宁明县峙浪乡 Zhilang Township, Ningming County, Guangxi	5.86±0.15c	1 473.75±327.24de

注:数值为平均值±标准差;不同小写字母表示差异显著 (P<0.05)。

Note: Dada indicate $\bar{x} \pm s$; different lowercase letters indicate significant differences (P < 0.05).

Flexclust 程序包(Dolnicar & Leisch, 2014)对金花茶叶钙形态特征进行聚类分析,聚类方法采用系统聚类 Ward 法,并使用欧式距离作为聚类距离。

2 结果与分析

2.1 石灰土金花茶和酸性土金花茶的土壤环境及 叶钙形态比较

T检验结果显示,石灰土生境的 pH 和钙含量都极显著(P<0.01)高于酸性土(表 2),表明两种生境土壤环境存在较大差异。在叶中,除硝酸钙和氯化钙、果胶酸钙外,其余 4 种叶钙形态及叶总

钙含量均表现为石灰土金花茶极显著(P<0.01)高于酸性土金花茶。各叶钙形态含量在石灰土金花茶中的大小依次为草酸钙(41.17%)、果胶酸钙(27.67%)、硅酸钙(16.36%)、磷酸钙和碳酸钙(13.82%)、水溶性有机酸钙(0.61%)、硝酸钙和氯化钙(0.37%);而在酸性土金花茶中的大小依次为果胶酸钙(43.10%)、草酸钙(28.70%)、磷酸钙和碳酸钙(17.13%)、硅酸钙(10.16%)、硝酸钙和氯化钙(0.53%)、水溶性有机酸钙(0.37%)。其中,硝酸钙和氯化钙、水溶性有机酸钙在石灰土金花茶和酸性土金花茶中的含量均较低,所占比例均不足叶总钙含量的1%。

表 2 石灰土金花茶和酸性土金花茶的土壤环境及叶钙形态比较

Table 2 Comparison of soil environment and leaf calcium speciation between golden Camellias species from calcareous soil and acidic soil

指标 Index	石灰土金花茶 Golden <i>Camellias</i> species from calcareous soil	酸性土金花茶 Golden <i>Camellias</i> species from acidic soil	差异显著性 Significant difference
土壤 pH Soil-pH	7.07±0.39	4.97±0.83	**
土壤钙含量 Soil-Ca (mg・kg ⁻¹)	4 166.88±1 680.65	737.68±481.25	**
叶硝酸钙和氯化钙 AIC-Ca(mg・kg ⁻¹)	19.79 ± 12.43	15.99±8.07	NS
叶水溶性有机酸钙 H ₂ O-Ca (mg・kg ⁻¹)	32.29 ± 17.08	11.28±10.54	**
叶果胶酸钙 NaCl-Ca (mg・kg ⁻¹)	1 462.90±187.87	1 296.58±326.13	NS
叶磷酸钙和碳酸钙 HAC-Ca(mg・kg ⁻¹)	730.51 ± 187.60	515.42± 231.44	**
叶草酸钙 HCl-Ca (mg・kg ⁻¹)	2 176.80±249.68	863.44±862.50	**
叶硅酸钙 Res-Ca (mg・kg ⁻¹)	864.80±181.08	305.65 ± 445.77	**
叶总钙含量 Tot-Ca (mg・kg ⁻¹)	5 287.10±673.75	3 008.35±1 773.53	**

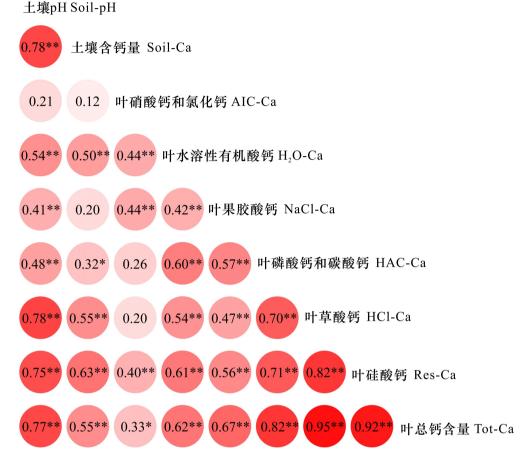
注:** 表示极显著差异(P<0.01); NS表示无显著差异。

Note: ** indicates extremely significant difference (P<0.01); NS means no significant difference.

2.2 土壤指标与叶钙形态间的相关性

相关性分析显示,土壤指标与各叶钙形态间的相关性(R)为0.12~0.95(图1)。其中,土壤pH与土壤钙含量呈极显著正相关(P<0.01)。土壤pH与各叶钙形态(除硝酸钙和氯化钙外)均呈极显著正相关(P<0.01)。土壤钙含量与叶总钙含量、水溶性有机酸钙、草酸钙、硅酸钙、磷酸钙和碳酸钙等叶钙形态呈显著(P<0.05)或极显著(P<0.01)正相关,但与硝酸钙和氯化钙、果胶酸钙相关性不显著(P>0.05)。叶总钙含量与6种钙形态的相关性均达到显著(P<0.05)及以上水平,其中与草酸钙与硅酸钙相关性分别达0.95和0.92,表明这两种钙形态对叶总钙含量的影响最大。草酸钙与硅酸钙间相关性达0.82,磷酸钙和碳酸钙与草酸钙、硅酸钙的相关性分别达0.70和0.71,表明各叶钙形态间存在相互影响。

2.3 金花茶组植物间的叶钙形态比较及聚类分析


单因素方差分析显示,各叶钙形态及叶总钙含量在14种金花茶物种间均表现出极显著差异(P<0.01)(图2)。其中,硝酸钙和氯化钙含量以柠檬金花茶最高(50.48 mg·kg⁻¹),并显著高于其他金花茶。水溶性有机酸钙和果胶酸钙的含量分别以平果金花茶(56.41 mg·kg⁻¹)和顶生金花茶(1739.33 mg·kg⁻¹)最高。磷酸钙和碳酸钙含量以顶生金花茶最高(1087.00 mg·kg⁻¹)、金花茶最低(358.83 mg·kg⁻¹),金花茶、显脉金花茶、东兴

金花茶等 3 种酸性土金花茶含量显著 (P<0.05) 低于大部分石灰土金花茶种类。同样,草酸钙含量以顶生金花茶最高(2 743.67 mg·kg⁻¹)、金花茶最低(268.5 mg·kg⁻¹),而硅酸钙含量则以平果金花茶最高(1 164.23 mg·kg⁻¹)、金花茶最低(53.21 mg·kg⁻¹)。金花茶、显脉金花茶、东兴金花茶等 3 种酸性土金花茶叶钙形态含量特征较为一致,其草酸钙和硅酸钙含量显著 (P<0.05) 低于石灰土金花茶种类。小瓣金花茶叶钙形态含量特征与石灰土金花茶种类。小瓣金花茶叶钙形态含量与大部分石灰土金花茶种类较为一致,其各钙形态含量与大部分石灰土金花茶无显著差异 (P>0.05)。

进一步利用聚类分析比较了 14 种金花茶物种间的钙形态特征,图 3 结果表明,14 种金花茶可划分为三大类。 I. 叶总钙含量低:钙形态以果胶酸钙为主,有显脉金花茶、东兴金花茶、金花茶。II. 叶总钙含量适中:钙形态以果胶酸钙与草酸钙为主,有淡黄金花茶、毛瓣金花茶、龙州金花茶、凹脉金花茶、崇左金花茶。III. 叶总钙含量高:钙形态以草酸钙为主,有柠檬金花茶、弄岗金花茶、平果金花茶、顶生金花茶、贵州金花茶、小瓣金花茶。

3 讨论与结论

叶作为植物重要营养器官,对其钙形态特征的研究将有助于揭示植物对于栖息地土壤环境的钙富集、钙适应机制。曹建华等(2011)报道的喀

- *和**分别表示在0.05和0.01水平上相关性显著。
- * and ** indicate significant correlations at 0.05 and 0.01 levels, respectively.

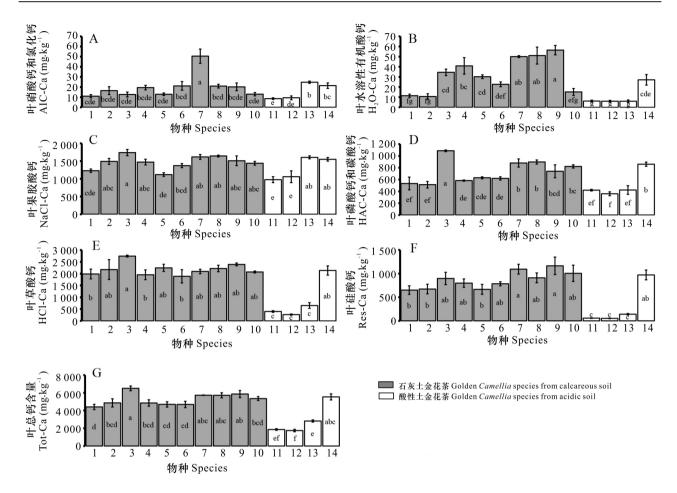

图 1 金花茶土壤环境与叶钙形态的相关性

Fig. 1 Correlation between soil environment and leaf calcium speciation of golden Camellia species

斯特地区植物平均叶总钙含量为 1 216.82 mg·kg⁻¹,非喀斯特地区植物的为 767.94 mg·kg⁻¹,如几种常见喀斯特地区乔木,即枫香(Liquidambar formosana,1 173.25 mg·kg⁻¹)、黄樟(Cinnamomum parthenoxylon,1 024.87 mg·kg⁻¹)、香椿(Toona sinensis,963.63 mg·kg⁻¹)等。齐清文等(2013)报道了 11 种草本的报春苣苔属(Primulina)植物叶钙形态含量和组成,其中来自石灰岩钙质土壤的植物叶平均总钙含量为 2 285.6 mg·kg⁻¹、砂页岩酸性土壤的为 1 379.3 mg·kg⁻¹、丹霞地貌土壤的为 1 329.1 mg·kg⁻¹。本研究中,石灰土金花茶和酸性土金花茶叶总钙含量分别达 5 287.10 mg·kg⁻¹和 3 008.35 mg·kg⁻¹,均远高于上述地区的植物,表明金花茶组植物具有较强钙富集能力。除物种差异外,金花茶组植物较强钙富集能力的部

分原因可能是占据了生态位优势。例如,谢丽萍等(2007)在喀斯特森林生态系统中研究发现,不同层次植物对于土壤钙的吸收有较大差异,其中灌木层具有比草本层更强的钙富集能力。石灰土金花茶的叶总钙含量显著高于酸性土金花茶,可能与其生境土壤丰富的钙含量和高 pH 有关。这表明在不同生境土壤的长期适应中,石灰土金花茶和酸性土金花茶可能形成了独特的钙富集、钙适应机制。

植物调节体内钙形态组成,是适应不同钙环境的重要机制之一。曹建华等(2011)研究发现,喀斯特地区植物叶钙形态以果胶酸钙(27.91%~32.82%)为主,而非喀斯特地区植物则以草酸钙(33.69%~34.34%)为主。本研究结果显示,石灰土金花茶叶钙形态以草酸钙(41.17%)为主,而酸

1. 凹脉金花茶; 2. 崇左金花茶; 3. 顶生金花茶; 4. 淡黄金花茶; 5. 龙州金花茶; 6. 毛瓣金花茶; 7. 柠檬金花茶; 8. 弄岗金花茶; 9. 平果金花茶; 10. 贵州金花茶; 11. 东兴金花茶; 12. 金花茶; 13. 显脉金花茶; 14. 小瓣金花茶。竖线为标准差,不同小写字母表示差异显著(*P*<0.05)。

1. Camellia impressinervis; 2. C. perpetua; 3. C. terminalis; 4. C. flavida; 5. C. longzhouensis; 6. C. pubipetala; 7. C. limonia; 8. C. grandis; 9. C. pingguoensis; 10. C. huana; 11. C. tunghinensis; 12. C. nitidissima; 13. C. euphlebia; 14. C. parvipetala. Vertical line is standard deviation, different lowercase letters indicate significant differences (P<0.05).

图 2 14 种金花茶的叶硝酸钙和氯化钙(A)、水溶性有机酸钙(B)、果胶酸钙(C)、磷酸钙和碳酸钙(D)、草酸钙(E)、硅酸钙(F)、总钙(G)的含量比较

Fig. 2 Comparison of AIC-Ca (\mathbf{A}) , H₂O-Ca (\mathbf{B}) , NaCl-Ca (\mathbf{C}) , HAC-Ca (\mathbf{D}) , HCl-Ca (\mathbf{E}) , Res-Ca (\mathbf{F}) , Tot-Ca (\mathbf{G}) in leaves of 14 golden *Camellia*

性土金花茶则以果胶酸钙(43.10%)为主,与曹建华等(2011)的研究结果相反。一方面,这可能由于钙形态组成在不同物种间、同一物种的不同居群间都表现出广泛变异(齐清文等,2013)。另一方面,叶的化学元素计量特征可能受不同发育时期、气候、地形等综合因素影响具有动态变化(王程媛等,2011;Sardans et al., 2016)。以往研究表明,草酸钙在植物体内的基本功能是调节细胞钙水平,在高钙环境下,一些优势种植物可以将体内过量的游离态钙离子与草酸结合形成稳定的草酸

钙结晶,而草酸钙结晶的晶型、大小及数量随生长环境中钙离子浓度的变化而变化,以此避免产生钙毒害(冯晓英等,2010; He et al., 2014),这可能是石灰土金花茶对高钙环境的适应机制之一。而果胶酸钙是一种活性钙,主要存在于细胞壁中,齐清文等(2013)研究发现,在低钙的酸性砂页岩土壤中,果胶酸钙可维持细胞内钙稳定,从而保证植物生长过程中对钙的正常需求。因此,以果胶酸钙为主的钙形态分布可能有助于酸性土金花茶更好地适应低钙环境。

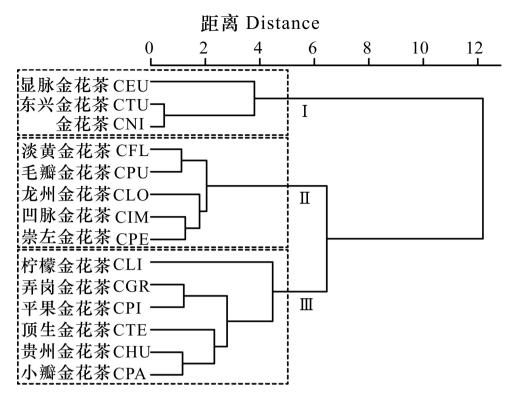


图 3 14 种金花茶叶片钙形态含量特征聚类树形分析图

Fig. 3 Cluster tree analysis diagram of the leaf calcium speciation characteristics of 14 golden Camellia species

土壤环境对于植物钙吸收的影响,一直是研 究者关注的焦点(李晓婷等,2019;许木果等, 2021)。在金花茶中,我们观察到大部分叶钙形态 含量与土壤 pH、土壤钙含量呈显著(P<0.05) 正相 关,表明高钙和高 pH 的土壤环境会促进金花茶植 物体内各钙形态的积累。而硝酸钙和氯化钙与土 壤 pH 和土壤钙含量的相关性均不显著(P> 0.05),这可能是由于硝酸钙和氯化钙在植物体内 代谢较快、存在时间较短,因此受土壤环境影响小 (曹建华等, 2011)。此外,相关性分析还揭示了 各钙形态间的一些相互影响,如叶总钙量受草酸 钙、硅酸钙影响最大,而草酸钙、硅酸钙间的极显 著正相关(R=0.82, P<0.01)可能暗示两者在金 花茶体内的相互促进作用。然而,有关植物各类 钙形态间相关性的报道目前较少,本研究结果将 为植物叶片钙形态多样性研究提供参考。

叶总钙含量及各钙形态在金花茶物种间均存在极显著差异(P<0.01),表明金花茶组植物在物种多样化过程中钙形态特征产生了较大分化。为了更好地量化这些钙形态特征,我们利用系统聚

类 Ward 法对 14 种金花茶进行了分类,结果显示 除小瓣金花茶外,其余3种酸性土金花茶归为一 类,而石灰土金花茶可进一步划分为两类。植物 叶片化学含量特征在物种分化过程中具有系统发 育保守性,如最近在八角莲属(Dysosma)植物的叶 片中发现,90%以上叶片化合物含量与物种间的 系统发育密切相关(周鑫鹏,2019)。而金花茶组 植物的叶钙形态特征也可能受到物种间的系统发 育关系调控。例如,肖政等(2014)利用 ISSR 标记 对 29 种金花茶进行遗传分析,发现顶生金花茶与 平果金花茶的系统发育关系较近。刘凯等(2019) 基于 SNP 和卢家仕等(2021)基于 SCoT 分子标记 技术的研究结果均显示,金花茶、东兴金花茶、显 脉金花茶的系统发育关系较近。这些结果与我们 基于叶钙形态特征的聚类分析结果一致,表明金 花茶组植物的叶钙形态特征也可能受到了物种间 系统发育关系的影响。值得注意的是,小瓣金花 茶与贵州金花茶的聚类距离最近,这与姜丽娜等 (2020)对22种金花茶的花瓣多酚组分含量特征 的聚类分析结果一致。但是,两者的系统发育关 系并未在先前研究(肖政等,2014)中得到证实。这也可能与小瓣金花茶的生境(土壤 pH=5.86,土壤钙含量=1 473.75 mg·kg⁻¹)位于酸性土和石灰土的过渡区间有关,或者受到其他土壤因素的影响,如有机质含量、营养元素、微生物等(邸欣月等,2015)。综上所述,不同生境背景下金花茶组植物的叶钙形态差异可能是土壤环境和遗传因素共同作用的结果。在后续金花茶组植物的引种栽培和保育研究中,应尽可能确保其栽培土壤环境与原生境接近,并重点关注土壤 pH 和土壤钙含量等指标的变化,避免产生钙毒害或钙供应不足。

致谢 感谢广西壮族自治区防城金花茶国家级自然保护区管理中心、广西弄岗国家级自然保护区管理中心、广西龙虎山自然保护区管理处在采样过程中提供的帮助。

参考文献:

- BORER CH, HAMBY MN, HUTCHINSON LH, 2012. Plant tolerance of a high calcium environment via foliar partitioning and sequestration [J]. J Arid Environ, 85: 128-131.
- CAO JH, ZHU MJ, HUANG F, et al., 2011. Comparison study on calcium forms in plant leaves under different geological backgrounds A case study in Maolan, Guizhou Province [J]. Bull Miner, Petrol Geochem, 30(3): 251-260.[曹建华,朱敏洁,黄芬,等,2011. 不同地质条件下植物叶片中钙形态对比研究——以贵州茂兰为例[J]. 矿物岩石地球化学通报,30(3): 251-260.]
- CHAI SF, FU R, ZOU R, et al., 2021. Effects of different calcium ion concentrations on photosynthetic and physiological indexes of calci-type and calcifuge-type golden *Camellia* [J]. Guihaia, 41(2): 167–176. [柴胜丰,付嵘, 邹蓉,等, 2021. 不同钙离子浓度对喜钙和嫌钙型金花茶光合及生理指标的影响[J]. 广西植物, 41(2): 167–176.]
- Editorial Committee of Flora of China, Chinese Academy of Sciences, 1998. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press. [中国科学院中国植物志编辑委员会, 1998. 中国植物志[M]. 北京: 科学出版社.]
- DENG MW, WU CR, GUO JH, et al., 2017. Experiment of cutting seedlings of *Camellia nitidissim* [J]. Mol Plant Breed, 15(7): 2886-2890. [邓荫伟, 吴婵榕, 郭俊红, 等, 2017. 金花茶扦插育苗试验[J]. 分子植物育种, 15(7): 2886-2890.]
- DI XY, AN XJ, DONG H, et al., 2015. The distribution and evolution of soil organic matter in the karst region, Guizhou Province, southwestern China [J]. Earth Environ, 43(6): 697-708.[邸於月, 安显金, 董慧, 等, 2015. 贵州喀斯特区域土壤有机质的分布与演化特征[J]. 地球与环境,

- 43(6): 697-708.
- DOLNICAR S, LEISCH F, 2014. Using graphical statistics to better understand market segmentation solutions [J]. Int J Mark Res, 56(2): 207–230.
- FENG XY, HU ZP, YI Y, 2010. Variation of proline and soluble protein content in leaves of *Eurycorymbus cavalerieian* and *Pinus armandii* under Ca²⁺ stress [J]. Guizhou Agric Sci, 38(9): 169–170.[冯晓英, 胡章平, 乙引, 2010. Ca²⁺ 胁迫下伞花木和华山松脯氨酸及可溶性蛋白质含量的变化[J]. 贵州农业科学, 38(9): 169–170.]
- GAO YH, LI ZL, HAN L, et al., 2017. Calcareous root tubes in the Alashan Deserts: morphological characteristics, classification and environmental significance [J]. Acta Sedimentol Sin, 35(1): 75-84.[高有红,李卓仑,韩朗,等, 2017. 阿拉善沙漠植物钙质根管: 形态特征、分类及 其环境指示意义[J]. 沉积学报, 35(1): 75-84.]
- HE H, VENEKLAAS EJ, KUO J, et al., 2014. Physiological and ecological significance of biomineralization in plants [J]. Trends Plant Sci, 19(3): 166-174.
- HUANG CY, ZHOU ZG, WANG XG, et al., 2016. Seed germination and rapid propagation of *Camellia nitidissima* [J]. J S Agric, 47(5): 611-616.[黄昌艳,周主贵,王晓国,等, 2016. 金花茶种子萌发与快速繁殖技术研究[J]. 南方农业学报, 47(5): 611-616.]
- HUANG F, WEI XM, ZHU TB, et al., 2021. Insights into distribution of soil available heavy metals in karst area and its influencing factors in Guilin, southwest China [J]. Forests, 12: 609.
- JIANG LN, LI JY, FAN ZQ, et al., 2020. Content analysis of polyphenols in flowers of yellow *Camellia* [J]. For Res, 33 (4):117-126.[姜丽娜,李纪元,范正琪,等,2020.金花茶组植物花朵内多酚组分含量分析[J]. 林业科学研究,33(4):117-126.]
- KONG GJ, YUAN ST, SUN L, 2016. Research progress on the pharmacological effects of yellow *Camellia* [J]. Lishizhen Med Mat Med Res, 27(6): 1459-1461.[孔桂菊, 袁胜涛, 孙立, 2016. 金花茶药理作用研究进展[J]. 时珍国医国药, 27(6): 1459-1461.]
- LI FY, TANG SQ, LIANG SC, 2013. Leaf epidermal morphology of ser. *Chrysantha* (*Camellia*, sect. *Chrysantha*) [J]. Guihaia, 33(3): 376-382.[李凤英, 唐绍清, 梁士楚, 2013. 山茶属金花茶组金花茶系植物叶表皮形态学研究[J]. 广西植物, 33(3): 376-382.]
- LI Q, DENG Y, YU LJ, et al., 2007. Research on structure of leaf epidermis of two species of *Flos Lonicerae* by SEM and its ecological adaptation [J]. Guihaia, 27(2): 146-151. [李强, 邓艳, 余龙江, 等, 2007. 两种忍冬属植物叶表皮扫描电镜观察及其生态适应性的研究[J]. 广西植物, 27(2): 146-151.]
- LI XL, WANG JT, SUN ZY, et al., 2019. Flavonoid components and their relationship with flower colors in five species of *Camellia* section *Chrysantha* [J]. Chin J Ecol, 38 (4): 961-966.[李辛雷,王佳童,孙振元,等,2019. 五种金花茶组植物类黄酮成分及其与花色关系[J]. 生态学杂

- 志,38(4):961-966.]
- LI XT, ZHANG J, LIN YP, et al., 2019. Distribution and correlation of calcium and magnesium contents in tobaccogrowing soil and tobacco leaves in Baoshan, Yunnan Province [J]. Chin J Soil Sci, 50(1): 137-142.[李晓婷, 张静, 林跃平, 等, 2019. 云南保山烟区土壤与烟叶钙镁含量分布特征及相关性[J]. 土壤通报, 50(1): 137-142.]
- LIU K, LI KX, WEI XJ, et al., 2019. Development and genetic analysis on SNP sites from *Camellia nitidssima* based on SLAF-seq technology [J]. Non-wood For Res, 37(3): 79-83.[刘凯, 李开祥, 韦晓娟, 等, 2019. 基于 SLAF-seq 技术的金花茶 SNP 标记开发及遗传分析[J]. 经济林研究, 37(3): 79-83.]
- LU JS, LI XM, HUANG ZW, et al., 2021. Genetic diversity analysis of *Camellia* sect. *Chrysantha* Chang germplasm resources based on SCoT molecular markers [J]. Chin Trad Herb Drugs, 52(20): 6357-6364. [卢家仕, 李先民, 黄展文,等, 2021. 基于 SCoT 分子标记的金花茶组植物种质资源遗传多样性分析[J]. 中草药, 52(20): 6357-6364.]
- LUO XQ, WANG CY, YANG HY, et al., 2012. Studies on adaptive mechanisms of karst dominant plant species to drought and high calcium stress [J]. Chin Agric Sci Bull, 28 (16): 1-5.[罗绪强, 王程媛, 杨鸿雁, 等, 2012. 喀斯特优势植物种干旱和高钙适应性机制研究进展[J]. 中国农学通报, 28(16): 1-5.]
- MIN CK, CHUNG WS, YUN DJ, et al., 2009. Calcium and calmodulin-mediated regulation of gene expression in plants [J]. Mol Plant, 2(1): 13-21.
- QI QW, HAO Z, TAO JJ, et al., 2013. Diversity of calcium speciation in leaves of *Primulina* species (Gesneriaceae) [J]. Biodivers Sci, 21(6): 715-722.[齐清文, 郝转, 陶俊杰, 等, 2013. 报春苣苔属植物钙形态多样性[J]. 生物多样性, 21(6): 715-722.]
- SARDANS J, ALONSO R, CARNICER J, et al., 2016. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain [J]. Perspect Plant Ecol, Evol Syst, 18: 52-69.
- SU ZM, MO XL, 1988. Geographic distribution of *Camellia* section *Chrysantha* from China [J]. Guihaia, 8(1): 77-83.[苏宗明, 莫新礼, 1988. 我国金花茶组植物的地理分布[J]. 广西植物, 8(1): 77-83.]
- WANG CY, WANG SJ, RONG L, et al., 2011. Analyzing about characteristics of calcium content and mechanisms of high calcium adaptation of common pteridophyte in Maolan karst area of China [J]. Chin J Plant Ecol, 35(10): 1061–1069.[王程媛,王世杰,容丽,等,2011. 茂兰喀斯特地区常见蕨类植物的钙含量特征及高钙适应方式分析[J]. 植物生态学报,35(10): 1061–1069.]
- WEI X, JIANG SY, JIANG YS, et al., 2006. Research

- progress of *Camellia nitidssiam*, a rare and endangered plant [J]. J Fujian For Sci Technol, 33(3): 169-174.[韦霄, 蒋水元, 蒋运生, 等, 2006. 珍稀濒危植物金花茶研究进展 [J]. 福建林业科技, 33(3): 169-174.]
- XIAO Z, LI JY, LI ZH, et al., 2014. Genetic relationships among species from *Camellia* sect. *Chrysantha* Chang revealed by ISSR analysis [J]. For Res, 27(1): 71-76.[肖政,李纪元,李志辉,等,2014. 金花茶组物种遗传关系的 ISSR 分析[J]. 林业科学研究,27(1): 71-76.]
- XIE LP, WANG SJ, XIAO DA, 2007. Ca covariant relation in plant-soil system in a small karst catchment [J]. Earth Environ, 35(1): 26-32. [谢丽萍, 王世杰, 肖德安, 2007. 喀斯特小流域植被-土壤系统钙的协变关系研究 [J]. 地球与环境, 35(1): 26-32.]
- XU MG, CHEN GL, LIU ZM, et al., 2021. Contents of exchangeable calcium and magnesium in the soil of rubber plantation of Xishuangbanna and their influences on content of calcium and magnesium in the leaves [J]. J NW For Univ, 36(4): 88-93. [许木果, 陈桂良, 刘忠妹, 等, 2021. 西双版纳橡胶园土壤交换性钙镁含量及其对叶片钙镁含量的影响[J]. 西北林学院学报, 36(4): 88-93.]
- YANG R, GUAN Y, WANG W, et al., 2018. Antioxidant capacity of phenolics in *Camellia nitidissima* Chi flowers and their identification by HPLC triple TOF MS/MS [J]. PLoS ONE, 13(4): e0195508.
- YE S, WANG DF, DING LZ, et al., 2000. Advances in the study of the presence of calcium forms in plants (review) [J]. J Anhui Agric Univ, 27(4): 417-421. [叶盛, 汪东风, 丁凌志, 等, 2000. 植物体内钙的存在形式研究进展(综述)[J]. 安徽农业大学学报, 27(4): 417-421.]
- ZHANG YB, ZHANG R, FENG L, et al., 2008. Effect of external calcium on POD activity of calciphile and calcifuge [J]. J Guizhou Norm Univ (Nat Sci Ed), 26(3): 14–16.[张宇斌,张荣,冯丽,等,2008. 外源 Ca²⁺对喜钙和嫌钙植物 POD 活性的影响[J]. 贵州师范大学学报(自然科学版),26(3): 14–16.]
- ZHOU XP, 2019. Preliminary studies on leaf phytochemical diversity of Podophylloideae (Berberdaceae) and its association with genetic and environmental variation [D]. Hangzhou: Zhejiang University.[周鑫鹏, 2019. 鬼臼亚科叶片化学多样性及其与遗传和环境因子之间相关性的初步研究[D]. 杭州: 浙江大学.]
- ZHU LQ, QIN DM, ZHAO LJ, et al., 2021. Leaf epidermal micromortphological features and their systematic significance of six wild species of *Camellia chrysantha* [J]. Bull Bot Res, 41(6): 841-850. [朱栗琼, 覃冬梅, 招礼军,等, 2021. 6 种野生金花茶叶表皮微形态特征及其系统学意义 [J]. 植物研究, 41(6): 841-850.]

(责任编辑 蒋巧媛)