DOI: 10.11931/guihaia.gxzw202203101

高丹,向小果,张强,等,2023. 半蒴苣苔属植物染色体制片优化及染色体数目和倍性研究 [J]. 广西植物,43(5):833-845

GAO D, XIANG XG, ZHANG Q, et al., 2023. Optimization of chromosome preparation and chromosome number and ploidy in Hemiboea [J]. Guihaia, 43(5): 833-845.

半蒴苣苔属植物染色体制片优化及染色体数目和倍性研究

高 丹^{1,2},向小果²,张 强³,张艳杰¹,金伟涛²*

(1. 江西师范大学 生命科学学院, 南昌 330022; 2. 江西省流域生态演变与生物多样性重点实验室, 南昌大学 生命科学研究院, 南昌 330031; 3. 广西喀斯特植物保育与恢复生态学重点实验室, 市 园 科 学 院 广西植物研究所, 广西 桂林 541006)

摘 要:染色体数目和倍性是系统与进化生物学和遗传学研究中十分重要的基础信息。为探索半蒴苣苔属染色体制片的适宜条件以及染色体数目的进化模式及其与物种的进化关系,该研究基于半蒴苣苔属染色体数目的进化历史,并根据该属植物具有叶片扦插繁殖的特性,采用叶片水培生根法获取半蒴苣苔(Hemiboea subcapitata)、弄岗半蒴苣苔(H. longgangensis)、龙州半蒴苣苔(H. longzhouensis)、江西半蒴苣苔(H. subacaulis var. jiangxiensis)、华南半蒴苣苔(H. follicularis)和永福半蒴苣苔(H. yongfuensis)6种植物的根尖材料,分析不同实验条件对染色体制片效果的影响,对染色体制片实验的条件进行优化及染色体计数,结果表明:(1)9:30—10:00取材,解离 10 min 以及染色 15 min 为半蒴苣苔属染色体制片的适宜条件。(2)上述6种半蒴苣苔属植物均为二倍体,染色体数目均为32(2n=2x=32)。(3)除个别物种染色体数目有变化以外,该属大部分物种染色体数目可能为2n=2x=32且染色体数目变化可能是非整倍化的作用,与物种进化没有明显关系。该研究结果为半蒴苣苔属以及具有类似叶片再生植株特性类群的染色体制片提供了参考,并为该类群的分类、系统进化等方面的研究提供了启示。

关键词: 苦苣苔科, 半蒴苣苔属, 叶片水培生根, 染色体数目, 基因组倍性

中图分类号: Q943 文献标识码: A 文章编号: 1000-3142(2023)05-0833-13

Optimization of chromosome preparation and chromosome number and ploidy in *Hemiboea*

GAO Dan^{1,2}, XIANG Xiaoguo², ZHANG Qiang³, ZHANG Yanjie¹, JIN Weitao^{2*}

(1. College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; 2. Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Sciences, Nanchang University, Nanchang 330031, China; 3. Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang

Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China)

收稿日期: 2022-06-16

基金项目: 国家自然科学基金(32060056); 广西喀斯特植物保育与恢复生态学重点实验室项目(19-185-7); 广西自然科学基金(2020GXNSFAA297202)。

第一作者: 高丹(1997-),硕士,主要从事植物系统与进化研究,(E-mail)gaodan970915@163.com。

^{*}通信作者: 金伟涛,博士,主要从事植物系统与进化研究,(E-mail)jin1234933@126.com。

Abstract: Chromosome number and genome ploidy are crucial basic information for systematic evolutionary biology and genetics. Hemiboea, a genus of Gesneriaceae, with about 44 species, is mainly distributed in southern China, which have important medicinal and ornamental values. It is difficult to obtain suitable root tips for the chromosome preparation because of their small twining roots and small chromosomes. So far, only the chromosome numbers from three species of Hemiboea have been reported, while the chromosome numbers and ploidy of most species are unknown. The relationship between the pattern of chromosome number evolution and species evolution is also unclear. In this study, in order to explore the optimal conditions for chromosome preparation and the relationship between chromosome numbers and species evolution of Hemiboea, firstly, the root tips of six species (including H. subcapitata, H. longgangensis, H. longzhouensis, H. subacaulis var. jiangxiensis, H. follicularis and H. yongfuensis), which were generated by the method of hydroponic rooting for cutting leaves based on the characteristics of leaf cuttage propagation of plants in Hemboea, were used for the chromosome preparation experiments. Then, the effects of different experimental conditions on chromosome preparation were assessed. Next, the conditions were optimized and the chromosome counting was performed. Finally, the evolutionary history of chromosome numbers in *Hemiboea* and the related genera including *Anna* and Loxostigma were traced based on the molecular phylogenetic relationships, and the evolutionary pattern of chromosome numbers and relationships with species evolution were studied. The results were as follows: (1) The optimal conditions for karvotype preparation of the plants in *Hemiboea* were sampling during 9:30-10:00, dissociating for 10 min, and dyeing for 15 min. (2) All the six species of Hemiboea were diploid and with 32 chromosome numbers (2n = 2x = 32). (3) Except for a few species in the genus, the chromosome numbers of most species might be 2n = 2x = 32, and the variation of chromosome numbers might be caused by aneuploidy, which had no obvious relationship with the species evolution. This study sheds light on chromosome preparation of Hemiboea and other groups with similar leaf regeneration characteristics, and provides implications for the classification and phylogeny of this group.

Key words: Gesneriaceae, Hemiboea, hydroponic rooting for cutting leaves, chromosome number, genome ploidy

染色体是生物遗传信息的载体,在植物的属 间、种间甚至种内常有不同程度的分化。这为探 讨属间和种间的进化关系以及种内的变异格局提 供了重要依据且被广泛用作植物分类学的依据 (洪德元,1990)。染色体的数目和倍性是遗传学 和基因组学研究的重要基础信息(Soltis & Soltis, 1999)。目前,关于苦苣苔科植物细胞学的研究已 有很多。最早的报道来自 Oehlkers (1923) 对 Monophyllaea horsfieldii 的细胞学研究(李振宇和王 印政,2005),自20世纪60年代起,苦苣苔科植物 的细胞学研究工作开始大范围地开展起来 (Ratter, 1963; Ratter & Ppentice, 1964, 1967, 1970)。中国苦苣苔科植物的细胞学研究起步较 晚,最早的是中国台湾学者对台湾半蒴苣苔 (Hemiboea bicornuta)的研究(Hsu, 1968),在此之 后苦苣苔科植物细胞学研究取得了很多进展(鲁 元学等,2002;曹丽敏等,2003;季慧等,2008;覃信 梅等,2020)。例如,广义报春苣苔属(Primulina s. l.)植物的细胞学研究,共约100种植物的染色 体数目被报道(刘瑞瑞,2013)。综合这些研究发 现,苦苣苔科植物染色体的体积通常比较小 (Möller & Kiiehn, 2004)且该科植物染色体数目的变异范围比较大(李振宇和王印政,2005)。但是,大部分实验是选用植物的根尖作为材料(王印政和顾志建,1999;鲁元学等,2002;季慧等,2008),少数采用花芽(Hsu, 1968)。选择根尖为材料时,获取根尖的方式主要有种子萌发和组织培养,而这些方式都存在不足。例如,种子萌发时容易发霉,尽管萌发前已将种子进行了消毒,但有些植物的种子仍会发霉,已萌发的幼苗也会出现腐烂现象(赵大克等,2010);植物组织培养的操作比较复杂,对实验环境和操作能力的要求比较高。因此,寻找一个更简便有效的获取根尖材料的方式对于苦苣苔科植物的细胞学研究十分必要。

半 蒴 苣 苔 属 (Hemiboea) 为 苦 苣 苔 科 (Gesneriaceae) 植物,该属目前包括约 44 种 6 变种,其中不少种类都具有重要的药用价值和观赏价值。该属广泛分布于中国南部,少数种类分布于越南北部和日本南部,中国南部喀斯特地区是其分布和分化中心(李振宇和王印政,2005)。目前,关于半蒴苣苔属植物的细胞学研究很少,仅涉及台湾半蒴苣苔、贵州半蒴苣苔(H. cavaleriei)和

单座苣苔(H. ovalifolia)3种且这些研究仅限于染色体数目和倍性的报道(Hsu,1968;鲁元学等,2002;曹丽敏等,2003)。然而,染色体数目和倍性有何进化模式,与半蒴苣苔属物种进化之间有何关系,该属植物核型研究困难阻碍了这些问题的进一步研究。

Hsu(1968)在研究台湾半蒴苣苔时选用了植 物的花芽和根尖作为实验材料且均不作预处理, 仅报道了染色体二价体数目 n = 18: 鲁元学等 (2002)在研究贵州半蒴苣苔时选用了植物的根尖 作为实验材料,用 0.1%的秋水仙素进行预处理 2 h.用1:1的1 mol·L⁻¹盐酸和45%冰醋酸混合液 在 60 ℃水浴锅内进行解离 30 s,结果观察到染色 体不够分散,有些染色体存在相互粘连的现象,这 可能与材料本身染色体为小型染色体以及实验过 程中预处理时间不够、解离时间过短有关:曹丽敏 等(2003)在研究单座苣苔时选用植物实生苗的根 尖作为实验材料,用2:1的1 mol·L 1盐酸和 45%冰醋酸混合液在60℃水浴锅内进行解离30 s,结果观察到染色体分散效果很差,染色体粘连 现象十分明显,这可能与材料本身染色体为小型 染色体以及解离时间过短有关。由于半蒴苣苔属 于小型染色体,本身就难以分散目不易观察(李振 宇和王印政,2005),解离时间过短又会使细胞壁 难以破开,染色体很难分散开、容易粘连在一起, 因此半蒴苣苔属植物的染色体制片仍不容易。此 外,我们通过观察还发现半蒴苣苔属植物的根系 十分细小且相互缠绕,很难直接得到良好的具有 分生组织的根尖,通过植株直接获取根尖材料研 究染色体数目的方法比较困难。因此,该属的染 色体数目研究有待于新的取材策略和制片方法的 优化。

李振宇和王印政(2005)的研究发现,苦苣苔科植物可以进行无性繁殖,只要很小的插穗就可以繁殖成新的植株,而在扦插繁殖方式中又属叶插最为常见,多数苦苣苔科植物都可以用叶片进行叶插繁殖且叶片还可以水插,只要将叶柄浸入清水中就可逐渐生根出芽。覃信梅等(2020)在此前石山苣苔属的细胞学研究中已经成功地通过叶片水培生根,我们通过实验发现半蒴苣苔属植物也易通过叶片水培生根。这为我们开展半蒴苣苔属的细胞学研究提供了新的思路和方法。

本研究以半蒴苣苔属的半蒴苣苔(H.

subcapitata)、弄岗半蒴苣苔(H. longgangensis)、龙州半蒴苣苔(H. longzhouensis)、江西半蒴苣苔(H. subacaulis var. jiangxiensis)、华南半蒴苣苔(H. follicularis)和永福半蒴苣苔(H. yongfuensis)这6种植物为对象,采用叶片水培生根的方法对这6种植物进行细胞学研究,并在多种不同条件下对这6种半蒴苣苔属植物进行实验:(1)探索该属染色体制片的适宜条件;(2)基于6种半蒴苣苔的染色体计数结果,结合已报道物种数据探讨该属染色体的变异情况;(3)结合分子系统学重建该属染色体数目的进化历史,探讨其进化模式与物种进化的关系。本研究将对半蒴苣苔属甚至具有类似叶片繁殖生物学特性类群的细胞学研究提供借鉴意义,为进一步研究该类群的分类、系统演化和物种形成等提供一些启示。

1 材料与方法

1.1 材料

所涉及的研究材料来源如表 1 所示。现栽培于南昌大学流域生态研究所系统与进化研究室温室内。本研究凭证标本存放于南昌大学标本馆(JXU)中。

1.2 方法

1.2.1 半蒴苣苔属植物染色体制片优化

1.2.1.1 取材 从6种半蒴苣苔属植物上选取生长状态良好的叶片,在室温下用清水培养10~20 d,2~3 d换1次水,待叶片生根,选取生长良好的根尖进行取材,在9:30—10:00、10:00—10:30、10:30—11:00 这3个时间段进行取样。

1.2.1.2 预处理 将根尖浸入 $0.002 \text{ mol} \cdot \text{L}^{-1}$ 的 8-羟基喹啉溶液中,以溶液浸没根尖为度,在室温下预处理 $4 \sim 5 \text{ h}_{\odot}$

1.2.1.3 固定 先将处理后的根尖材料用纯水冲洗 2次,再转入卡诺固定液 [V(无水乙醇):V(冰醋酸)=3:1]中,在4℃下固定30 min。

1.2.1.4 解离 先将固定后的根尖用无水乙醇洗 2 次,再用纯水冲洗,之后转人 1 mol·L⁻¹ HCl 中,在 60 ℃恒温金属浴锅中分别解离 8、10、12 min。

1.2.1.5 染色 将解离后的根尖用纯水洗 2 次,每次 5 min。接着,将根尖置于载玻片中间,用刀片从前端乳白色的分生区组织中切取尽可能薄的 1 片,滴加少量改良苯酚品红染液,分别染色 10、15 min。

表 1 材料来源及其染色体数目

Table 1 Sources of materials and chromosome numbers

序号 No.	种类 Species	采集地 Locality	凭证标本 Voucher	染色体数目 Chromosome number (2n=2x)
1	半蒴苣苔 Hemiboea subcapitata	江西婺源 Wuyuan, Jiangxi	向小果等 XXG et al., 2020806	32
2	弄岗半蒴苣苔 H. longgangensis	广西大新 Daxin, Guangxi	発 脚 果 声 第 3 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3	龙州半蒴苣苔 H. longzhouensis	广西大新 Daxin, Guangxi	张丽果、严华、刘玉娟 ZLG, YH, LYJ, 2021449	32
4	江西半蒴苣苔 H. subacaulis var. jiangxiensis	江西井冈山 Jinggangshan, Jiangxi	向小果等 XXG et al., 2020277	32
5	华南半蒴苣苔 H. follicularis	广西贺州 Hezhou, Guangxi	张丽果、严华、刘玉娟 ZLG, YH, LYJ, 2021594	32
6	永福半蒴苣苔 H. yongfuensis	广西植物研究所 Guangxi Institute of Botany	张强 ZQ, 2021920	32

- 1.2.1.6 压片 对染色过后的材料进行常规压片, 压片时用带橡皮头的铅笔垂直敲打,注意不要滑 动盖玻片,这样染色体分散效果更好。
- 1.2.1.7 镜检及染色体计数 将制作好的玻片在 Leica DM2500 显微镜下进行检测,挑选染色体分 散效果好的有丝分裂中期分裂相细胞,在 100 倍 油镜下进行观察和拍照。染色体计数方法参照李 懋学和陈瑞阳(1985)的植物核型分析标准。
- 1.2.2 半蒴苣苔属染色体数目祖先状态重建 为探讨半蒴苣苔属植染色体数目的进化历史,本研究以半蒴苣苔属 28 种及其近缘的吊石苣苔属 (Lysionotus) 13 种和大苞苣苔属(Anna) 3 种植物为内类群,以紫花苣苔属(Loxostigma) 2 种植物为外类群,基于下载自 NCBI 的核糖体 ITS 和 3 个叶绿体基因包括 rbcL、matK 和 trnL-F(表 2),使用MAFFT v7. 407(Katoh & Standley, 2013)分别进行矩阵排列,利用 FASconCAT-G v1.04(Kück & Longo, 2014)将所有基因矩阵进行串联,通过 RAxML v. 8. 2. 12(Stamatakis, 2014)构建最大似然(maximum likelihood, ML)树,碱基替代模型为 GTRGAMMA,经过1 000次 bootstraps 重复抽样估算支持率。

本研究通过 WebCyte 数据库(http://elmer.rbge.org.uk/webcyte/webcyteintro.php)和 CCDB 数据库(Chromosome Counts Database, http://ccdb.tau.ac.il/browse/)对半蒴苣苔属及其近缘的吊石苣苔属、大苞苣苔属物种的染色体数目数据进行收集。其中台湾半蒴苣苔仅报道染色体二价体数

目 n=18,其二倍体染色体数目尚不清楚,此处暂以 2n=36 作为其染色体数目进行分析。对于尚未报道染色体数目的物种在性状编码时以缺失处理。在此基础上,结合本研究的 6 种半蒴苣苔属植物的染色体数据,基于上述系统发育树,通过RASP v. 4. 2(Yu et al., 2020)软件,采用 Bayesian Binary MCMC (BBM)的方法进行染色体数目的祖先状态重建,探究其可能的进化历史。

2 结果与分析

2.1 半蒴苣苔属植物染色体制片优化

- 2.1.1 取样方法优化 6种半蒴苣苔属植物如图 1 所示。由图 2 和图 3 可知,半蒴苣苔、弄岗半蒴苣苔、龙州半蒴苣苔、江西半蒴苣苔、华南半蒴苣苔和 永福半蒴苣苔 6 种植物通过叶片水培生根的方法得到了生长状态良好的根,通过此方法得到的根比土生的根更粗壮、更易取材且染色体更易被压散。
- 2.1.2 取样时间优化 由表 3 和图 4 可知,9:30—10:00 取材,根尖细胞分裂旺盛且染色体分散效果良好;10:00—10:30 取材,染色体分散效果不如9:30—10:00;10:30—11:00 取材,观察到的分裂相不多且分裂效果不好。
- 2.1.3 解离时间优化 由表 3 和图 4 可知,在解离时间为 8 min 时,观察到的染色体不够分散,出现粘连现象,计数时困难较大;在解离时间为 10 min 时,染色体分散效果良好,便于计数;在解离时间

表 2 半蒴苣苔属分子系统学取样表

Table 2 Sampling table of *Hemiboea* in molecular phylogenetic analysis

物种	染色体 数目 Chromosome number	序列片段 Sequence fragment			物种	染色体数目 Chromosome	序列片段 Sequence fragment				
Species C		ITS	matK	rbcL	trnL-F	Species	number	ITS	matK	rbcL	trnL-F
软叶大苞苣苔 Anna mollifolia	34	KJ475421	OK322623	OK322596	FJ501543	H. purpureotincta	_	KY288037	MN367422	MN367374	HQ632884
白花大苞苣苔 A. ophiorrhizoides	_	MK747107	OK322624	OK322597	MK746233	红苞半蒴苣苔 H. rubribracteata	_	MN334646	MN367423	OK322606	HQ632890
大苞苣苔 A. submontana	34	KM063146	MN367401	MN367399	FJ501542	腺毛半蒴苣苔 H. strigosa	_	MN334647	MN367424	_	_
白花半蒴苣苔 Hemiboea albiflora	_	MN334629	MN367403	MN367386	_	短茎半蒴苣苔 H. subacaulis	32	MN334658	MN367437	MN367380	_
台湾半蒴苣苔 H. bicornuta	36	KY288050	_	_	FJ501534	半蒴苣苔 H. subcapitata	32	MN334657	MN367435	MN367397	KY607420
贵州半蒴苣苔 H. cavaleriei	32	KJ475419	MN367405	MN367382	FJ501533	绥阳半蒴苣苔 H. suiyangensis	_	MN334659	MN367438	MN367377	_
水晶半蒴苣苔 H. crystallina	_	MN334632	MN367407	MN367388	_	王氏半蒴苣苔 H. wangiana	_	KY288046	_	_	KM232651
齿叶半蒴苣苔 H. fangii	_	MN334633	MN367408	MN367372	HQ632882	桂黔吊石苣苔 Lysionotus aeschyr	— nanthoides	MW507480	OK322634	OK322608	MW523021
毛果半蒴苣苔 H. flaccida	_	MN334634	MN367409	MN367381	JF697579	攀缘吊石苣苔 L. chingii	_	FJ501332	OK322635	OK322609	FJ501498
华南半蒴苣苔 H. follicularis	32	KY288047	MN367410	_	HQ632885	凤山吊石苣苔 L. fengshanensis	_	MW507484	KJ137896	_	MW523017
纤细半蒴苣苔 H. gracilis	_	MN334635	MN367411	MN367375	FJ501536	滇西吊石苣苔 L. forrestii	_	AF349152	_	_	FJ501495
广东半蒴苣苔 H. guangdongensis	_	MF625025	MN367436	MN367398	_	异叶吊石苣苔 L. heterophyllus	_	MW507483	_	_	MW523022
H. henryi	_	MT644723	_	_	KM232650	长梗吊石苣苔 L. longipeduncula		KY288028	OK322637	OK322612	MW523013
宽萼半蒴苣苔 H. latisepala	_	MN334636	MN367413	_	_	小叶吊石苣苔 L. microphyllus	_	MN334660	MN367439	MN367400	_
弄岗半蒴苣苔 H. longgangensis	32	MN334637	MN367414	OK322601	HQ632889	吊石苣苔 L. pauciflorus	30	KY288027	MN311830	MN204948	MK746232
龙州半蒴苣苔 H. longzhouensis	32	KY288043	MN367415	MN367371	HQ632888	细萼吊石苣苔 L. petelotii	_	HQ632974	_	_	FJ501496
大苞半蒴苣苔 H. magnibracteata	_	MN334628	MN367402	OK322602	HQ632887	毛枝吊石苣苔 L. pubescens	_	_	_	_	MW523015
麻栗坡半蒴苣苔 H. malipoensis	_	MN334639	MN367416	OK322603	KJ948111	桑植吊石苣苔 L. sangzhiensis	_	KJ475422	_	_	_
柔毛半蒴苣苔 H. mollifolia	_	MN334640	MN367417	MN367373	_	齿叶吊石苣苔 L. serratus	32	OL537422	OK322638	OK322613	MW523018
峨眉半蒴苣苔 H. omeiensis	_	KY288025	MN367418	OK322604	HQ632886	川西吊石苣苔 L. wilsonii	_	MW507482	OK322640	OK322615	_
单座苣苔 H. ovalifolia	24	KY288040	OK322630	KX527264	HQ632883	外类群 Outgroup					
拟大苞半蒴苣苔 H. pseudomagnibrac	— teata	KY288035	_	_	_	齿萼斜柱苣苔 Loxostigma fimbri	— sepalum	KU985104	_	_	FJ501507
H. pterocaulis	_	MN334643	MN367420	MN367390	KY607416	斜柱苣苔 L. griffithii	34	MN843194	OK322633	KX527352	FJ501508
紫花半蒴苣苔 H. purpurea	_	MN334644	MN367421	OK322605	_						

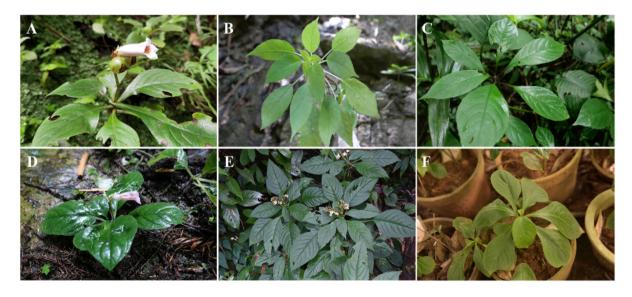
注:一表示未知。

Note: — means unknown.

表 3 不同处理对染色体制片效果的影响

Table 3 Effects of different treatments on chromosome preparation

制片环节 Preparation part	处理 Treatment	染色体制片效果 Chromosome preparation effect
取样 Sampling	9:30—10:00	分裂相多,染色体分散良好 Many mitotic phases and well
	10:00—10:30	dispersed chromosomes 分裂相多,染色体部分聚集 Many mitotic phases and
	10:30—11:00	chromosomes partial aggregation 分裂相少,染色体聚集 Less mitotic phases and chromosomes aggregation
解离 Dissociation	8 min	细胞未完全分散,染色体聚集 Cells are not completely dispersed and chromosomes aggregation
	10 min	细胞分散,染色体分散良好 Cells scattered and well
	12 min	dispersed chromosomes 细胞容易分散,染色体出现 断裂
		Cells dispersed easily and chromosomes broke down
染色 Dyeing	10 min	染色体染色浅 Chromosomes are stained shallowly
2,08	15 min	染色体染色较深
	20 min	Chromosomes are stained deeply 染色剂出现颗粒物沉淀 Particle sedimentation occurs in the staining solution

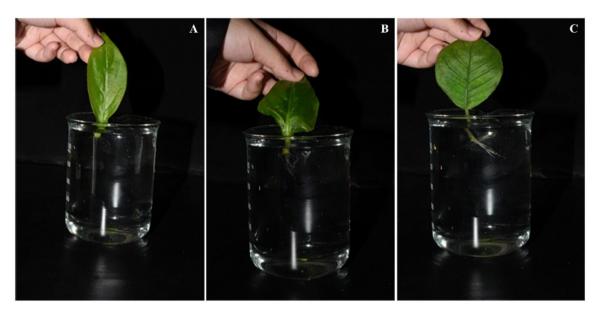

为 12 min 时,有些染色体出现断裂,影响计数的准确性。

2.1.4 染色时间优化 由表 3 和图 4 可知,在染色时间为 10 min 时,染色体着色效果较差,不利于观察;在染色时间为 15 min 时,染色体着色效果良好,观察时很清晰;在染色时间为 20 min 时,染色体着色效果与 15 min 时差别不大,但由于时间过长,观察时发现染液变干、有颗粒物的现象,影响了观察视野和染色体计数。

2.2 半蒴苣苔属植物染色体数目

由图 5 可知,该 6 种半蒴苣苔属植物的染色体数目均为 2n=2x=32。

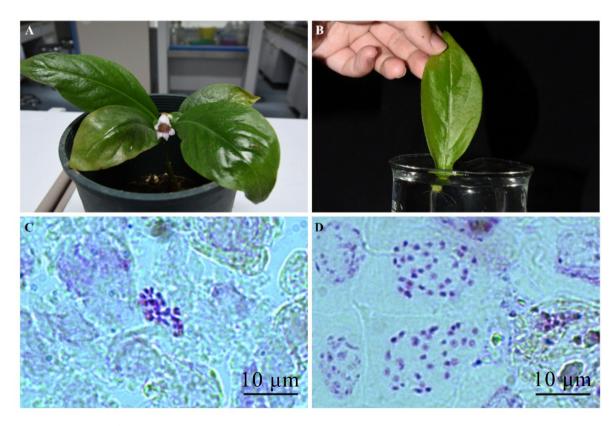
- 2.2.1 半蒴苣苔 本种分布于中国的华中、华南以及越南北部地区,生长在山坡沟边、岩石山或林荫下,海拔500~1500 m。体细胞中期染色体数目为2n=32(图5:A,B)。
- 2.2.2 弄岗半蒴苣苔 本种分布于广西的龙州、大 新、桂林、隆安等地,生长在石灰岩石山谷密林下 阴处,海拔 130~400 m。体细胞中期染色体数目为 2n=32(图 5:C,D)。
- 2.2.3 龙州半蒴苣苔 本种分布于广西的龙州、桂林、宁明、隆安等地,生长于石灰岩石山山坡密林处,海拔170~800 m。体细胞中期染色体数目为2n=32(图5:E,F)。



A. 半蒴苣苔; B. 弄岗半蒴苣苔; C. 龙州半蒴苣苔; D. 江西半蒴苣苔; E. 华南半蒴苣苔; F. 永福半蒴苣苔。

A. Hemiboea subcapitata; B. H. longgangensis; C. H. longzhouensis; D. H. subacaulis var. jiangxiensis; E. H. follicularis; F. H. yongfuensis.

图 1 6 种半蒴苣苔属植物


Fig. 1 Six species of Hemiboea

- A. 半蒴苣苔; B. 江西半蒴苣苔; C. 弄岗半蒴苣苔。
- A. Hemiboea subcapitata; B. H. subacaulis var. jiangxiensis; C. H. longgangensis.

图 2 半蒴苣苔属植物通过水培方式生长的根

Fig. 2 Roots of Hemiboea grown by hydroponics

- A, C. 土壤培养; B, D. 清水培养。
- \boldsymbol{A} , $\boldsymbol{C}.$ Soil culture; \boldsymbol{B} , $\boldsymbol{D}.$ Hydroponic culture.

图 3 不同培育方式生长的根对染色体制片效果的影响

Fig. 3 Effects of roots grown by different cultivation methods on chromosome preparation

A. 9:30—10:00 取材; B. 10:00—10:30 取材; C. 10:30—11:00 取材; D. 解离 8 min; E. 解离 10 min; F. 解离 12 min; G. 染色 10 min; H. 染色 15 min; I. 染色 20 min。标尺=10 μm。

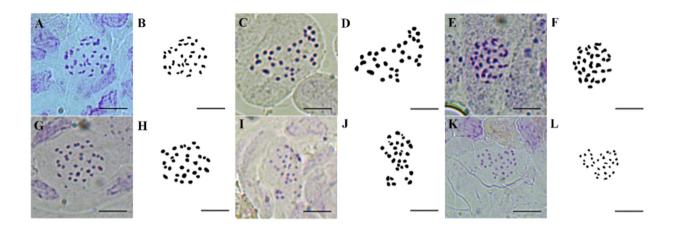

A. Take materials from 9:30-10:00; **B.** Take materials from 10:00-10:30; **C.** Take materials from 10:30-11:00; **D.** Dissociate for 8 min; **E.** Dissociate for 10 min; **F.** Dissociate for 12 min; **G.** Dyeing for 10 min; **H.** Dyeing for 15 min; **I.** Dyeing for 20 min. Bar=10 μm.

图 4 不同处理下的染色体制片效果

Fig. 4 Chromosome preparation effects of different treatments

2.2.4 江西半蒴苣苔 本种分布于江西的遂川、南康、井冈山、上犹、赣州等地,生长在山谷阴湿石面,海拔750~900 m。体细胞中期染色体数目为2n=32(图5:G,H)。

2.2.5 华南半蒴苣苔 本种分布于广东北部、广西和贵州,生长在石灰岩山地林下阴湿石上或沟边石缝中,海拔240~1500 m。体细胞中期染色体数目为2n=32(图5:I,J)。

A, **B**. 半蒴苣苔; **C**, **D**. 弄岗半蒴苣苔; **E**, **F**. 龙州半蒴苣苔; **G**, **H**. 江西半蒴苣苔; **I**, **J**. 华南半蒴苣苔; **K**, **L**. 永福半蒴苣苔。2n=32, 标尺=10 μm。

A, B. Hemiboea subcapitata; C, D. H. longgangensis; E, F. H. longzhouensis; G, H. H. subacaulis var. jiangxiensis; I, J. H. follicularis; K, L. H. yongfuensis. 2n = 32, Bar = 10 μm.

图 5 半蒴苣苔属 6 种植物的染色体数目

Fig. 5 Chromosome numbers of six species of Hemiboea

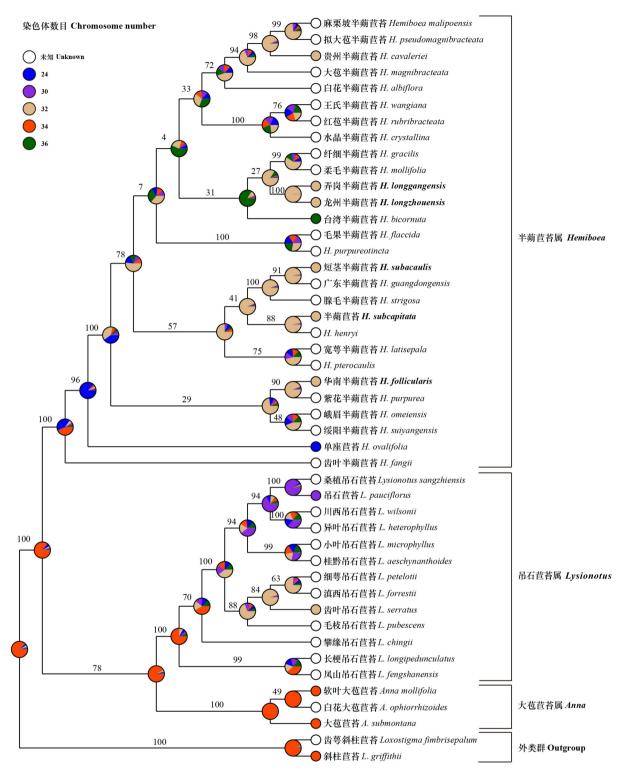
2.2.6 永福半蒴苣苔 本种分布于广西桂林永福县金钟山,生长在喀斯特山石灰岩基质上。体细胞中期染色体数目为 2n=32(图 5:K,L)。

2.3 半蒴苣苔属染色体数目和倍性的进化

根据半蒴苣苔属及其近缘的吊石苣苔属 (Lysionotus)、大苞苣苔属(Anna)祖先状态重建结果,3个近缘属共有祖先的染色体数目可能是 2n=34。其中大苞苣苔属为 2n=34,吊石苣苔属可能从 2n=34向 2n=32,再向 2n=30减少方向进化,而半蒴苣苔属的染色体数目可能从祖先的 2n=34到 2n=24,32,36进化,其中 2n=32出现多次。半蒴苣苔属及其近缘属均为二倍体,尚未见多倍化的现象。

3 讨论与结论

3.1 半蒴苣苔属植物染色体制片优化


半蒴苣苔属植物由于根系十分细小且相互缠绕,因此难于从植株中直接获取根尖。此外,该属植物染色体小型,其根尖分生组织压片后染色体不易分散且难以观察到清晰的染色体形态,这也使得该属细胞学研究较少。因此,本研究对该属染色体制片的取材方法、取材时间、解离时间及染色时间等条件进行了优化。

实验材料是实验最重要的部分,取材越方便、

根尖材料越健康,后续实验的开展,成功的概率就越高。目前,已有一些植物使用过水培方法进行生根,如萱草、大蒜、洋葱等,而在苦苣苔科里,仅在石山苣苔属的研究中见有报道(田秋元和杨约田,2009;李国泰,2017;李永平等,2020;覃信梅等,2020)。本研究通过叶片水培生根的方法获取了生长状态良好的根尖材料,并且我们对水培生根方法进行了优化,只需要在室温下,将半蒴苣苔属植物健康叶片的叶柄插入清水中即可成功生根。这可能与苦苣苔科植物易于通过叶片扦插繁殖的生物学特性有关(李振宇和王印政,2005),本实验的方法与以往的相比操作更加简单方便。通过实验我们还发现,在水培方式下长出的根比土生的根要更粗壮、染色体更易被压散,良好的根尖材料为实验奠定了坚实的基础。

为获得较多的有丝分裂中期分裂相细胞,就需要在植物有丝分裂旺盛的时期进行取样。有研究表明,大多数植物在8:00—11:00取材,较容易获得中期分裂相,但不同类群取样的最佳时间段也会有所不同(韩毅科等,2003;杨宁等,2012;赵雁等,2019;覃信梅等,2020)。本研究中,6种半蒴苣苔属植物最佳的取样时间为9:30—10:00,这与大多数植物常规取材时间一致。

解离时间对最终染色体的制片效果影响非常

分支上的数字表示自展支持率。节点上的饼图表示所有可能的染色体数目范围的相对比例。黑体部分为本研究新报道的染色体数目的物种。

The numbers attached to the branches show the bootstrap supports. Pie charts at the nodes indicate relative proportions of all possible choromosome number ranges. The species in bold are newly reported chromosome numbers in this study.

图 6 基于半蒴苣苔属及近缘类群的 4 个基因联合矩阵(ITS、matK、rbcL、trnL-F)的染色体数目祖先性状重建

Fig. 6 Ancestral state reconstruction of chromosome numbers in *Hemiboea* and related genera based on four gene association matrix (ITS, matK, rbcL, trnL-F)

大,解离时间过短,细胞壁很难破开,而时间过长则容易造成染色体断裂或缺失。以往苦苣苔科植物染色体制片的解离时间大部分为 30 s(王印政和顾志建,1999;鲁元学等,2002;曹丽敏等,2003;季慧等,2008),此外,如报春苣苔为 3 min、石山苣苔为 3~4 min(刘瑞瑞等,2014;覃信梅等,2020)。在本研究中,半蒴苣苔属植物解离时间为 10 min时染色体分散效果最佳,这与具有体细胞小、染色体数目多的金盏菊最佳解离时间(9~10 min)一致(龙海海等,2020),而与本属的贵州半蒴苣苔(鲁元学等,2002)和单座苣苔(曹丽敏等,2003)2种解离时间(30 s)不同,但本研究的分散效果更佳。

以往的半蒴苣苔属植物染色体制片对染色时间的描述较少(鲁元学等,2002;曹丽敏等,2003),但染色时间对于染色体制片效果也产生较大影响。染色时间过短,染色体的着色浅,难以观察;染色时间过长,染色剂容易出现颗粒物沉淀粘在玻片上,难以计数。根据本研究结果发现,该6种半蒴苣苔属植物染色时间为15 min 时,染色体着色效果最好,这与金盏菊染色8~12 min 的效果最好比较接近(龙海海等,2020)。

综上所述,不同类群染色体制片的方法可能不同,需要结合类群本身特性并多次尝试才可能得到最佳的染色体制片方案。本研究主要通过叶片水培生根法对半蒴苣苔属6种植物进行取材,此法有效地解决了半蒴苣苔属植物染色体制片中取材困难的问题。在此基础上,通过优化取样、解离、染色时间等条件进行染色体制片,确定了该属6种植物的染色体数目,这为半蒴苣苔属、苦苣苔科甚至具有类似生物学特性类群的染色体制片提供了借鉴。

3.2 半蒴苣苔属染色体数目和倍性

在半蒴苣苔属中,台湾半蒴苣苔与本研究中的弄岗半蒴苣苔和龙州半蒴苣苔所在支系聚为一支,该物种最早基于花芽进行染色体研究,表明其染色体工价体数目为 n=18(Hsu, 1968)。该物种染色体数目可能为 2n=2x=36,确切数目尚不清楚,需要进一步研究,后 2 种均为 2n=2x=32。Weber等(2011)根据分子系统学的研究,将单座苣苔属(Metabriggsia)包括单座苣苔(H. ovalifolia)和紫叶单座苣苔(H. purpureotincta)合并到半蒴苣苔属,这与本研究中的分子系统学结果一致,根据我们的研究,其中位于半蒴苣苔属基部的单座苣

苔是该属已知染色体数目最少的物种(2n=2x=24)(曹丽敏等,2003),另外的紫叶单座苣苔与单座苣苔关系较远且与毛果半蒴苣苔(H. flaccida)互为姐妹,其染色体数目尚未见报道。贵州半蒴苣苔(H. cavaleriei)(鲁元学等,2002)与本研究中分布于各个支系的半蒴苣苔(H. subcapitata)、弄岗半蒴苣苔(H. longgangensis)、龙州半蒴苣苔(H. longzhouensis)、江西半蒴苣苔(H. subacaulis var. jiangxiensis)、华南半蒴苣苔(H. follicularis)和永福半蒴苣苔(H. yongfuensis)6种植物的染色体数目和倍性一致,均为二倍体(2n=2x=32)。

综上所述,目前半蒴苣苔属染色体数目和倍性的变异范围与杨丽华等(2019)的研究结果一致,为2n=2x=24,32,其中n=18的台湾半蒴苣苔染色体数目可能需要进一步确认。此外,基于系统发育和染色体数目结合的研究表明,该属染色体数目变化与物种进化并没有明显的变化趋势,除个别物种染色体数目有变异外,该属物种染色体数目相对稳定且大部分可能是2n=2x=32。由于该属已有物种的染色体研究较少,确切的染色体变异范围还有待于对其余物种进行进一步的细胞学研究。

3.3 半蒴苣苔属染色体数目的进化模式

在植物进化过程中,染色体数目非整倍化非常 普遍且对植物进化和物种形成具有重要意义(De Storme & Mason, 2014)。这种非整倍化往往由染色 体裂变或融合导致染色体数目非整倍性的增加或 减少,但这种染色体数目的非整倍性变化不涉及遗 传信息的增加或丢失(De Storme & Mason, 2014)。 本研究结果表明,半蒴苣苔属及其近缘的吊石苣苔 属和大苞苣苔属的共同祖先可能是由 2n = 34 进化 而来,其中大苞苣苔属保持祖先染色体数目状态 (2n=34), 吊石苣苔属可能是由 2n=34 向 2n=32、 2n=30逐渐减少。半蒴苣苔属可能由 2n=34 向 2n=24、2n=32、2n=36 变化,因为该属部分支系支 持率不高,染色体变化趋势并不明显,其中 2n = 32 多次平行出现。半蒴苣苔属及其近缘的吊石苣苔 属染色体数目的变化可能与非整倍化进化有关,这 与苦苣苔科许多类群如汉克苣苔属和长蒴苣苔属 等染色体非整倍化进化模式类似(杨丽华等, 2019)。目前,由于半蒴苣苔属及其近缘属染色体 的研究较少且尚未见高分辨率的种间系统发育关 系,需要进一步开展更多物种的细胞学与分子系统 学结合的研究才能进一步揭示其染色体的进化 模式。

参考文献:

- CAO LM, CAO M, TANG XL, et al., 2003. Chromosome numbers of 4 species in the Gesneriaceae from Guangxi [J]. Guihaia, 23(4): 331-333. [曹丽敏, 曹明, 唐咸来, 等, 2003. 广西苦苣苔科四种植物的染色体数目报道 [J]. 广西植物, 23(4): 331-333.]
- DE STORME N, MASON A, 2014. Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance [J]. Curr Plant Biol, 1: 10-33.
- HAN YK, DU SL, WANG M, 2003. Study on chromosome preparing and ploidy in cucumber [J]. Acta Agric Boreal-Sin, 18(1): 72-74. [韩毅科, 杜胜利, 王鸣, 2003. 黄瓜染色体制片及倍性研究 [J]. 华北农学报, 18(1): 72-74.]
- HONG DY, 1990. Plant cell taxonomy [M]. Beijing: Science Publishing House: j-ji. [洪德元, 1990. 植物细胞分类学 [M]. 北京: 科学出版社: j-ji.]
- HSU CC, 1968. Preliminary chromosome studies on the vascular plants of Taiwan (II) [J]. Taiwania, 14(1): 11–27.
- JI H, GUAN KY, LU YX, 2008. Chromosome numbers of eight species in the genus *Petrocosmea* (Gesneriaceae) [J]. Acta Bot Yunnan, 30(3): 321-324. [季慧,管开云,鲁元学, 2008. 石蝴蝶属八种植物的染色体数目报道 [J]. 云南植物研究, 30(3): 321-324.]
- KATOH K, STANDLEY DM, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Mol Biol Evol, 30(4): 772-780.
- KÜCK P, LONGO GC, 2014. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies [J]. Front Zool, 11(1): 81.
- LI GT, 2017. The Liliaceae four plant chromosome karyotype analysis [J]. For By-Prod Spec Chin, 6(5): 21-25. [李国泰, 2017. 百合科 4 种植物染色体的核型比较 [J]. 中国林副特产, 6(5): 21-25.]
- LI JH, HUANG ZP, LU YB, et al., 2020. Diversity, geographical distribution and species boundary of the *Hemiboea subcapitata* complex [J]. Guihaia, 40 (10): 1477-1490. [李佳慧, 黄章平, 卢永彬, 等, 2020. 半蒴苣苔复合群的多样性、地理分布和物种界限[J]. 广西植物, 40(10): 1477-1490.]
- LI MX, CHEN RY, 1985. A suggestion on the standardization of karyotype analysis in plants [J]. J Wuhan Bot Res,

- 3(4): 297-302. [李懋学, 陈瑞阳, 1985. 关于植物核型分析的标准化问题 [J]. 武汉植物学研究, 3(4): 297-302.]
- LIU RR, 2013. Cytological characteristics and systematic significance in *Primulina sensu lato* (Gesneriaceae) [D]. Beijing: University of Chinese Academy of Sciences. [刘瑞瑞, 2013. 广义报春苣苔属(苦苣苔科)的细胞学特征及其系统学意义 [D]. 北京: 中国科学院大学.]
- LIU RR, SKOG LE, LIAO JP, et al., 2014. New chromosome counts and their taxonomic implications in *Primulina sensu lato* (Gesneriaceae) [J]. Plant Divers Resour, 36(1): 13–21. [刘瑞瑞, SKOG LE, 廖景平, 等, 2014. 广义报春苣 苔属(苦苣苔科)的染色体新计数及其分类学意义 [J]. 植物分类与资源学报, 36(1): 13–21.]
- LI YP, JIA ML, LIANG Z, et al., 2020. Karyotype analysis of three species of *Hemerocallis* [J]. J Shanxi Agric Sci, 48(1): 32-34. [李永平, 贾民隆, 梁峥, 等, 2020. 3 种萱草属植物染色体核型分析 [J]. 山西农业科学, 48(1): 32-34.]
- LI ZY, WANG YZ, 2005. Plants of Gesneriaceae in China [M]. Zhengzhou: Henan Science and Technology Publishing House: 123, 576, 653-654. [李振宇, 王印政, 2005. 中国 苦苣苔科植物 [M]. 郑州: 河南科学技术出版社: 123, 576, 653-654.]
- LONG HM, ZHANG NQ, LI ZY, et al., 2020. Study on chromosome technique of *Calendula officinalis* and its karyotype [J]. Acta Agric Zhejiang, 32(1): 86-92. [龙海梅,张楠卿,李宗艳,等,2020. 金盏菊根尖细胞染色体制片与核型分析 [J]. 浙江农业学报,32(1): 86-92.]
- LU YX, SUN XF, ZHOU QX, et al., 2002. Chromosome numbers in ten species in the Gesneriaceae from Yunnan [J]. Acta Bot Yunnan, 24(3): 377-382. [鲁元学, 孙先凤,周其兴,等, 2002. 云南十种苦苣苔科植物的染色体数目报道 [J]. 云南植物研究, 24(3): 377-382.]
- MÖÖLLER M, KIEHN M, 2004. A synopsis of cytological studies in Gesneriaceae [J]. Edin J Bot, 60(3): 425-447.
- QIN XM, PAN B, LU YB, et al., 2020. Chromosome numbers and ploidy of four species (including one variety) in *Petrocodon* Hance [J]. Guihaia, 40(10): 1466-1476. [單信梅, 盘波, 卢永彬, 等, 2020. 石山苣苔属四种(含一变种)植物的染色体数目和倍性研究 [J]. 广西植物, 40(10): 1466-1476.]
- RATTER JA, 1963. Some chromosome numbers in the Gesneriaceae [J]. Notes Roy Bot Gard Edin, 24 (1): 221-229.
- RATTER JA, PPENTICE HT, 1964. Chromosome numbers in the Gesneriaceae: II [J]. Notes Roy Bot Gard Edin, 25(3): 303-307.

- RATTER JA, PPENTICE HT, 1967. Chromosome numbers in the Gesneriaceae: Ⅲ [J]. Notes Roy Bot Gard Edin, 27(2): 205-209.
- RATTER JA, PPENTICE HT, 1970. Chromosome numbers in the Gesneriaceae: IV [J]. Notes Roy Bot Gard Edin, 30(1): 183-187.
- SOLTIS DE, SOLTIS PS, 1999. Polyploidy: recurrent formation and genome evolution [J]. Trends Ecol Evol, 14 (9): 348-352.
- STAMATAKIS A, 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies [J]. Bioinformatics, 30(9): 1312–1313.
- TIAN QY, YANG YT, 2009. Karyotype analysis on onion and discussion on its related dialysis methods [J]. J Anhui Agric Sci, 37(25): 12341-12343. [田秋元,杨约田, 2009. 洋葱核型分析及有关制片方法的探讨 [J]. 安徽农业科学, 37(25): 12341-12343.]
- WANG YZ, GU ZJ, 1999. Karyomorphology of four species in *Ancylostemon*, *Briggsiopsis* and *Lysionotus* (Gesneriaceae) [J]. J Syst Evol, 37(2): 137-142. [王印政, 顾志建, 1999. 直瓣苣苔属、筒花苣苔属和吊石苣苔属 4 个种的核形态学研究 [J]. 植物分类学报, 37(2): 137-142.]
- WEBER A, WEI YG, SONTAG S, et al., 2011. Inclusion of *Metabriggsia* into *Hemiboea* (Gesneriaceae) [J]. Phytotaxa, 23(1): 37-48.
- YANG LH, FENG C, XU MZ, et al., 2019. Synopsis of cytological studies on Didymocarpoideae (Gesneriaceae)

- under new classification system [J]. J Trop Subtrop Bot, 27(5): 548-557. [杨丽华, 冯晨, 徐梅珍, 等, 2019. 新分类系统下长蒴苣苔亚科 (苦苣苔科) 细胞学研究概述 [J]. 热带亚热带植物学报, 27(5): 548-557.]
- YANG N, TAN YX, LI QX, et al., 2012. Optimization of a chromosome mounting technique and karyotype analysis of *Thymus mongolicus* [J]. Acta Pratac Sin, 21(1): 184–189. [杨宁, 谈永霞, 李巧峡, 等, 2012. 百里香染色体制片优化及核型分析[J]. 草业学报, 21(1): 184–189.]
- YU Y, BLAIR C, HE XJ, 2020. RASP 4: ancestral state reconstruction tool for multiple genes and characters [J]. Mol Biol Evol, 37(2): 604-606.
- ZHAO DK, LU YX, SHI JF, et al., 2010. Seed germination and chromosome numbers of *Lysionotus pacuciforus* and *Briggsia longgipes* [J]. J Yunnan Agric Univ (Nat Sci Ed), 25(2): 173 177. [赵大克,鲁元学,石景峰,等, 2010. 吊石苣苔和盾叶粗筒苣苔的种子萌发及染色体数目观察[J]. 云南农业大学学报(自然科学版), 25(2): 173–177.]
- ZHAO Y, DU KH, LI WX, et al., 2019. Chromosome preparation optimization and karyotype analysis of two landscape plants in Araliaceae [J]. N Hortic, 22(1): 83-89. [赵雁, 杜康华, 李宛宣, 等, 2019. 两种五加科园林植物染色体制片优化与核型分析 [J]. 北方园艺, 22(1): 83-89.]

(责任编辑 邓斯丽 李 莉)