广步植物 Guihaia Oct. 2023, 43(10): 1861-1875

DOI: 10.11931/guihaia.gxzw202208050

王玉凤, 孟缘, 于海航, 等, 2023. 欧耧斗菜 AP2/ERF 基因家族鉴定及盐胁迫下表达分析 [J]. 广西植物, 43(10): 1861-1875.

WANG YF, MENG Y, YU HH, et al., 2023. Identification of AP2/ERF gene family in Aquilegia vulgaris and expression analysis under salt stress [J]. Guihaia, 43(10): 1861-1875.

欧耧斗菜 AP2/ERF 基因家族鉴定及盐胁迫下表达分析

王玉凤,孟缘,于海航,崔丁元,白云*

(吉林农业大学 林学与草学学院, 长春 130118)

摘 要: AP2/ERF转录因子在植物生长发育和响应非生物胁迫中发挥着重要作用。为探究欧耧斗菜 (Aquilegia vulgaris)中 AP2/ERF 对盐胁迫的响应,该研究基于前期试验获得的盐胁迫下转录组数据,通过生物信息学方法筛选欧耧斗菜 AP2/ERF 家族基因,分析其生化特征、保守基序、系统进化等,并对其在盐胁迫处理下不同时间的根与叶中的表达量变化进行分析,利用 qRT-PCR 技术对候选基因表达量进行验证。结果表明:(1)筛选出 86 个 AvAP2/ERF 基因,其编码的氨基数目为 132~722 个,分子量为 14 763.30~ 79 069.47 Da,等电点介于 4.49~9.68 之间,偏酸性蛋白较多,均为亲水性蛋白;对 AvAP2/ERF 蛋白进行亚细胞定位预测,大多数定位于细胞核。(2)二级结构以无规则卷曲和α-螺旋为主,均具有 AP2 保守结构域, 有两个高度保守的基序 Motif 1和 Motif 2。(3)在盐胁迫下,71 个 AvAP2/ERF 基因表达量发生变化,其中叶片中差异表达基因 18 个、根中 19 个;欧耧斗菜与拟南芥 AP2/ERF 基因聚类为 5 个亚家族、15 个亚组,通过表达分析及同源关系,确定 3 个响应盐胁迫的基因 AvAP2/ERF 基因聚类为 5 个亚家族、15 个亚组,通过表达分析及同源关系,确定 3 个响应盐胁迫的基因 AvAP2/ERF 基因聚类为 5 个亚家族、15 个亚组,通过表达分析及同源关系,确定 3 个响应盐胁迫的基因 AvAP2/ERF 基因聚类为 5 个亚家族、15 个亚组,通过

关键词:欧耧斗菜, AP2/ERF, 生物信息学, 盐胁迫转录组, 表达分析 中图分类号: 0943 文献标识码: A 文章编号: 1000-3142(2023)10-1861-15

Identification of *AP2/ERF* gene family in *Aquilegia vulgaris* and expression analysis under salt stress

WANG Yufeng, MENG Yuan, YU Haihang, CUI Dingyuan, BAI Yun*

(College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China)

Abstract: AP2/ERF transcription factors play important roles in plant growth, development and response to abiotic stress. In order to explore the response of *AvAP2/ERF* genes in *Aquilegia vulgaris* to salt stress, based on the transcriptome data obtained under salt stress in previous experiments, the *AP2/ERF* gene family in *A. vulgaris* were

http://www.guihaia-journal.com

收稿日期: 2022-11-14

基金项目:国家自然科学基金(32101586);吉林省自然科学基金(YDZJ202201ZYTS452)。

第一作者: 王玉凤(1998-),硕士研究生,研究方向为园林植物资源与种质创新,(E-mail)2447383563@qq.com。

[&]quot;通信作者:白云,博士,讲师,研究方向为观赏植物种质资源及分子育种,(E-mail)yunb@jlau.edu.cn。

screened by bioinformatic methods, and their physical and chemical properties, conserved motifs, phylogenetic relations and expression changes of these genes in leaves and roots under salt stress were analyzed, etc. The expression of candidate genes was verified by qRT-PCR. The results were as follows: (1) 86 AvAP2/ERF genes were identified which encoded 132–722 amino acids, with molecular weight of 14 763.30–79 069.47 Da and isoelectric point ranged from 4.49 to 9.68. Most of them were slightly acidic proteins and all of them were hydrophilic. Most of AvAP2/ERF were localized in nucleus. (2) The similarity of secondary structure was high, which was proportionally composed of random coil and α helix. The members all contained AP2 domains, and two conserved motifs were predicted. (3) Under different stages of salt treatment, there were 71 AvAP2/ERF genes responded to salt stress. There were 18 and 19 differentially expressed genes in leaves and roots, respectively. There were 86 AP2/ERF genes of A. vulgaris were divided into five subfamilies clustering with A. thaliana; the AP2/ERF genes of A. vulgaris and Arabidopsis thaliana were clustered into five subfamilies and 15 subgroups. Through expression analysis and homology relationship, AvAP2/ERF-56, AvAP2/ERF-61 and AvAP2/ERF-80 of them might be involved in salt resistance, and the qRT-PCR results were consistent with sequencing expression trends. The results of this study provides a reliable reference for further research on the function and stress response mechanism of AP2/ERF gene in Aquilegia vulgaris.

Key words: Aquilegia vulgaris, AP2/ERF, bioinformatics, salt stress transcriptome, expression analysis

AP2/ERF 是广泛存在于植物中的一类转录因 子超家族,参与植物的生长发育和响应外界胁迫。 该家族成员均含有一段或两段由 60~70 个氨基酸 组成的 AP2 保守结构域,根据含有 AP2 结构域的结 构或数目不同, AP2/ERF 超家族可进一步分为 AP2、ERF、DREB、RAV 及 Soloist 5 个亚家族(苟艳 丽等,2020)。近年来,许多植物的 AP2/ERF 转录 因子成员及功能已经得到了鉴定与验证,如拟南芥 (*Arabidopsis thaliana*)中鉴定出 147 个(Nakano et al., 2006),水稻(*Oryza sativa*)中鉴定出 163 个 (Akhter et al., 2011),绿豆(*Vigna radiata*)中鉴定 出 186 个(Chen et al., 2022),硬粒小麦(*Triticum durum*)中鉴定出 271 个(Faraji et al., 2020),石榴 (*Vigna radiata*)中鉴定出 116 个(Ran et al., 2022)。

AP2/ERF转录因子在植物的生长发育、应对 外界各种生物胁迫、非生物胁迫中都发挥着重要 作用(Feng et al., 2020)。AP2 亚家族主要参与植 物的生长发育, Jofuku 等(1994)首次从拟南芥中 分离出 AP2转录因子,其与开花生理相关。DREB 亚家族和 ERF 亚家族主要在植物的非生物逆境胁 迫中起作用(洪林等, 2020)。RAV 亚家族参与植 物响应各种生物和非生物胁迫过程(Liu et al., 2021)。目前关于 Soloist 亚家族的研究相对较少, 其参与水杨酸的生物积累和基础防御的正向调节 (王海波等, 2018)。

盐胁迫是植物生长发育的最重要的影响因子 之一, AP2/ERF转录因子在植物应对盐胁迫过程 中,发挥着举足轻重的作用。拟南芥 AtERF1 的表 达受茉莉酸(JA)、乙烯(ET)和脱落酸(ABA)信号 相互作用的控制,作为信号传递的中枢,在拟南芥 的耐盐调节和干旱调节中都发挥着重要作用 (Cheng et al., 2013)。小麦 TaERF-6-3A 通过影响 脯氨酸合成,抑制抗氧化相关基因 RD29A 和 P5CS1 的表达来降低植物的耐盐性,起到负调控 作用(Yu et al., 2022)。陆地棉 GhERF13.12 基因 受 ABA 信号影响,参与脯氨酸的生物合成,在拟南 芥中过表达,能增强活性氧(ROS)清除基因的表 达,提高拟南芥对盐胁迫耐受性(Lu et al., 2021)。 旱柳 SmAP2-17 可以结合 SOS3 和 ABI5 的启动子 且激活它们的表达,在盐胁迫的调控中起关键作 用(Chen et al., 2022)。

耧斗菜属(Aquilegia)花卉是重要的宿根花卉, 其花形独特、花色艳丽,深受人们喜爱(Carmen Martinell et al., 2010; Jesus et al., 2015)。但近年 来,随着土地盐碱化的加剧,耧斗菜属花卉的应用 受到限制,盐胁迫使其观赏效果大大降低。课题 组前期试验发现,欧耧斗菜(A. vulgaris)具有很强 的抗寒性和耐盐性,在东北地区可以露地越冬,管 理方便。本研究以欧耧斗菜盐胁迫处理不同时间 的转录组测序数据为基础,筛选 AP2/ERF 家族基 因,利用生物信息学方法对其进行分析,并结合试 验进行验证,拟探讨以下问题:(1)欧耧斗菜 AP2/ ERF 家族基因编码的蛋白质的理化性质;(2)二级 结构及保守结构域特征;(3)对盐胁迫处理不同时 间根与叶中 AP2/ERF 基因表达模式进行分析、系统进化分析并进行分类及功能预测。本研究以期为下一步研究欧耧斗菜 AP2/ERF 基因在抗盐过程中的生物学功能提供参考。

1 材料与方法

1.1 转录组测序试验材料

欧耧斗菜盐胁迫下转录组数据为课题组前期 试验获得,种子为吉林农业大学观赏植物资源团 队保存。于2020年6月播种,待幼苗长至6片真 叶时,选择长势良好、株高冠幅相近的植株,进行 200 mmol・L⁻¹NaCl溶液处理,在0(CK)、12、24、 48 h 后分别对根和叶片进行取样,重复3次,盐溶 液浓度及处理时间均由预试验确定。样品在液氮 中迅速冷冻后置于-80℃冰箱中保存备用,由北 京诺禾致源科技股份有限公司进行转录组测序并 进行数据分析。

1.2 欧耧斗菜 AP2/ERF 基因的鉴定及生物信息学分析

在 Tair(https://www.arabidopsis.org/) 上搜索 并下载拟南芥 AP2/ERF 家族的基因序列,作为参 考序列。将转录组序列与拟南芥序列进行本地 BLAST 比对, E 值设置为 1e-5, 将得到的核酸序列 通过 TBtools (Chen et al., 2020) 翻译为蛋白质序 列,提交 NCBI(https://www.ncbi.nlm.nih.gov/)和 SMART(http://smart.embl-heidelberg.de/) 预测结 构域,保留含有完整 AP2/ERF 结构域的蛋白序 列。利用 MEGA 7.0 软件,以邻接法(neighborjoining, NJ)构建欧耧斗菜与拟南芥 AP2/ERF 基 因的系统发育进化树,并使用 iTOL(https://itol. embl. de/) 进行美化。通过在线软件 pI/Mw (http://web.expasy.Org/protparam/)分析蛋白质的 分子量、氨基酸数目、等电点、平均亲水性等理化 性质,利用在线软件 MBC (http://cello.life.nctu. edu.tw/)进行亚细胞定位。利用在线网站 Prabi (https://prabi.ibcp.fr/htm/site/web)预测蛋白质二 级结构,在线工具 MEME(http://meme-suite.org/ tools/meme)分析基因保守基序,并通过 TBtools 进 行可视化。

1.3 欧耧斗菜 AP2/ERF 基因表达模式分析

基于欧耧斗菜盐胁迫下转录组数据,将 AP2/ ERF 家族基因在盐胁迫 0(CK)、12、24、48 h 的表 达量通过 FPKM(fragments per kilobase million)标 准化;利用 DEGseq 软件进行处理组和对照组的比较,差异表达显著的标准为 |log₂(Fold Change)|>1、P(padj)<0.05,符合以上标准的基因视为差异基因(牛苏燕等,2023)。利用 TBtools 绘制热图谱,Row Scale 标准化,Cluster Rows 聚类,其他参数默认,并进行表达模式分析。

1.4 实时荧光定量 PCR

为了验证转录组测序的结果及目标基因的表 达模式,设计特异引物(表1),*IPP2*作为内参基因 (Sharma & Kramer, 2013),经实时荧光定量 PCR 检测欧耧斗菜部分 *AP2/ERF* 基因在盐胁迫下不 同时间在根和叶中的表达。用 SYBR Green I 检 测特异引物的 PCR 产物,反应体系:2×SYBR Mix 主混合物 10 μ L、上下游引物 1 μ L、模板(cDNA)2 μ L、ddH₂O 6 μ L。PCR反应程序:预变性(95 ° , 1 min),放大定量(95° , 20 s;60° , 20 s;72° , 30 s, 重复 40 次),熔解曲线(60~95 °)。每个样品 3 个独立的生物学重复,2 个技术重复。使用 2^{-ΔΔCI} 法计算基因的相对表达量,log₂(Fold Change)进行 基因相对表达量(上调或下调)的标准化比较。

表 1 欧耧斗菜荧光定量检测引物序列

 Table 1
 Sequence of the primers for fluorescent

 quantitative detection of Aquilegia vulgaris

引物名称 Primer name	序列(5'-3') Sequence (5'-3')
AvAP2/ERF-56F	GTATGGTGCCTCCCCTCGTT
AvAP2/ERF-56R	GCCCCTTGGTCTTGAACCTG
AvAP2/ERF-61F	GCGAAGTAGACGCAATGGACC
AvAP2/ERF-61R	AGCTGGCACTTTACGACGCT
AvAP2/ERF-80F	ATACGAAAGGCGGCAAGTGA
AvAP2/ERF-80R	CAACCCTGGCATTCCAAACTC
IPP2F	CAGGTGAAGACGGACTGAAGTTATC
IPP2R	CCAAGACTGGAAAAAAGACCACAC

2 结果与分析

2.1 转录组测序结果简介

此次共获得转录组文库 12 个,过滤后每个文库 至少获得 41 521 502 个 clean reads、6.23 G clean bases。所有 12 个文库中的 Q30 均超过 94.81%,GC 均在 41.51~42.72 之间,共组装序列 28 088 个。各 个样本比对到基因组的百分比均高于 70%,表明转录组数据与参考物种接近。3次生物学重复 R²均大于 0.85,组内 3次重复存在较好的相关性。为了进一步挖掘盐胁迫下各个通路的基因变化,以 P (padj) < 0.05为筛选条件,筛选出 13 个显著富集的 KEGG 通路,2 197 个差异表达基因。

2.2 欧耧斗菜 AP2/ERF 基因家族鉴定与系统发育 分析

本研究从欧耧斗菜转录组中共鉴定出 86 个 AP2/ERF 基因家族成员,分别命名为 AvAP2/ERF-1~AvAP2/ERF-86。将欧耧斗菜与拟南芥 AP2/ ERF 基因构建系统进化树,结果如图 1 所示, AvAP2/ERF 分布在 ERF、DREB、AP2、RAV 和 Soloist 这 5 个亚家族中,其中,ERF 亚家族进一步 分为 B1、B2、B3、B4、B5 和 B6 6 个亚组,DREB 亚 家族分为 A1、A2、A3、A4、A5 和 A6 6 个亚组。在 鉴定的 86 个 AvAP2/ERF 中:15 个属于 AP2 亚家 族,占总数的 17.44%;37 个属于 ERF 亚家族,占 43.02%;29 个属于 DREB 亚家族,占 33.72%;4 个 属于 RAV 亚家族,占 4.65%;还有 1 个属于 Soloist 亚家族,占 1.16%。

2.3 欧耧斗菜 AP2/ERF 蛋白的理化性质分析与亚 细胞定位

欧耧斗菜 86 个 AP2/ERF 基因所编码的蛋白 质的氨基酸数目在 132~722 个之间,分子量在 14 763.30~79 069.47 Da 之间,等电点介于 4.49~ 9.68 之间,差异较大,暗示了其基因功能的多样 性。酸性蛋白数目(54)高于碱性蛋白数目(32), 平均亲水性的值皆小于 0,皆为亲水蛋白。5 个定 位于叶绿体,1 个定位于线粒体,1 个定位于细胞 质,其余 79 个均定位于细胞核,Soloist 亚家族的蛋 白 AvAP2/ERF-17 被定位在细胞质(表 2)。定位 在核外的基因在遗传进化上具有一定的独立性, 与家族内其他基因差异较大(吴朝昕等,2022)。

2.4 欧耧斗菜 AP2/ERF 蛋白的二级结构分析

在欧耧斗菜 AP2/ERF 蛋白中,α-螺旋和无规则卷曲是构成二级结构的主要方式。AP2/ERF 转录因子具有保守的 AP2 结构域,该结构域的 C 端存在 1 个 RAYD 元件,可形成 1 个两亲性 α-螺旋,这有利于维持 AP2/ERF 蛋白的稳定性(苟艳丽等,2020)(表 3)。

2.5 欧耧斗菜 AP2/ERF 蛋白的保守基序分析

通过 MEME 在线工具进行保守基序分析,结

果显示, Motif 1 和 Motif 2 的保守程度在欧耧斗菜 AP2/ERF 中 是 最 高 的, 除 AvAP2/ERF-13 和 AvAP2/ERF-23 外, 其余 84 个均包含该段基序。 而其他类型结构域的保守程度会因所属亚家族的 不同而有差异(图 2)。在相同亚家族中, 除 AP2 结构域外, 还存在着一个或多个相对保守的其他 类型结构域, 如 AP2 亚家族有两段保守基序 Motif 4 和 Motif 13, RAV 亚家族有两段保守基序 Motif 9 和 Motif 15, 而这在其他亚家族中则不具备(图 3)。 2.6 欧耧斗菜 AP2/ERF 基因表达模式分析

将欧耧斗菜 AP2/ERF 基因在盐胁迫下不同时 间在根和叶中的表达数据绘制热图谱并聚类分 析,将 FPKM 值大于 0.05 视为有效表达,并且其值 越大说明表达水平越高(Moran et al., 2011)。在 根中,有效表达基因 69 个,在叶中,有效表达基因 50 个,并且表达量均随盐胁迫时间的增加呈现一 定的变化趋势(图 4)。

与对照相比,表达差异显著的标准为 | log, (Fold Change) |>1、P(padj) < 0.05。根中有 19 个 差异基因,叶中有18个差异基因,分布于不同的 盐胁迫时间中,8个 AP2/ERF 在根和叶中皆为差 异基因。log₂(Fold Change) >1 为上调基因, log₂ (Fold Change) <-1 为下调基因。在根中,上调基 因有 15 个,其中 AvAP2/ERF-2、AvAP2/ERF-3、 AvAP2/ERF-22 AvAP2/ERF-40 AvAP2/ERF-53 AvAP2/ERF-64 在盐处理 12 h 时表达量显著上调, AvAP2/ERF-29、AvAP2/ERF-50、AvAP2/ERF-56、 AvAP2/ERF-57、AvAP2/ERF-61、AvAP2/ERF-80 在 24 h 时显著上调, 而 AvAP2/ERF-46、AvAP2/ERF-54、AvAP2/ERF-56、AvAP2/ERF-81 在 48 h 时显著 上调:下调基因为 AvAP2/ERF-35、AvAP2/ERF-51、 AvAP2/ERF-58、AvAP2/ERF-82、显著下调的时间 也不尽相同。在叶中,上调基因有 13 个, AvAP2/ ERF-21, AvAP2/ERF-42, AvAP2/ERF-44, AvAP2/ ERF-46 AvAP2/ERF-47 AvAP2/ERF-72 AvAP2/ ERF-86 的表达量在 12 h 时显著上调, AvAP2/ERF-80 的表达量在 24 h 时显著上调, AvAP2/ERF-24、 AvAP2/ERF-56 AvAP2/ERF-61 AvAP2/ERF-64 AvAP2/ERF-71 的表达量在 48 h 时显著上调, AvAP2/ERF-23, AvAP2/ERF-30, AvAP2/ERF-37, AvAP2/ERF-58、AvAP2/ERF-73 为下调基因(图 5)。

根据拟南芥中已知 AP2/ERR 抗逆基因 (表4),结合欧耧斗菜与拟南芥系统进化关系,确

图 1 欧耧斗菜与拟南芥 AP2/ERF 基因的系统进化树 Fig. 1 Phylogenetic tree of AP2/ERF genes in Aquilegia vulgaris and Arabidopsis thaliana

定 AvAP2/ERF-56、AvAP2/ERF-61、AvAP2/ERF-80 为抗盐候选基因,并且这 3 个基因在盐胁迫处理 后的根和叶中,均表现出显著上调,可见其积极响 应盐胁迫。进一步通过 qRT-PCR 验证上述 3 个基 因在盐胁迫下的表达模式(图 6)。由图 6 可知: AvAP2/ERF-56 在叶和根中,均随着盐胁迫时间的 增加,表达量逐渐上升,盐胁迫 48 h 与对照组存在 显著差异,与转录组测序结果基本一致。AvAP2/ ERF-61 在叶中,随着盐胁迫时间的增加,表达量 逐渐上升,在 48 h 时上调显著;在根中,盐胁迫 12、24 h上调显著,48 h时下降,与转录组数据一致。AvAP2/ERF-80 在叶片中,随着盐胁迫时间的增加,表达量上调,在 24、48 h时上调显著;在根中,盐胁迫 12、24、48 h时均检测到表达量显著上调,与转录组测序结果一致。

3 讨论与结论

本研究从课题组前期获得的欧耧斗菜盐胁迫转录组测序数据中鉴定了86个 AvAP2/ERF 基因,

表 2 欧耧斗菜 AP2/ERF 的理化性质分析与亚细胞定位

Table 2 Analysis of physical and chemical properties and subcellular localization of AP2/ERF in Aquilegia vulgaris

基因编号 Gene ID	氨基酸数目 Number of amino acids	分子量 Molecular weight (Da)	等电点 Isoelectric point (pI)	平均亲水性 Grand average of hydropathicity	亚细胞定位 Subcellular localization
AvAP2/ERF-1	530	59 994.41	6.51	-0.826	Nucleus 细胞核
AvAP2/ERF-2	225	25 026.49	5.07	-0.751	Nucleus 细胞核
AvAP2/ERF-3	189	20 877.23	9.03	-0.741	Nucleus 细胞核
AvAP2/ERF-4	279	31 126.26	5.08	-0.715	Nucleus 细胞核
AvAP2/ERF-5	264	29 399.72	5.02	-0.903	Nucleus 细胞核
AvAP2/ERF-6	332	37 272.49	5.68	-0.756	Nucleus 细胞核
AvAP2/ERF-7	321	36 711.65	5.20	-0.954	Nucleus 细胞核
AvAP2/ERF-8	234	26 433.45	8.50	-0.750	Nucleus 细胞核
AvAP2/ERF-9	297	32 496.79	6.51	-0.648	Nucleus 细胞核
AvAP2/ERF-10	268	30 095.00	8.57	-0.631	Nucleus 细胞核
AvAP2/ERF-11	322	37 159.42	5.01	-0.854	Nucleus 细胞核
AvAP2/ERF-12	369	41 907.28	5.41	-0.867	Nucleus 细胞核
AvAP2/ERF-13	386	42 554.86	8.41	-0.745	Nucleus 细胞核
AvAP2/ERF-14	415	46 627.28	4.64	-0.796	Nucleus 细胞核
AvAP2/ERF-15	218	24 335.24	8.72	-0.628	Nucleus 细胞核
AvAP2/ERF-16	282	31 335.77	6.13	-0.673	Nucleus 细胞核
AvAP2/ERF-17	267	29 825.06	4.69	-0.575	Cytoplasm 细胞质
AvAP2/ERF-18	159	17 188.26	9.14	-0.552	Nucleus 细胞核
AvAP2/ERF-19	347	40 053.17	8.09	-0.710	Nucleus 细胞核
AvAP2/ERF-20	347	39 892.05	7.10	-0.648	Nucleus 细胞核
AvAP2/ERF-21	370	41 893.58	8.88	-0.543	Nucleus 细胞核
AvAP2/ERF-22	355	39 834.74	8.59	-0.624	Nucleus 细胞核
AvAP2/ERF-23	551	62 110.15	6.56	-0.742	Nucleus 细胞核
AvAP2/ERF-24	537	60 327.74	5.79	-0.972	Nucleus 细胞核
AvAP2/ERF-25	360	40 429.30	5.02	-0.889	Nucleus 细胞核
AvAP2/ERF-26	421	47 379.25	8.43	-0.754	Nucleus 细胞核
AvAP2/ERF-27	500	55 762.18	5.84	-0.720	Nucleus 细胞核
AvAP2/ERF-28	337	38 359.20	9.68	-0.713	Nucleus 细胞核
AvAP2/ERF-29	382	42 980.94	8.52	-0.630	Nucleus 细胞核
AvAP2/ERF-30	342	38 335.51	7.12	-0.779	Nucleus 细胞核
AvAP2/ERF-31	348	39 531.89	8.19	-0.826	Nucleus 细胞核
AvAP2/ERF-32	590	65 507.98	6.14	-0.841	Nucleus 细胞核
AvAP2/ERF-33	317	35 316.24	5.98	-0.712	Nucleus 细胞核
AvAP2/ERF-34	526	57 847.91	7.37	-0.747	Nucleus 细胞核
AvAP2/ERF-35	722	79 069.47	5.97	-0.745	Nucleus 细胞核
AvAP2/ERF-36	664	73 723.42	6.23	-0.779	Nucleus 细胞核
AvAP2/ERF-37	668	74 090.72	6.54	-0.767	Nucleus 细胞核
AvAP2/ERF-38	335	37 437.41	5.38	-0.684	Nucleus 细胞核
AvAP2/ERF-39	223	25 318.43	5.82	-0.552	Nucleus 细胞核
AvAP2/ERF-40	282	31 590.52	5.56	-0.611	Nucleus 细胞核
AvAP2/ERF-41	234	26 168.16	5.10	-0.547	Nucleus 细胞核
AvAP2/ERF-42	259	29 289.54	4.77	-0.597	Nucleus 细胞核

续表 2					
基因编号 Gene ID	氨基酸数目 Number of amino acids	分子量 Molecular weight (Da)	等电点 Isoelectric point (pI)	平均亲水性 Grand average of hydropathicity	亚细胞定位 Subcellular localization
AvAP2/ERF-43	161	18 046.69	9.04	-0.385	Chloroplast 叶绿体
AvAP2/ERF-44	317	35 408.85	6.06	-0.566	Nucleus 细胞核
AvAP2/ERF-45	242	26 913.50	8.50	-0.893	Nucleus 细胞核
AvAP2/ERF-46	180	19 919.04	5.08	-0.589	Chloroplast 叶绿体
AvAP2/ERF-47	292	32 872.63	9.28	-0.857	Nucleus 细胞核
AvAP2/ERF-48	274	30 394.27	9.25	-0.980	Nucleus 细胞核
AvAP2/ERF-49	197	21 354.40	6.17	-0.660	Nucleus 细胞核
AvAP2/ERF-50	132	14 763.30	5.58	-0.750	Chloroplast 叶绿体
AvAP2/ERF-51	146	16 063.63	8.85	-0.680	Nucleus 细胞核
AvAP2/ERF-52	195	21 910.06	9.66	-0.619	Mitochondrion 线粒体
AvAP2/ERF-53	272	31 072.62	5.53	-0.808	Nucleus 细胞核
AvAP2/ERF-54	426	47 782.22	4.83	-0.765	Nucleus 细胞核
AvAP2/ERF-55	386	42 871.51	5.25	-0.733	Nucleus 细胞核
AvAP2/ERF-56	245	27 507.39	9.30	-0.968	Nucleus 细胞核
AvAP2/ERF-57	419	45 574.65	6.08	-0.670	Nucleus 细胞核
AvAP2/ERF-58	188	21 125.53	6.96	-0.634	Nucleus 细胞核
AvAP2/ERF-59	209	22 926.76	7.67	-0.533	Nucleus 细胞核
AvAP2/ERF-60	161	17 719.76	9.91	-0.892	Nucleus 细胞核
AvAP2/ERF-61	323	35 834.53	5.29	-0.866	Nucleus 细胞核
AvAP2/ERF-62	331	37 305.67	4.92	-0.779	Nucleus 细胞核
AvAP2/ERF-63	282	31 968.60	7.77	-0.806	Nucleus 细胞核
AvAP2/ERF-64	317	34 801.90	8.80	-0.503	Nucleus 细胞核
AvAP2/ERF-65	347	38 529.26	5.95	-0.588	Nucleus 细胞核
AvAP2/ERF-66	424	47 919.73	5.75	-0.926	Nucleus 细胞核
AvAP2/ERF-67	384	42 489.39	6.46	-0.581	Nucleus 细胞核
AvAP2/ERF-68	377	41 857.89	6.80	-0.582	Nucleus 细胞核
AvAP2/ERF-69	162	17 995.08	5.06	-0.516	Nucleus 细胞核
AvAP2/ERF-70	165	17 911.26	9.45	-0.405	Nucleus 细胞核
AvAP2/ERF-71	154	17 561.56	9.27	-1.065	Nucleus 细胞核
AvAP2/ERF-72	173	19 159.42	9.51	-0.802	Nucleus 细胞核
AvAP2/ERF-73	301	33 086.52	5.35	-0.649	Nucleus 细胞核
AvAP2/ERF-74	187	20 304.68	4.49	-0.258	Chloroplast 叶绿体
AvAP2/ERF-75	257	28 340.57	5.23	-0.635	Nucleus 细胞核
AvAP2/ERF-76	172	18 931.04	5.61	-0.493	Nucleus 细胞核
AvAP2/ERF-77	172	18 932.03	5.38	-0.493	Chloroplast 叶绿体
AvAP2/ERF-78	231	25 826.92	5.62	-0.612	Nucleus 细胞核
AvAP2/ERF-79	232	26 158.13	6.35	-0.719	Nucleus 细胞核
AvAP2/ERF-80	231	26 221.33	6.14	-0.707	Nucleus 细胞核
AvAP2/ERF-81	235	26 095.95	5.19	-0.619	Nucleus 细胞核
AvAP2/ERF-82	173	18 780.97	4.69	-0.473	Nucleus 细胞核
AvAP2/ERF-83	186	20 074.28	5.08	-0.439	Nucleus 细胞核
AvAP2/ERF-84	219	23 925.81	5.76	-0.460	Nucleus 细胞核
AvAP2/ERF-85	207	23 240.05	7.89	-0.646	Nucleus 细胞核
AvAP2/ERF-86	225	25 009.05	9.14	-0.521	Nucleus 细胞核

广 西 植 物

表 3 欧耧斗菜 AP2/ERF 的二级结构							
Table 3 Secondary structure of AP2/ERF in Aquilegia vulgaris							
基因编号 Gene ID	α-螺旋 α-helix (%)	延伸链 Extended strand (%)	无规则卷曲 Random coil (%)	基因编号 Gene ID	α-螺旋 α-helix (%)	延伸链 Extended strand (%)	无规则卷曲 Random coil (%)
AvAP2/ERF-1	27.55	5.47	66.98	AvAP2/ERF-44	24.29	15.14	60.57
AvAP2/ERF-2	19.56	8.89	71.56	AvAP2/ERF-45	15.29	15.29	69.42
AvAP2/ERF-3	16.40	11.64	71.96	AvAP2/ERF-46	20.56	12.22	67.22
AvAP2/ERF-4	15.77	11.83	72.40	AvAP2/ERF-47	33.22	6.85	59.93
AvAP2/ERF-5	11.36	9.47	79.17	AvAP2/ERF-48	21.90	9.85	68.25
AvAP2/ERF-6	31.93	11.14	56.93	AvAP2/ERF-49	25.89	11.17	62.94
AvAP2/ERF-7	31.46	9.66	58.88	AvAP2/ERF-50	28.03	18.94	53.03
AvAP2/ERF-8	38.89	3.42	57.69	AvAP2/ERF-51	30.82	14.38	54.79
AvAP2/ERF-9	19.53	13.13	67.34	AvAP2/ERF-52	28.21	13.85	57.95
AvAP2/ERF-10	27.24	15.30	57.46	AvAP2/ERF-53	24.63	15.44	59.93
AvAP2/ERF-11	38.51	3.04	48.45	AvAP2/ERF-54	27.23	11.97	60.80
AvAP2/ERF-12	26.83	13.55	59.62	AvAP2/ERF-55	22.80	12.18	65.03
AvAP2/ERF-13	31.87	13.21	54.92	AvAP2/ERF-56	30.61	9.39	60.00
AvAP2/ERF-14	34.94	9.40	55.66	AvAP2/ERF-57	29.59	12.17	58.23
AvAP2/ERF-15	28.90	15.60	55.50	AvAP2/ERF-58	36.17	10.11	53.72
AvAP2/ERF-16	32.27	7.45	60.28	AvAP2/ERF-59	28.23	14.35	57.42
AvAP2/ERF-17	19.48	15.36	65.17	AvAP2/ERF-60	29.19	7.45	63.35
AvAP2/ERF-18	20.75	15.09	64.15	AvAP2/ERF-61	21.05	6.50	72.45
AvAP2/ERF-19	28.82	20.46	50.72	AvAP2/ERF-62	26.89	12.69	60.42
AvAP2/ERF-20	27.38	20.46	52.16	AvAP2/ERF-63	22.70	9.22	68.09
AvAP2/ERF-21	24.86	23.24	51.89	AvAP2/ERF-64	33.12	9.46	57.41
AvAP2/ERF-22	21.97	20.85	57.18	AvAP2/ERF-65	32.56	7.78	59.65
AvAP2/ERF-23	29.40	11.62	58.98	AvAP2/ERF-66	19.81	8.49	71.70
AvAP2/ERF-24	16.39	15.08	68.53	AvAP2/ERF-67	25.78	11.72	62.50
AvAP2/ERF-25	24.17	16.39	59.44	AvAP2/ERF-68	34.75	11.94	53.32
AvAP2/ERF-26	24.47	14.01	61.52	AvAP2/ERF-69	14.20	25.93	59.88
AvAP2/ERF-27	24.40	9.60	66.00	AvAP2/ERF-70	19.39	24.24	56.36
AvAP2/ERF-28	34.12	12.17	53.71	AvAP2/ERF-71	19.48	14.94	65.58
AvAP2/ERF-29	29.06	14.66	56.28	AvAP2/ERF-72	19.08	16.76	64.16
AvAP2/ERF-30	30.70	7.89	61.40	AvAP2/ERF-73	24.58	11.30	64.12
AvAP2/ERF-31	26.15	14.08	59.77	AvAP2/ERF-74	26.20	15.51	58.29
AvAP2/ERF-32	25.08	9.15	65.76	AvAP2/ERF-75	23.35	7.00	69.65
AvAP2/ERF-33	23.66	18.30	58.04	AvAP2/ERF-76	23.26	12.21	64.53
AvAP2/ERF-34	18.06	12.74	69.20	AvAP2/ERF-77	23.26	12.21	64.53
AvAP2/ERF-35	19.67	10.39	69.94	AvAP2/ERF-78	30.74	15.58	53.68
AvAP2/ERF-36	21.69	12.05	66.27	AvAP2/ERF-79	21.98	20.69	57.33
AvAP2/ERF-37	25.00	11.53	63.47	AvAP2/ERF-80	32.47	16.02	51.52
AvAP2/ERF-38	17.31	12.84	69.85	AvAP2/ERF-81	31.49	14.89	53.62
AvAP2/ERF-39	43.95	12.11	43.95	AvAP2/ERF-82	25.43	14.45	60.12
AvAP2/ERF-40	37.23	5.32	57.45	AvAP2/ERF-83	31.18	10.22	58.60
AvAP2/ERF-41	35.90	10.26	53.85	AvAP2/ERF-84	29.68	13.24	57.08
AvAP2/ERF-42	35.91	13.13	50.97	AvAP2/ERF-85	33.33	8.21	58.45
AvAP2/ERF-43	36.65	14.91	48.45	AvAP2/ERF-86	21.33	20.00	58.67

图 2 欧耧斗菜 AP2/ERF 保守基序 Fig. 2 Conserved motifs of AP2/ERF in Aquilegia vulgaris

并对其家族成员理化特征、系统进化及盐胁迫下 表达模式进行了分析。86 个 AvAP2/ERF 可被分 为15 个 AP2 基因、29 个 DREB 基因、37 个 ERF 基 因、4 个 RAV 基因及1 个 Soloist 基因。在当前研究 的大多植物中,ERF 亚家族具有最多的成员,然后 依次是 DREB、AP2、RAV, Soloist 亚家族成员最少 (Nakano et al., 2006)。欧耧斗菜与拟南芥、水稻 等物种的 AP2/ERF 基因的各亚家族成员在数量 上也具有相似的规律(Akhter et al., 2011;陈悦 等,2022),这说明植物 AP2/ERF 基因在进化上有 共同的起源。

本研究发现欧耧斗菜 AP2/ERF 转录因子家 族成员的分子量、等电点和亲水性存在较大差异, 这与前人的研究结果一致(Ran et al., 2022),说 明了欧耧斗菜 AP2/ERF 转录因子家族的结构较 为复杂,暗示了其功能的多样性。欧耧斗菜 AP2/ ERF 的亚细胞定位大多数在细胞核,说明其在细 胞质中合成后进入细胞核发挥作用;也有在叶绿 体中和线粒体中的,这说明其功能分工上有所不 同,在信号传递的不同阶段发挥作用。

在 AP2/ERF 转录因子中, AP2 结构域的高度 保守是其蛋白序列的重要结构特征,通常该结构域 包含 60~70 个氨基酸残基,按照 3 个 β-折叠和 1 个 α-螺旋方式形成典型的三维结构(洪林等,2020)。 在欧耧斗菜 AP2/ERF 转录因子家族中, Motif 1 和 Motif 2 是保守性最高的,是构成 AP2 结构域的重要 组成部分,这与前人的研究结果基本相符。保守的 结构域与基序通常与转录因子的功能相关(Sakuma et al., 2002)。在欧耧斗菜 AP2/ERF 转录因子家族 中,同一亚家族基因具有相同或相似的保守基序, 可能具有相似的生物学功能和调控途径。如 AP2 亚家族有两段保守基序 Motif 4 和 Motif 13,构成了 另一个长度为 72 个氨基酸的 AP2 结构域, RAV 亚 家族中也有两段保守基序 Motif 9 和 Motif 15,是 B3 结构域的重要组成部分,而这在其他亚家族中则不 具备,这符合 AP2 亚家族和 RAV 亚家族的基本特 征(苟艳丽等,2020)。不同亚家族特异的保守基序 在转录调控中同样发挥了重要的作用。

根据与已知功能基因的同源性,结合表达趋势推测目的基因的功能是目前研究中常用的手段

图 3 欧耧斗菜 AP2/ERF 基序分布 Fig. 3 Distribution of motifs of AP2/ERF in Aquilegia vulgaris

L、R 分别代表叶片和根部; 0、12、24、48 为处理时间(h)。下同。 L and R represent leaf and root, respectively; 0, 12, 24, 48 are the processing time (h). The same below.

Fig. 4 Heatmap of AP2/ERF genes expression in Aquilegia vulgaris under salt stress

(马宇辰等,2022)。本研究将欧耧斗菜 86 个、拟 南芥 147 个 AP2/ERF 基因分为 5 个亚家族,各家 族成员功能类似。通过同源比对发现,AP2 亚家 族 AvAP2/ERF-37 可能通过控制根细胞数量和大 小,负调控拟南芥耐盐性(Meng et al., 2015)。 Soloist 亚家族的 AvAP2/ERF-17,推测其在水杨酸 防御信号途径中的 PAD4 基因下游发挥功能,正调 控水杨酸的生物合成从而提高植物抗逆性 (Mrunmay et al., 2014)。预测 ERF 亚家族的 AvAP2/ERF-40、AvAP2/ERF-42、AvAP2/ERF-44、 AvAP2/ERF-47 在抗非生物胁迫激素信号转导中 起着中枢作用(Cheng et al., 2013);AvAP2/ERF-50 和 AvAP2/ERF-51 促进抗坏血酸合成,提高植 物耐盐性(Zhang et al., 2012); AvAP2/ERF-56 和 AvAP2/ERF-57 通过 ABI1 介导的 ABA 信号通路, 延缓水淹诱导的早衰,通过表达量上调提高植物 的耐盐性和耐旱性(Liu et al., 2012)。DREB 亚家 族的 AvAP2/ERF-79、AvAP2/ERF-80、AvAP2/ERF-81 可能参与 ROS 清除,从而提升植物耐寒性与耐 盐性(Kidokoro et al., 2021), AvAP2/ERF-61 通过 表达上调提升植物抗盐性(Sowmya et al., 2011), AvAP2/ERF-64、AvAP2/ERF-66、AvAP2/ERF-68 可 能作用于光和乙烯信号通路的交汇点或下游(Lin et al., 2008), AvAP2/ERF-73、AvAP2/ERF-82、 AvAP2/ERF-86则可能通过降低表达量,提高植物 抗盐性(Karaba et al., 2007)。

1871

图 4 欧耧斗菜 AP2/ERF 基因盐胁迫下表达热图谱

表 4 AP2/ERF 家族同源基因在拟南芥中的功能研究

Table 4 Studies on the function of AP2/ERF family homologous genes in Arabidopsis thaliana

分组 Group	拟南芥基因 Arabidopsis thaliana gene	欧耧斗菜 同源基因 Homologous gene in Aquilegia vulgaris	功能 Function	参考文献 Reference
AP2	ANT (AT4G37750)	AvAP2/ERF-37	控制根细胞数量、大小;负调控拟南芥耐盐性 Control the number and size of root cells; negatively regulate salt tolerance in <i>Arabidopsis thaliana</i>	Meng et al., 2015
Soloist	APD1 (AT4G13040)	AvAP2/ERF-17	在水杨酸防御信号途径中的 PAD4 基因下游发挥功能,正调控水杨酸的生物合成从而提高拟南芥抗逆性 It functions downstream of PAD4 gene in salicylic acid defense signaling pathway and positively regulates salicylic acid biosynthesis to improve stress resistance in <i>A. thaliana</i>	Mrunmay et al. , 2014
ERF-B3	<i>ERF</i> 1 (<i>AT</i> 3 <i>G</i> 23240)	<i>AvAP2/ERF-</i> 40 <i>AvAP2/ERF-</i> 42 <i>AvAP2/ERF-</i> 44 <i>AvAP2/ERF-</i> 47	耐盐、耐旱, JA、ET 和 ABA 信号传递中枢 Salt tolerance, drought tolerance, JA, ET and ABA signal transmission center	Cheng et al., 2013
ERF-B3	AtERF98 (AT3G23230)	AvAP2/ERF-50 AvAP2/ERF-51	促进抗坏血酸合成,耐盐 Promote the synthesis of ascorbic acid, salt tolerance	Zhang et al., 2012
ERF-B4	RAP2.6L (AT5G13330)	AvAP2/ERF-57	通过 ABI1 介导的 ABA 信号通路,延缓水淹诱导的早衰。过表达 RAP2.6L 提高了拟南芥的耐盐性, 耐旱性 ABA signaling pathway mediated by ABI1 can delay the premature senescence induced by flooding. Overexpression of RAP2.6L increases salt tolerance and drought tolerance in A. thaliana	Liu et al., 2012; Sowmya et al., 2011
DREB-A1	DREB1 (AT4G25480)	AvAP2/ERF-79 AvAP2/ERF-81	DREB1 转录因子作为拟南芥冷胁迫适应的主开关,参 与 ROS 清除,提升植物耐寒性,耐盐性 As a master switch of cold stress adaptation in <i>A. thaliana</i> , DREB1 transcription factor participates in the removal of ROS species and promotes plants cold tolerance, salt tolerance	Kidokoro et al., 2021
DREB-A2	DREB19 (AT2G38340)		过表达 DREB19 提高了拟南芥的耐盐性, 耐旱性 Overexpression of DREB19 increases salt tolerance and drought tolerance in A. thaliana	Sowmya et al., 2011
DREB-A4	HRD (AT2G36450)	AvAP2/ERF-73 AvAP2/ERF-82 AvAP2/ERF-86	拟南芥 HRD 突变体耐盐、抗旱性增强;转拟南芥 HRD 基因水稻光合效率和水分利用率大大提高 A. thaliana HRD mutant showes enhanced salt and drought tolerance; transgenic A. thaliana HRD gene in rice photosynthetic efficiency and water utilization rate is greatly improved	Karaba et al., 2007
DREB-A6	<i>RAP</i> 2.4 (<i>AT</i> 1 <i>G</i> 78080)	AvAP2/ERF-64 AvAP2/ERF-66 AvAP2/ERF-68	作用于光和乙烯信号通路的交汇点或下游; RAP2.4 基因的表达在光照条件下下调,在盐旱胁迫下上调 Acting at or downstream of the intersection of light and ethylene signaling pathways; the expression of RAP 2.4 gene is down-regulated under light and was up-regulated under salt and drought stress	Lin et al., 2008

同一基因在不同组织中的表达可能存在较大 差异(Zhou & Rajesh, 2021; 王丽娟等, 2022)。本 研究在分析欧耧斗菜盐胁迫转录组表达数据时发 现:根中上调基因 15 个、下调基因 4 个;叶片中上 调基因13个、下调基因5个;在根和叶片中皆上 调的基因仅5个,皆下调的仅1个。根和叶片中, 差异基因有明显区别,表达差异显著检测到的时 间也不尽相同,说明不同组织响应盐胁迫的时间

☆代表该基因在该时刻与对照相比差异显著。

 \doteqdot represents that the gene is significantly differentially expressed at that moment.

Fig. 5 Heatmap of AP2/ERF differential genes expression in Aquilegia vulgaris under salt stress

RNA-seq 表示转录组测序结果,qRT-PCR 表示实时荧光定量结果。 RNA-seq represents the transcriptome sequencing results, and qRT-PCR represents the real-time fluorescence quantitative results.

图 6 欧耧斗菜部分 AP2/ERF 基因盐胁迫下表达量分析

Fig. 6 Relative expression of partial AP2/ERF genes expression in Aquilegia vulgaris under salt stress

与分子机制不相同,不同基因在抗盐过程中功能也不同。AvAP2/ERF-56、AvAP2/ERF-61 与

AvAP2/ERF-80 在欧耧斗菜根和叶中均显著上调, 说明其积极参与了抗盐过程,其表达量随盐胁迫 时间发生变化的模式有所不同,也体现出3个基因在抗盐过程的不同功能。通过与已知拟南芥抗盐 AP2/ERF 基因同源比对发现, AvAP2/ERF-56、AvAP2/ERF-61 与 AvAP2/ERF-80 3 个基因极有可能在盐胁迫诱导下提高表达量,进而响应及抵抗盐胁迫。qRT-PCR 验证发现3个基因在盐胁迫下表达模式与转录组数据一致。

综上所述,本研究筛选鉴定了 86 个欧耧斗菜 AP2/ERF 基因,对家族成员进行了详细的特征分 析与进化分类,结合转录组表达数据,对 AP2/ERF 基因在盐胁迫下表达模式进行了总结,筛选出与 盐胁迫相关的候选基因 3 个, AvAP2/ERF-56、 AvAP2/ERF-61 与 AvAP2/ERF-80,可能在抵御盐胁 迫中发挥着重要作用,但具体基因功能仍需开展 后续试验进行验证。

参考文献:

- AKHTER MS, MOHAMMED N, KOUJ S, et al., 2011. Gene structures, classification and expression models of the AP2/ EREBP transcription factor family in rice [J]. Plant Cell Physiol, 52(2): 344–360.
- CARMEN MARTINELL M, LOPEZ-PUJOL J, BOSCH M, et al., 2010. Low genetic variability in the rare, recently differentiated *Aquilegia paui* (Ranunculaceae) [J]. Biochem Syst Ecol, 38(3): 390–397.
- CHENG MC, LIAO PM, KUO WW, et al., 2013. The Arabidopsis *ETHYLENE RESPONSE FACTOR1* regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals [J]. Plant Physiol, 162(3): 1566-1582.
- CHEN CJ, CHEN H, ZHANG Y, et al., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 13(8): 1194-1202.
- CHEN HL, HU LL, WANG LX, et al., 2022. Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean (*Vigna radiata* L.) [J]. J Appl Genetics, 63(2): 223–236.
- CHEN YH, DAI YH, LI YX, et al., 2022. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5 [J]. BMC Plant Biol, 22(1): 102.
- CHEN Y, SUN MZ, JIA BW, et al., 2022. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agron Sin, 48(4): 781-790. [陈悦, 孙明哲, 贾博为, 等, 2022. 水

稻 AP2/ERF 转录因子参与逆境胁迫应答的分子机制研究进展 [J]. 作物学报, 48(4):781-790.]

- FARAJI S, FILIZ E, KAZEMITABAR SK, et al., 2020. The AP2/ERF gene family in Triticum durum: genome-wide identification and expression analysis under drought and salinity stresses [J]. Genes, 11(12): 1464.
- FENG K, HOU XL, XING GM, et al., 2020. Advances in AP2/ERF super-family transcription factors in plant [J]. Crit Rev Biotechnol, 40(6): 750-776.
- GOU YL, ZHANG L, GUO H, et al., 2020. Research progress on the AP2/ERF transcription factor in plants [J]. Pratac Sci, 37(6): 1150-1159. [苟艳丽,张乐,郭欢,等, 2020. 植物 AP2/ERF 类转录因子研究进展 [J]. 草业科 学, 37(6): 1150-1159.]
- HONG L, YANG L, YANG HJ, et al., 2020. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress [J]. Chin Bull Bot, 55(4): 481-496. [洪林,杨蕾,杨海健,等, 2020. AP2/ERF 转录因子调控植物非生物胁迫响应研究进展 [J]. 植物学报, 55(4): 481-496.]
- JESUS MB, PEDRO JR, JULIO MA, 2015. Local adaptation to distinct elevational cores contributes to current elevational divergence of two *Aquilegia vulgaris* subspecies [J]. J Plant Ecol, 8(3): 273–283.
- JOFUKU KD, BOER BG, MONTAGU MV, et al., 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell, 6(9): 1211-1225.
- KARABA A, DIXIT S, GRECO R, et al., 2007. Improvement of water use efficiency in rice by expression of *HARDY*, an *Arabidopsis* drought and salt tolerance gene [J]. Pans, 104(39): 15270-15275.
- KIDOKORO S, HAYASHI K, HARAGUCHI H, et al., 2021. Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in *Arabidopsis* [J]. Pans, 118(10): e2021048118.
- LIN RC, PARK HJ, WANG HY, 2008. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance [J]. Mol Plant, 1(1): 42-57.
- LIU JL, DENG ZW, LIANG CL, et al., 2021. Genome-wide analysis of RAV transcription factors and functional characterization of anthocyanin-biosynthesis-related *RAV* genes in pear [J]. Int J Mol Sci, 22(11): 5567.
- LIU PQ, SUN F, GAO R, et al., 2012. *RAP2.6L* overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity [J]. Plant Mol Biol, 79(6): 609–622.

- LU LL, QANMBER G, LI J, et al., 2021. Identification and characterization of the ERF subfamily B3 group revealed *GhERF*13. 12 improves salt tolerance in upland cotton [J]. Front Plant Sci, 12: 705883.
- MA YC, ZHAO YM, HUANG DL, et al., 2022. Identification and expression analysis of *CesA* gene family in *Brassica rapa* var. glabra [J]. Guihaia, 42(12): 2021-2031. [马宇辰, 赵玉梅, 黄丹霖, 等, 2022. 白菜 *CesA* 基因家族鉴定及表 达模式分析 [J]. 广西植物, 42(12): 2021-2031.]
- MENG LS, WANG YB, YAO SQ, et al., 2015. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8 [J]. J Cell Sci, 128(15): 2919–2927.
- MORAN NC, COLE T, LOYAL G, et al., 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses [J]. Gene Dev, 25(18): 1915–1927.
- MRUNMAY KG, SWADHIN S, JANESH KG, et al., 2014. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens [J]. Aust J Plant Physiol, 171(10): 860-867.
- NAKANO T, SUZUKI K, FUJIMURA T, et al., 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol, 140(2): 411-432.
- NIU SY, LIANG F, ZHANG ZH, et al., 2023. Identification and analysis of TCP transcription factors in *Solanum tuberosum* response to low nitrogen fertilizer stress [J]. Guihaia, 43(2): 293-302. [牛苏燕,梁芳,张珍华,等, 2023. 马铃薯低氮肥胁迫响应 TCP 转录因子的鉴定与分 析 [J]. 广西植物, 43(2): 293-302.]
- RAN W, SONG JH, LV ZY, et al., 2022. Genome-wide identification and comprehensive analysis of the *AP2/ERF* gene family in pomegranate fruit development and postharvest preservation [J]. Genes, 13(5): 895.
- SAKUMA Y, LIU Q, DUBOUZET JG, et al., 2002. DNAbinding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression [J]. Biochem Biophys Res Commun, 290(3): 998-1009.

SHARMA B, KRAMER E, 2013. Sub- and neo-

functionalization of *APETALA3* paralogs have contributed to the evolution of novel floral organ identity in *Aquilegia* (columbine, Ranunculaceae) [J]. New Phytol, 197(3): 951–959.

- SOWMYA K, SHIV V, MUHAMMAD HR, et al., 2011.
 Functional characterization of four APETALA2-family genes (*RAP2.6*, *RAP2.6L*, *DREB19* and *DREB26*) in *Arabidopsis* [J]. Plant Mol Biol, 75(1/2): 107-127.
- WANG HB, GONG M, GUO JY, et al., 2018. Molecular cloning and prokaryotic expression of orphan gene *Soloist* of *AP2/ERF* gene family in *Jatropha curcas* [J]. Sci Silv Sin, 54(9): 60-69. [王海波, 龚明, 郭俊云, 等, 2018. 麻疯 树 *AP2/ERF* 基因家族孤儿基因 *Soloist* 的克隆与原核表 达分析 [J]. 林业科学, 54(9): 60-69.]
- WANG LJ, WANG Y, LU B, et al., 2022. Identification and expression analysis of AP2/ERF transcription factor under water stress in *Olea europaea* [J]. Guihaia, 42(12): 2032–2043. [王丽娟, 王毅, 陆斌, 等, 2022. 油橄榄 AP2/ERF 转录因子鉴定及水胁迫表达分析 [J]. 广西植物, 42(12): 2032–2043.]
- WU CX, LIU XW, LI ZJ, et al., 2022. Analysis of chloroplast genome of rice Dalixiang [J]. Guihaia, 42(11): 1830-1839. [吴朝昕,刘雪薇,李祖军,等, 2022. 大粒香水稻 叶绿体基因组特征分析 [J]. 广西植物, 42(11): 1830-1839.]
- YU Y, YU M, ZHANG SX, et al., 2022. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of *TaERF-6-3A* in response to drought and salinity stresses [J]. Int J Mol Sci, 23(6): 3272.
- ZHANG ZJ, WANG J, ZHANG RX, et al., 2012. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis [J]. Plant J, 71(2): 273–287.
- ZHOU LX, RAJESH Y, 2021. Genome-wide identification and characterization of AP2/ERF transcription factor family genes in oil palm under abiotic stress conditions [J]. Int J Mol Sci, 22(6): 2821.

(责任编辑 邓斯丽 周翠鸣)