en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈东亮(1989—),硕士,助理研究员,主要从事药用植物组织培养及次生代谢调控等研究,(E-mail)535270356@qq.com。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2024)07-1392-11

DOI:10.11931/guihaia.gxzw202308069

参考文献
AHMED N, PRAVEEN N, 2023. Effect of salicylic acid, jasmonic acid, and a combination of both on andrographolide production in cell suspension cultures of Andrographis paniculata (Burm. f. ) Nees [J]. J Appl Biol Biotechnol, 11(2): 198-203.
参考文献
BABANINA SS, YEGOROVA NA, STAVTSEVA IV, et al. , 2023. Genetic stability of lavender (Lavandula angustifolia Mill. ) plants obtained during long-term Clonal micropropagation [J]. Russ Agric Sci, 49(2): 132-139.
参考文献
BANSI T S, ROUT GR, 2013. Plant regeneration protocol of Andrographis paniculata (Burm. f. ) - an important medicinal plant [J]. Afr J Biotechnol, 12(39): 5738-5742.
参考文献
BROOKS DM, BENDER CL, KUNKEL BN, 2005. The pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana [J]. Mol Plant Pathol, 6(6): 629-639.
参考文献
BURGOS RA, ALARCÓN P, QUIROGA J, et al. , 2020. Andrographolide, an anti-inflammatory multitarget drug: all roads lead to cellular metabolism [J]. Molecules, 26(1): 1-17.
参考文献
CHEN DL, ZHONG C, LIN Y, 2020. Advances in germplasm resources, breeding and cultivation of medicinal plants Andrographis paniculata [J]. Jiangsu Agric Sci, 48(21): 34-40. [陈东亮, 钟楚, 林阳, 2020. 药用植物穿心莲种质资源、育种及栽培研究进展 [J]. 江苏农业科学, 48(21): 34-40. ]
参考文献
CHEN RZ, 2017. Establishment and asexual propagation of aseptic explants of medicinal plants Andrographis paniculata [J]. Fujian Sci Technol Trop Crops, 42(2): 23-26. [陈荣珠, 2017. 药用植物穿心莲无菌外植体建立及无性繁殖 [J]. 福建热作科技, 42(2): 23-26. ]
参考文献
CHENG XY, GUO B, ZHOU HY, et al. , 2005. Repeated elicitation enhances phenylethanoid glycosides accumulation in cell suspension cultures of Cistanche deserticola [J]. Biochem Eng J, 24(3): 203-207.
参考文献
CONCEIÇAO LF, FERRERES F, TAVARES RM, et al. , 2006. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation [J]. Phytochemistry, 67(2): 149-155.
参考文献
DAI Y, LI T, ZHANG Y, et al. , 2018. Preliminary study on rapid propagation system of aseptic explants of Andrographis paniculata [J]. Seed, 37(8): 88-89. [戴燚, 李涛, 张艺, 等, 2018. 穿心莲无菌外植体快繁体系初探 [J]. 种子, 37(8): 88-89. ]
参考文献
DALAWAI D, AWARE C, JADHAV JP, et al. , 2021. RP-HPLC analysis of diterpene lactones in leaves and stem of different species of Andrographis [J]. Nat Prod Res, 35(13): 2239-2242.
参考文献
DANDIN VS, MURTHY HN, 2012. Regeneration of Andrographis paniculata Nees: analysis of genetic fidelity and andrographolide content in micropropagated plants [J]. Afr J Biotechnol, 11(61): 12464-12471.
参考文献
DAS D, BANDYOPADHYAY M, 2015. Tissue organisation is necessary for accumulation of andrographolide in in vitro cultures of Andrographis paniculata (Burm. f. ) Nees. [J]. J Bot Soc Bengal, 69(1): 27-34.
参考文献
DAS D, BANDYOPADHYAY M, 2021. Manipulation of DXP pathway for andrographolide production in callus cultures of Andrographis paniculata [J]. Planta, 254: 1-17.
参考文献
DAWANDE AA, SAHAY S, 2020. Copper sulphate elicitation of optimized suspension culture of Andrographis paniculata Nees yields unprecedented level of andrographolide [J]. J Microbiol Biotechnol Food Sci, 9(4): 688-694.
参考文献
ESPINOSA-LEAL CA, PUENTE-GARZA CA, GARCÍA-LARA S, 2018. In vitro plant tissue culture: means for production of biological active compounds [J]. Planta, 248: 1-18.
参考文献
GANDI S, RAO K, CHODISETTI B, et al. , 2012. Elicitation of andrographolide in the suspension cultures of Andrographis paniculata [J]. Appl Biochem Biotechnol, 168: 1729-1738.
参考文献
HUANG C, QIAN ZG, ZHONG JJ, 2013. Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N′-dicyclohexylcarbodiimide elicitation [J]. J Biotechnol, 165: 30-36.
参考文献
HUANG G, ZHANG HY, HUANG X, 2010. Tissue culture of Andrographis paniculata (Burm. f. ) Nees [J]. Chin Agric Sci Bull, 26(4): 33-36. [黄格, 张慧英, 黄翔, 2010. 药用植物穿心莲的组织培养 [J]. 中国农学通报, 26(4): 33-36. ]
参考文献
HWANG HD, HAN JE, MURTHY HN, et al. , 2022. Establishment of bioreactor cultures for the production of chlorogenic acid and ferulic acid from adventitious roots by optimization of culture conditions in Angelica acutiloba (Siebold & Zucc. ) Kitag [J]. Plant Biotechnol Rep, 16(2): 173-182.
参考文献
ISLAM MT, ALI E S, UDDIN SJ, et al. , 2018. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer [J]. Cancer Lett, 420: 129-145.
参考文献
JINDAL N, KAJLA S, CHAUDHURY A, 2016. Establishment of callus cultures of Andrographis paniculata for the assessment of andrographolide content [J]. Int J Res Ayurveda Pharm, 7(2): 197-201.
参考文献
JI X, 2018. Study on the creation of a new haploid germplasm of Andrographis paniculata (Burm. f. ) Nees based on the development of androgenesis in vitro [D]. Guangzhou: Guangzhou University of Chinese Medicine: 1-55. [姬璇, 2018. 基于体外雄核发育的穿心莲单倍体新种质创制研究 [D]. 广州: 广州中医药大学: 1-55. ]
参考文献
JI X, LIN YF, DOU XR, et al. , 2017. Optimization of aseptic germination conditions for Andrographis paniculata (Burm. f. ) Nees. seeds [J]. Trad Chin Drug Res Pharmacol, 28(3): 388-391. [姬璇, 林玉凤, 窦晓蓉, 等, 2017. 穿心莲种子无菌萌发条件优化研究 [J]. 中药新药与临床药理, 28(3): 388-391. ]
参考文献
KADAPATTI SS, MURTHY HN, 2021. Rapid plant regeneration, analysis of genetic fidelity, and neoandrographolide content of micropropagated plants of Andrographis alata (Vahl) Nees. [J]. J Genet Eng Biotechnol, 19(20): 1-8.
参考文献
KANDANUR SGS, TAMANG N, GOLAKOTI NR, et al. , 2019. Andrographolide: a natural product template for the generation of structurally and biologically diverse diterpenes [J]. Eur J Med Chem, 176: 513-533.
参考文献
KHAN MK, MISRA P, SHHARMA T, et al. , 2014. Effect of adenine sulphate on in vitro mass propagation of Stevia rebaudiana Bertoni [J]. J Med Plant Res, 8(13): 543-549.
参考文献
KOCHAN E, BALCERCZAK E, LIPERT A, et al. , 2018. Methyl jasmonate as a control factor of the synthase squalene gene promoter and ginsenoside production in American ginseng hairy root cultured in shake flasks and a nutrient sprinkle bioreactor [J]. Ind Crops Prod, 115: 182-193.
参考文献
KOCHAN E, SZYMCZYK P, KUŹMA Ł, et al. , 2017. Yeast extract stimulates ginsenoside production in hairy root cultures of American ginseng cultivated in shake flasks and nutrient sprinkle bioreactors [J]. Molecules, 22(6): 880.
参考文献
KULUEV B, AVALBAEV A, NURGALEEVA E, et al. , 2015. Role of Aintegumenta-like gene NtANTL in the regulation of tobacco organ growth [J]. J Plant Physiol, 189: 11-23.
参考文献
LOYOLA-VARGAS VM, OCHOA-ALEJO N, 2018. Somatic embryogenesis: fundamental aspects and applications [M]. Switzerland: Springer, Cham: 309-315.
参考文献
LUTHRA R, ROY A, PANDIT S, et al. , 2021. Biotechnological methods for the production of ginsenosides [J]. S Afr J Bot, 141: 25-36.
参考文献
MAHOBIA A, JHA Z, 2015. Efficiency of method and media composition on transformation of Andrographis paniculata for hairy root production [J]. J Cell Tiss Res, 15(1): 4897-4902.
参考文献
MAMDOUH D, MAHGOUB HA, GABR AM, et al. , 2021. Genetic stability, phenolic, flavonoid, ferulic acid contents, and antioxidant activity of micropropagated Lycium schweinfurthii plants [J]. Plants, 10: 2089.
参考文献
MARWANI E, PRATIWID, WARDHANI K, et al. , 2015. Development of hairy root culture of Andrographis paniculata for in vitro adrographollide production [J]. J Med Bioeng, 4(6): 446-450.
参考文献
MIAO JQ, 2022. Effects of adventitious root induction and culture conditions of Panax ginseng and American ginseng on growth and saponin content [D]. Changchun: Jilin Agricultural University: 1-81. [苗佳琪, 2022. 人参、西洋参不定根诱导及培养条件对其生长和皂苷含量的影响 [D]. 长春: 吉林农业大学: 1-81. ]
参考文献
MIAO JH, XIAO PG, HUANG LQ, 2017. Conservation of medicinal plants [M]. Beijing: Science Press: 208-210. [缪剑华, 肖培根, 黄璐琦, 2017. 药用植物保育学 [M]. 北京: 科学出版社: 208-210. ]
参考文献
MISHRA S, TIWARI SK, KAKKAR A, et al. , 2010. Andrographolide content in Madhya pradesh, India [J]. Int J Pharma Bio Sci, 1(2): 1-5.
参考文献
MUR L A, KENTON P, ATZORN R, et al. , 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death [J]. Plant Physiol, 140(1): 249-262.
参考文献
MURTHY HN, DALAWAI D, 2021. Biotechnological production of diterpenoid lactones from cell and organ cultures of Andrographis paniculata [J]. Appl Microbiol Biotechnol, 105: 7683-7694.
参考文献
MURTHY HN, LEE EJ, PAEK KY, 2014. Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation [J]. Plant Cell Tiss Organ Cult, 118: 1-16.
参考文献
NAtional Pharmacopoeia Committee, 2020. Pharmacopoeia of the People’s Republic of China [M]. 2000 ed. Vol. I. Beijing: China Medical Science and Technology Press: 280-281. [国家药典委员会, 2020. 中华人民共和国药典 [M]. 2020年版. 一部. 北京: 中国医药科技出版社: 280-281. ]
参考文献
PAEK KY, CHAKRABARTY D, HAHN EJ, 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants [J]. Plant Cell Tiss Organ Cult, 81: 287-300.
参考文献
PRAVEEN N, MANOHAR SH, NAIK PM, et al. , 2009. Production of andrographolide from adventitious root cultures of Andrographis paniculata [J]. Curr Sci, 96: 694-697.
参考文献
PURKAYASTHA J, SUGLA T, PAUL A, et al. , 2008. Rapid in vitro multiplication and plant regeneration from nodal explants of Andrographis paniculata: a valuable medicinal plant [J]. In vitro Cell Dev Biol Plant, 4(4): 442-447.
参考文献
RAFI M, DEVI AF, SYAFITRI UD, et al. , 2020. Classification of Andrographis paniculata extracts by solvent extraction using HPLC fingerprint and chemometric analysis [J]. BMC Res Notes, 13: 1-6.
参考文献
REN X, XU W, SUN J, et al. , 2021. Current trends on repurposing and pharmacological enhancement of andrographolide [J]. Curr Med Chem, 28(12): 2346-2368.
参考文献
RENCY AS, PANDIAN S, RAAMESH M, 2018. Influence of adenine sulphate on multiple shoot induction in Clitoria ternatea L. and analysis of phyto-compounds in in vitro grown plants [J]. Biocatal Agric Biotechnol, 16: 181-191.
参考文献
SÁNCHEZ-SAMPEDRO MA, FERNÁNDEZ-TÁRRAGO J, CORCHETE P, 2005. Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L. ) Gaertn. [J]. J Biotechnol, 119(1): 60-69.
参考文献
SHARMA N, MALHOTRA EV, CHANDRA R, et al. , 2022. Cryopreservation and genetic stability assessment of regenerants of the critically endangered medicinal plant Dioscorea deltoidea Wall. ex Griseb. for cryobanking of germplasm [J]. In vitro Cell Dev Biol Plant, 58(4): 521-529.
参考文献
SHARMA SN, JHA Z, 2012. Production of andrographolide from callus and cell suspension culture of Andrographis paniculata [J]. J Cell Tiss Res, 12(3): 3423-3429.
参考文献
SHARMA SN, JHA Z, SINHA RK, 2013. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata [J]. Nat Prod Commun, 8(8): 1045-1047.
参考文献
SHE XH, ZHANG ZH, LI M, 2022. Polyploidy induction of Andrographis paniculata (Burn. f. ) Nees and its response to cinnamic acid [J]. N Hortic, (2): 94-103. [佘晓环, 张梓豪, 李明, 2022. 穿心莲四倍体的诱导及其愈伤组织对肉桂酸胁迫的响应 [J]. 北方园艺, (2): 94-103. ]
参考文献
SHARMA SN, JHA Z, SINHA RK, et al. , 2014. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata [J]. Physiol Plant, 153(2): 221-229.
参考文献
SINGH S, PANDEY P, GHOSH S, et al. , 2018. Anti-cancer labdane diterpenoids from adventitious roots of Andrographis paniculata: augmentation of production prospect endowed with pathway gene expression [J]. Protoplasma, 255: 1387-1400.
参考文献
SINHA RK, SHARMA SN, VERMA SS, et al. , 2018. Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the Andrographis paniculata [J]. Acta Physiol Plant, 40: 165.
参考文献
SONG X, WU H, PIAO X, et al. , 2017. Microbial transformation of ginsenosides extracted from Panax ginseng adventitious roots in an airlift bioreactor [J]. Electron J Biotechnol, 26: 20-26.
参考文献
SRINATH M, SHAILAJA A, BINDU BBV, et al. , 2022. Comparative analysis of biomass, ethrel elicitation, light induced differential MVA/MEP pathway gene expression and andrographolide production in adventitious root cultures of Andrographis paniculata (Burm. F. ) Nees [J]. Plant Cell Tiss Organ Cult, 149: 335-349.
参考文献
TAJIDIN NE, SHAARI K, MAULIDIANI M, et al. , 2019. Metabolite profiling of Andrographis paniculata (Burm. f. ) Nees. young and mature leaves at different harvest ages using 1H NMR-based metabolomics approach [J]. Sci Rep, 9: 16766.
参考文献
THANH NT, MURTHY HN, PAEK KY, 2014. Optimization of ginseng cell culture in airlift bioreactors and developing the large-scale production system [J]. Ind Crops Prod, 60: 343-348.
参考文献
VAKIL MM, MENDHULKAR VD, 2013a. Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f. ) Nees [J]. Bot Stud, 54: 1-8.
参考文献
VAKIL MM, MENDHULKAR VD, 2013b. Salicylic acid and chitosan mediated abiotic stress in cell suspension culture of Andrographis paniculata (Burm. f. ) Nees. for andrographolide synthesis [J]. Int J Pharm Sci Res, 4(9): 3453-3459.
参考文献
VIDYALAKSHMI A, ANANTHI S, 2013. Induction of andrographolide, a biologically active ingredient in callus of Andrographis paniculata (Burm. f. ) Nees [J]. Bioeng Biosci, 1(1): 1-4.
参考文献
WIKTOROWSKA E, DŁUGOSZ M, JANISZOWSKA, 2010. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. [J]. Enzyme Microb Technol, 46(1): 14-20.
参考文献
YAN B, 2016. Induction of tetraploids through colchicine treatment in Andrographis paniculata (Burm. f) Nees [D]. Guangzhou: Guangzhou University of Chinese Medicine: 1-82. [闫斌, 2016. 穿心莲多倍体诱导研究 [D]. 广州: 广州中医药大学: 1-82. ]
参考文献
YAN B, PAN CM, HE J, et al. , 2016. Study on the strengthening and rooting of tissue culture seedlings and transplanting matrix of Andrographis paniculata [J]. Lishizhen Med Mat Med Res, 27(7): 1730-1732. [闫斌, 潘超美, 何洁, 等, 2016. 穿心莲组培苗的壮苗生根与移栽基质研究 [J]. 时珍国医国药, 27(7): 1730-1732. ]
参考文献
YUE W, MING QL, LIN B, et al. , 2016. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites [J]. Crit Rev Biotechnol, 36(2): 215-232.
参考文献
ZAHEER M, GIRI CC, 2015. Multiple shoot induction and jasmonic versus salicylic acid driven elicitation for enhanced andrographolide production in Andrographis paniculata [J]. Plant Cell Tiss Organ Cult, 122: 553-563.
参考文献
ZAHEER M, GIRI CC, 2017. Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata [J]. Res Chem Intermed, 43(4): 2433-2444.
参考文献
ZHENG X Y, SPIVEY N W, ZENG W, et al. , 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation [J]. Cell Host Microbe, 11(6): 587-596.
参考文献
ZHONG C, JIAN SF, CHEN DL, et al. , 2021. Advances in regulation studies on accumulation and biosynthesis of andrographolide components in Andrographis paniculata [J]. Guihaia, 41(10): 1746-1754. [钟楚, 简少芬, 陈东亮, 等, 2021. 穿心莲内酯类成分积累与生物合成的调控研究进展 [J]. 广西植物, 41(10): 1746-1754. ]
目录contents

    摘要

    穿心莲为我国重要的南药之一,用于清热解毒、凉血消肿,其主要活性成分穿心莲内酯具有抗癌、抗HIV病毒、抗炎、保肝等功效。然而,穿心莲内酯人工合成难度较大,主要从人工栽培的植物原料中提取,栽培植物原料的质量因受土壤、气候、水肥管理等各种因素的影响而参差不齐,穿心莲生长周期长且占用土地资源。植物离体培养技术在种苗快繁及活性成分积累等方面都具有显著优势,是实现穿心莲活性成分快速、高效生产的重要途径之一。穿心莲组织离体再生技术体系日益完善,从外植体到完整植株的组织离体再生技术日渐成熟,已在种苗繁育、倍性育种等方面有了一定的应用。同时,在穿心莲愈伤组织培养、细胞悬浮培养、不定根培养、毛状根培养过程中,通过优化培养条件和使用适宜的诱导子可大幅增加培养物中穿心莲内酯等活性成分的积累。该文分别从穿心莲组织、细胞、不定根及毛状根培养等方面,全面系统地综述了近年来国内外关于穿心莲离体培养技术以及其生产穿心莲内酯的研究进展,以期促进穿心莲离体培养技术的发展与应用,为离体生产穿心莲内酯的研究提供参考。此外,还提出了未来在穿心莲离体培养技术及通过该技术生产穿心莲内酯的研究中需重点关注的3个方面:(1)熟化完善穿心莲组织离体再生技术体系,建立全面系统的评价体系;(2)优化培养条件和高效诱导子联用,进一步提高穿心莲内酯等重要活性成分产量;(3)开展通过细胞悬浮培养技术生产穿心莲内酯的生物反应器培养研究。

    Abstract

    Andrographis paniculata is one of the most important “Southern Medicines” in China. It is used for clearing heat and detoxifying, cooling blood and reducing swelling. Its main active ingredient andrographolide has functions in anti-cancer, anti-HIV, anti-inflammation and liver protection. Andrographolide is difficult to be synthesized artificially, mainly relying on extraction from cultivated plant materials. However, the quality of cultivated medicinal materials is affected by various factors such as soil, climate, water and fertilizer managements, and A. paniculata has a long growth cycle, occupying land resources. The technology of plant in vitro culture has significant advantages in rapid propagation of seedling and accumulation of active ingredients, which is one of the important ways to achieve production of active ingredients rapidly and efficiently in A. paniculata. The in vitro regeneration technology system of A. paniculata is becoming increasingly perfect, and the in vitro regeneration technology from explants to complete plants is becoming more and more mature, and it has been applied in seedling propagation and ploidy breeding. At the same time, during callus culture, cell suspension culture, adventitious root culture and hairy root culture of A. paniculata, the accumulation of andrographolide and other active ingredients in the culture could be greatly increased by optimizing the culture conditions and using appropriate inducers. This paper comprehensively and systematically reviewed the research advances on the in vitro culture technology of A. paniculata and production of andrographolide from the aspects of tissue, cell, adventitious root, and hairy root cultures. This paper aimed to provide reference for promoting the development and application of in vitro culture technology of A. paniculata, as well as for the study of in vitro production of andrographolide. It also put forward three aspects that need be focused on in future research on in vitro culture technology of A. paniculata and the production of andrographolides by this technology: (1) To mature and improve the tissues in vitro regeneration technology system of A. paniculata, and to establish a comprehensive and systematic evaluation system; (2) To further increase the yield of andrographolide and other important active ingredients by optimizing the culture conditions and its combination with efficient inducers; (3) To carry out researches in bioreactor culture of the production of andrographolide by cell suspension culture technology.

  • 穿心莲(Andrographis paniculata)又名一见喜、印度草、榄核莲,为爵床科(Acanthaceae)穿心莲属(Andrographis)一年生草本药用植物,其干燥地上部分入药,具有清热解毒、凉血消肿之功效(国家药典委员会,2020)。穿心莲是国家基本药物妇科千金片、消炎利胆片等中成药的主要原料,也是穿心莲内酯滴丸、金鸡胶囊、穿心莲片、复方穿心莲片、清火栀麦片、玉叶清火胶囊等多种中成药的主要组分。穿心莲地上部分主要活性成分穿心莲内酯是近70年来研究最广泛的天然产物之一,已经大量应用于临床,在抗癌、抗HIV病毒、抗炎、保肝等方面效果显著(Islam et al.,2018; Burgos et al.,2020; Ren et al.,2021)。随着对穿心莲及其活性成分药用价值的不断开发,穿心莲内酯等活性成分商业化需求量巨大。但是,因其结构复杂、人工合成难度较大,目前主要从人工栽培而来的植物原料中提取。尽管穿心莲已在印度、巴基斯坦、斯里兰卡、泰国、马来西亚、中国和印度尼西亚等国家进行了广泛种植(Kandanur et al.,2019;陈东亮等,2020),但由于穿心莲内酯的生物合成和积累与栽培种的基因型、栽培模式、气候因子、地理环境等有关(Tajidin et al.,2019; Rafi et al.,2020; Dalawai et al.,2021; 钟楚等,2021),加上穿心莲栽培面积受日益紧缩的土地资源约束,故仅依靠从农业生产而来的植物原料中提取穿心莲内酯具有一定的局限性。

  • 植物组织、器官、细胞等离体培养已经发展成为最具吸引力的次生代谢物生产替代途径之一(Murthy et al.,2014;Espinosa-Leal et al.,2018)。植物离体培养技术包括组织培养、细胞悬浮培养、不定根培养、毛状根培养及原生质体培养等技术,其在保持药用植物种性、药用活性成分积累及遗传转化等研究方面都具有显著优势。穿心莲组织培养技术研究始于20世纪70年代,目前技术体系日益完善,从外植体到完整植株的组织离体再生技术日渐成熟,已在种苗繁育、倍性育种等方面有了一定的应用。同时,在穿心莲愈伤组织培养、细胞悬浮培养、不定根培养、毛状根培养过程中,通过优化培养条件和使用适宜的诱导子可大幅增加培养物中穿心莲内酯等活性成分的积累。

  • 本文从穿心莲组织、细胞、不定根及毛状根培养等方面,全面系统地综述了近年来穿心莲离体培养技术以及通过离体培养技术生产其主要活性成分的研究进展,并分析存在的问题,同时提出了进一步研究的方向,旨在促进穿心莲离体培养技术的研究与应用以及进一步发展。

  • 1 穿心莲组织培养

  • 1.1 穿心莲组织培养技术研究概况

  • 植物组织培养的效果主要取决于外植体的选择以及消毒、培养基种类、植物激素的配比、培养条件等因素。

  • 1.1.1 外植体

  • 外植体是否能接种成功决定于其取材部位、取材的时间、消毒方式等因素。在穿心莲组织培养过程中,植株叶片、腋芽、茎段、带腋芽茎段及茎尖等部位均可作为外植体进行组织培养,但多数研究认为以其叶片和带腋芽的茎段为外植体进行组织培养效果较好(Purkayastha et al.,2008; Bansi &Rout,2013; 陈荣珠,2017; 戴燚等,2018)。酒精、次氯酸钠、氯化汞等试剂可用于穿心莲外植体消毒,但消毒剂的浓度和消毒时间对外植体影响较大。陈荣珠(2017)和戴燚等(2018)的研究发现,当以带腋芽茎段为外植体时,先用75%酒精消毒15 s,再用3%次氯酸钠消毒30 min,其消毒效果最好,存活率高达56.33%;当用种子作为外植体时,先用75%酒精消毒15 s,再用3%次氯酸钠消毒20 min,其存活率达到78.67%。

  • 1.1.2 培养基

  • 基本培养基作为植物组织培养中主要的营养来源,其成分以及含量多少都直接影响外植体的生长和分化增殖状态,不同的外植体使用的培养基种类也有所不同。黄格等(2010)研究认为MS是最适合穿心莲芽增殖和生长的基本培养基,增殖率为83.3%且长势良好。姬璇等(2017)对比了纯琼脂、MS、1/2MS、MS + 2.0 mg·L-1 6-BA 四种不同的培养基对穿心莲种子萌发的影响,综合考虑其萌发率和成活率,认为适合穿心莲种子萌发的培养基为MS或1/2 MS。闫斌(2016)对比研究了MS、1/2MS、MT、H、B5五种不同的基本培养基对穿心莲无菌苗生长的影响,认为1/2MS更适合穿心莲种子苗的生长。姬璇(2018)对比研究了MS、N6和Nistch培养基对花药培养的影响,认为N6培养基是最适合作为穿心莲花药培养的基本培养基。

  • 1.1.3 植物生长调节剂

  • 基本培养基只能维持培养物的生存与最低营养需求,在基本培养基中添加一定配比的植物生长调节剂可诱导细胞分裂的启动和愈伤组织生长以及根、芽的分化等。不同种类和配比的植物生长调节剂对外植体脱分化和器官发生的作用不同。

  • 细胞分裂素、生长素是常用于植物组织培养的生长调节剂,细胞分裂素在组织培养中的作用是促进细胞的分裂和生长,刺激细胞的分化和芽的建成,同时影响愈伤组织的分化和芽的形成(Loyola-Vargas &Ochoa-Alejo,2018);生长素的作用是促进细胞的生长和延展,与植物的维管束和根的形成有关(Kuluev et al.,2015)。在穿心莲愈伤组织诱导和丛生芽分化时,将细胞分裂素(6-BA、KT等)和生长素(NAA、IAA、IBA、2,4-D等)搭配组合作为添加剂使用效果较好(表1),如戴燚等(2018)研究认为,穿心莲愈伤组织诱导的最佳激素配比为MS + 1.0 mg·L-1 6-BA+1.5 mg·L-1 NAA;陈荣珠(2017)研究发现,MS + 1.0 mg·L-1 6-BA + 0.1 mg·L-1 2,4-D对穿心莲丛生芽诱导效果最佳,增殖系数达18.47(增殖系数=出芽数/原有芽数)。然而,在基本培养基上不添加生长素,仅添加一种或一种以上细胞分裂素也可以诱导穿心莲分化出丛生芽,并实现高效增殖,如Dandin和Murthy(2012)研究发现,将穿心莲带腋芽的茎段接种在MS+0.2 mg·L-1 6-BA的培养基上,外植体的平均丛生芽再生数可达9.25个;进一步优化激素配比发现,在MS + 0.2 mg·L-1 6-BA + 1.0 mg·L-1 KT的培养基上平均每个外植体丛生芽再生数可达39.08个。也有研究表明,将穿心莲无菌苗的茎段接种在添加2.0 mg·L-1 6-BA 的MS培养基上,平均每个外植体丛生芽再生数可达34.1个,但诱导出的丛生芽却无法伸长生长;而将再生出的丛生芽转接在含有0.35 mg·L-1 GA3的MS培养基上2周后,丛生芽的伸长率可达96%,伸长长度高达3.9 cm(Purkayastha et al.,2008)。这可能与细胞分裂素6-BA具有促进芽增殖而抑制芽伸长的作用有关。硫酸腺嘌呤(adenine sulfate,ADS)为细胞分裂素合成的前体,可以增加细胞分裂素的生物合成(Khan et al.,2014),其作为一种促进芽增殖和生长的植物生长调节剂已被广泛应用(Rency et al.,2018)。Bansi和Rout(2013)的研究表明,穿心莲茎段和叶片在MS+3.0 mg·L-1 6-BA+50 mg·L-1 ADS+1.0 mg·L-1 NAA的培养基上培养6周有利于愈伤组织的发育,愈伤组织在同样的培养基上继代培养6周后,每个外植体的平均丛生芽数可达28.6个,叶源愈伤组织的芽再生率为75.3%,茎源愈伤组织的芽再生率为63.4%。在生根培养阶段,普遍认为在MS或1/2MS培养基上分别单独添加0.5 mg·L-1 IBA和0.5 mg·L-1 NAA组培苗生根效果较好(表1)。

  • 1.1.4 培养条件

  • 在植物组织培养过程中,培养室的光照、湿度、温度等培养条件均是诱导植物器官发生的重要因素,都会在一定程度上影响外植体的分化与生长。光照是植物组织培养中重要的培养条件之一。姬璇等(2017)研究表明,穿心莲种子在有光照的条件下萌发率高于黑暗条件下,黑暗条件下萌发的穿心莲幼苗呈黄白色,茎秆细弱,叶子黄白;光照条件下植株呈绿色,茎秆粗壮,叶子鲜绿。穿心莲组培苗常用的培养温度为(25 ± 2)℃,光照强度为2 000~2 500 lx,光周期为12 h光/12 h暗或16 h光/8 h暗。

  • 1.1.5 炼苗移栽

  • 将一直在恒温、高湿、低光等特殊环境下生长的试管苗移栽到外界自然条件下,需要经过一个逐步锻炼和适应的过程。Bansi和Rout(2013)研究表明,将生根的穿心莲组培苗移植在泥土、沙子和干牛粪1∶1∶1(w/V)的混合基质中,经温室进行驯化后成活率可达60%,移栽于大田均能正常生长。而Dandin和Murthy(2012)研究表明,首先将生根的穿心莲组培苗移植到含有无菌土壤和蛭石1∶1(w/V)混合的花盆中,在温度(25±2)℃,光周期16 h光/8 h暗,相对湿度80%和50 μmol·m-2·s-1的光强条件下炼苗2周;然后将其置于荫蔽环境下,驯化生长2周;最后将其置于野外自然环境下生长,成活率可达95%。Purkayastha等(2008)研究认为,将穿心莲组培苗移栽到土壤、蛭石和蚯蚓堆肥(1∶1∶1)混合的花盆中,2周后成活率可达92%,植株生长健壮。闫斌等(2016)研究表明,长有6片真叶的穿心莲组培苗在河沙与蛭石1∶1混合的基质中生长状况良好,存活率达86.7%。

  • 1.2 组织离体再生体系的评价

  • 目前,在药用植物穿心莲上已建立了从外植体组织到完整植株的组织离体再生技术体系。Dandin和Murthy(2012)早在2012年就以带腋芽的茎段为外植体,建立了穿心莲高效的离体再生技术体系,并利用随机扩增多态性DNA标记(random amplified polymorphic DNA,RAPD)对再生苗的遗传稳定性进行了分析,分析结果表明该体系的再生植株与母体相比未产生任何基因型变异,再生植株叶片和茎器官中穿心莲内酯含量均高于母体。Purkayastha等(2008)、Dandin和Murthy(2012)、Bansi和Rout(2013)同样以带腋芽的茎段和叶片为外植体,建立了穿心莲高效离体快繁技术体系,但均未对再生植株的遗传稳定性及药用成分含量进行评价。Kadapatti和Murthy(2021)以穿心莲属Andrographis alata的带腋芽茎段为外植体,建立了其高效离体快繁技术体系,并利用随机扩增多态性DNA标记(RAPD)和简单重复序列(simple sequence repeat,SSR)标记对再生苗的遗传稳定性进行了分析,结果表明该体系的再生植株与母体相比未产生任何基因型变异;并且,同时采用高效液相色谱法(high performance liquid chromatography,HPLC)检测了再生植株中新穿心莲内酯的含量,结果表明再生植株的新穿心莲内酯含量与母体植株相当。

  • 1.3 育种应用

  • 穿心莲种质资源多样性贫乏,新品种选育严重滞后(陈东亮等,2020)。基于植物组织培养技术的倍性育种可以为穿心莲品质改良和种质创新提供新途径。在穿心莲多倍体诱导方面,闫斌等(2016)以穿心莲刚萌发的成熟胚为诱导材料,采用秋水仙碱为诱导剂进行诱导处理,初步建立了穿心莲同源四倍体的诱导与鉴定方法,并获得了4株穿心莲的同源四倍体无菌苗,认为0.075%的秋水仙碱诱导24 h效果最佳,其四倍体诱导率为3.3%,该研究为后续穿心莲的多倍体培育和种质创新研究奠定了基础。佘晓环等(2022)用0.05%的秋水仙素浸种48 h,穿心莲种子诱导成活率达89%,整个诱导试验获得8株四倍体植株。在单倍体诱导方面,姬璇(2018)以穿心莲花药为外植体,建立了穿心莲花药离体培养技术体系,成功获得了穿心莲单倍体胚性愈伤组织,该研究开创了穿心莲单倍体育种的先河,为纯合二倍体的诱导奠定了基础。

  • 1.4 愈伤组织培养生产穿心莲内酯

  • 穿心莲愈伤组织中穿心莲内酯等活性成分含量极低。植物激素NAA、2,4-D、TDZ、6-BA及KT等单独或以一定比例搭配使用均可诱导穿心莲愈伤组织积累穿心莲内酯(Vidyalakshmi &Ananthi,2013;Jindal et al.,2016)。Jindal等(2016)以穿心莲叶片为外植体,建立了穿心莲愈伤组织培养体系,发现叶片外植体在MS+1.0 mg·L-1 2,4-D+1.0 mg·L-1 NAA培养基上愈伤组织的诱导率高达92%,穿心莲内酯含量也高达8.34 mg·g-1(fresh cell weight,FCW)。穿心莲内酯是通过胞质内甲羟戊酸(mevalonate,MAV)途径和质体脱氧木糖磷酸(deoxy-xylulose phosphate,DXP)途径协同作用产生的(Singh et al.,2018; Sinna et al.,2018; Das &Bandyopadhyay,2021)。Das和Bandyopadhyay(2021)的研究发现,用MAV途径阻断剂洛伐他汀(lovastatin)处理穿心莲愈伤组织后,MAV途径被阻断,穿心莲内酯合成向质体DXP途径转移,质体DXP途径被上调,导致穿心莲内酯的含量显著增加,同时愈伤组织变绿;而用DXP途径阻断剂膦胺霉素(fosmidomycin)处理愈伤组织后,DXP途径被阻断,穿心莲内酯合成向质体MAV途径转移,但质体MAV途径不能单独补偿产生穿心莲内酯,导致穿心莲内酯产生减少;进一步研究发现,硝酸银(AgNO3)可诱导穿心莲愈伤组织产生穿心莲内酯,与硝酸银和膦胺霉素联用相比,联用硝酸银和洛伐他汀处理其愈伤组织后,穿心莲内酯的产量更高,为3.41~3.76 mg·g-1(dry cell weight,DCW),这表明DXP途径在穿心莲内酯的生物合成中起主导作用。此外,Das和Bandyopadhyay(2021)的研究还发现,在光照、硝酸银、生物合成途径阻断剂处理过程中,叶绿素含量和穿心莲内酯含量之间呈正相关。因此,在未来的研究中,通过有目的性地增加组织的叶绿素含量可能成为提升穿心莲内酯产量的又一策略。

  • 表1 植物生长调节剂在穿心莲组织培养中的应用

  • Table1 Application of plant growth regulators in tissue culture of Andrographis paniculata

  • 2 穿心莲细胞悬浮培养

  • 药用植物细胞培养研究的主要内容是,在细胞培养过程中,通过筛选高产组织或细胞系、优化培养条件及选用高效诱导子等方法,降低成本,并提高其活性成分产量,或者通过对次生代谢产物生物合成途径的调控来达到相同目的。

  • 2.1 愈伤组织诱导

  • 理想愈伤组织的获得决定了植物细胞悬浮培养体系建立的快速性和高效性。细胞悬浮培养应选用疏松且易碎的愈伤组织。由于穿心莲植株叶片积累的二萜内酯类活性成分较其他器官多(Mishra et al.,2010),出于活性成分积累的目的,研究者大多选用其叶片作为外植体来诱导理想的愈伤组织。Gandi等(2012)以3周龄实生无菌苗植株为材料,对比分析了选用植株茎、叶、根作为外植体对愈伤组织诱导的影响,认为叶片外植体在MS+2.0 mg·L-1 2,4-D+0.4 mg·L-1 6-BA的培养基上诱导出的愈伤组织疏松易碎,繁殖率高,适宜用于细胞悬浮培养。Sharma和Jha(2012)以温室生长的穿心莲幼嫩叶片为外植体,在添加1.0 mg·L-1 NAA和1.0 mg·L-1 2,4-D的MS培养基上诱导出的愈伤组织量最大,呈乳白色,疏松易碎,适宜用于穿心莲细胞悬浮培养。Dawande和Sahay(2020)以种子萌发10 d而来的无菌苗为材料,研究了不同外植体(子叶、初生叶、上胚轴和下胚轴)、培养基(B5、SH)及不同激素配比对愈伤组织诱导的影响,结果表明在含有2.0 mg·L-1 2,4-D和0.1 mg·L-1 6-BA的SH培养基上,子叶和下胚轴的愈伤组织诱导效果最佳。

  • 2.2 细胞培养产生穿心莲内酯

  • 通过优化培养条件、使用诱导子诱导等方式可使穿心莲细胞悬浮培养物中穿心莲内酯的积累量大幅提高。Sharma 和 Jha(2012)的研究表明,在MS+1.0 mg·L-1 NAA+1.0 mg·L-1 2,4-D液体培养基上的细胞培养物中穿心莲内酯含量高达32.4 mg·g-1(FCW),是愈伤组织母体中穿心莲内酯含量的2.4倍,是叶片中穿心莲内酯含量的1.3倍。植物细胞培养物在受到合适的诱导子胁迫诱导后次生代谢产物的积累量会得到进一步增强(Yue et al.,2016),这些诱导子包括生物诱导子、非生物诱导子和信号分子等。Gandi等(2012)首次报道了穿心莲细胞悬浮培养过程中诱导产生穿心莲内酯的方法,发现生物诱导子(酵母、大肠杆菌、枯草芽孢杆菌、根生农杆菌532和农杆菌c58)比非生物诱导子(CdCl2、AgNO3、CuCl2、HgCl2)能更有效地诱导穿心莲悬浮培养物中穿心莲内酯的积累,以酵母诱导为最佳,穿心莲内酯积累量可达13.5 mg·g-1(DCW),比对照增加了8.82倍。此外,还有研究表明,用1.5 mL的黑曲霉处理培养物10 d后,由叶源愈伤组织而来的细胞悬浮培养物中穿心莲内酯积累最大,达13.2 mg·g-1(DCW),比对照增加了6.94倍;用0.6%的扩展青霉处理培养物8 d后,细胞培养物中穿心莲内酯积累达8.1 mg·g-1(DCW),比对照增加了6.23倍(Vakil &Mendhulkar,2013a);用7.0 mg·L-1水杨酸处理培养物24 h后,穿心莲内酯含量达3.7 mg·g-1(DCW),为对照的18.5倍;用20 mg壳聚糖处理培养物48 h后,穿心莲内酯含量高达11.9 mg·g-1(DCW),是对照的59.5倍(Vakil &Mendhulkar,2013b)。Sharma等(2014)在细胞悬浮培养过程中,用1.0 mg·L-1茉莉酸甲酯(methyl jasmonate,MJA)诱导处理培养物24 h后穿心莲内酯含量比对照增加了5.25倍。Dawande和Sahay(2020)研究认为,在含20 g·L-1蔗糖的1/2MS液体培养基上光照20 h·d-1,3周后愈伤组织中穿心莲内酯含量高达4.60 mg·g-1(DCW),在该培养条件下,用硫酸铜、茉莉酸甲酯、几丁质和真菌菌丝诱导的穿心莲细胞培养物穿心莲内酯产量均有显著提高,其中以80 mg·L-1硫酸铜诱导的穿心莲内酯产量为最高,达29.42 mg·g-1(DCW)。这表明优化培养条件和诱导子诱导方法联用可以显著提高穿心莲内酯的总体产量。目前,多数研究认为水杨酸(salicylicacid,SA)和茉莉酸(jasmonic acid,JA)这两种信号分子在植物的适应性调控方面具有拮抗作用(Brooks et al.,2005;Zheng et al.,2012),也有研究表明二者存在协同作用(Mur et al.,2006)。水杨酸(SA)和茉莉酸(JA)单独使用均可诱导愈伤组织中穿心莲内酯含量的增加(Zaheer &Giri,2015)。Ahmed和Praveen(2023)研究发现,SA和JA对穿心莲细胞培养物中穿心莲内酯含量的影响均随其浓度的增加而增加,其中13.8 mg·L-1 SA诱导的穿心莲内酯含量为0.083 mg·g-1(DCW),比对照增加了18%,以21.0 mg·L-1 JA处理的穿心莲内酯含量可达0.211 mg·g-1(DCW),比对照增加了3倍;此外,以10.35 mg·L-1 SA和15.75 mg·L-1 JA同时诱导,穿心莲内酯含量可达0.28 mg·g-1(DCW),比对照增加了3.8倍。由此可见,在穿心莲细胞悬浮培养过程中,多个正向诱导子的联合使用比单个正向诱导子单独使用效果更好。

  • 3 穿心莲不定根的培养

  • 3.1 不定根培养积累穿心莲内酯

  • 不定根由植物器官受伤或激素、病原微生物等外界因素的刺激诱导产生,不按正常时序发生且出现在非正常的位置,通常在茎、叶和下胚轴位置产生。植物不定根培养通常可积累大量的次生代谢产物,这为药用植物活性成分的获得提供了一种新途径(Paek et al.,2005)。目前,大部分药用植物已成功诱导出不定根,并对其进行了摇瓶或生物反应器培养(苗佳琪,2022)。在穿心莲不定根诱导方面,Praveen等(2009)以穿心莲叶片为外植体,在含1.0 mg·L-1 NAA和含0.3%蔗糖的MS培养基上诱导出了不定根,在含0.5 mg·L-1 NAA和含0.3%蔗糖的MS液体培养基培养4周后其生物量比对照高出7倍,穿心莲内酯含量较对照高出3.5倍。Sharma等(2013)以叶片为外植体,在含1.0 mg·L-1 NAA的改良MS培养基上平均每个外植体诱导出的不定根数可达26.7个,不定根诱导率达83%,在相同成分的液体培养基上培养5周后,穿心莲内酯含量达133.3 mg·g-1(DCW),比对照高3.5~5.5倍。Das和Bandyopadhyay(2015)在含有2.0 mg·L-1 NAA的MS培养基上以叶片和根为外植体直接诱导出不定根,在相同液体培养基上培养4周后其不定根中穿心莲内酯含量最高,为1.06 mg·L-1(DCW)。

  • 3.2 诱导子诱导积累穿心莲内酯

  • 诱导子诱导不但能使细胞培养物中穿心莲内酯含量积累增加,而且可在不定根培养过程中诱使穿心莲内酯含量大量积累。Zaheer和Giri(2017)首次报道了化学诱导子水杨酸(SA)和茉莉酸(JA)在穿心莲不定根培养过程中对穿心莲内酯积累的影响,发现不同浓度的JA 均可诱导不定根中穿心莲内酯的积累,其中以3.45 mg·L-1 JA诱导为最佳,培养1周后其不定根中穿心莲内酯含量为对照的10.8倍;而用不同浓度SA及其衍生物诱导穿心莲不定根1周后发现,仅15.2 mg·L-1水杨酸甲酯(methyl salicylic acid,MSA)可使不定根中穿心莲内酯的含量比对照增加2.6倍,表明JA对穿心莲不定根培养中穿心莲内酯含量的影响明显优于SA。此外,Srinath等(2022)的研究发现,乙烯(ethylene,ETH)诱导可显著促进不定根培养物生物量增加4倍,穿心莲内酯含量增加5倍;光照可使穿心莲内酯含量增加4.29倍。由此可见,植物生长调节剂作为诱导子可诱导穿心莲不定根中穿心莲内酯含量增加,但目前已知的可诱导穿心莲不定根中穿心莲内酯积累的化学诱导子种类较少,还需进一步筛选挖掘。

  • 4 穿心莲毛状根的培养

  • 毛状根是发根农杆菌侵染植物后产生的一种病理状态,具有生长快、易于大量培养、激素自养、次生代谢产物产量高、生理生化和遗传性稳定等特点,有很大的工业化潜力。近年来,毛状根培养技术作为药用植物的次生代谢产物开发新途径受到人们的重视,已经成为继组织培养和细胞培养体系之后的又一培养体系。Marwani等(2015)研究表明,以子叶为外植体,用菌株ATCC 15834侵染2 d,其毛状根诱导效果最佳,在添加1.0 mg·L-1 IBA的1/2 MS液体培养基培养第2周,穿心莲内酯含量最高,达5.4 mg·g-1(DCW)。Mahobia和Jha(2015)以MTCC 532为发根菌株,研究了不同外植体(叶片和根尖分生组织)、不同侵染方式(浸渍和滴注)、不同培养基对穿心莲毛状根诱导的影响,认为在添加80.0 mg·L-1乙酰丁香酮和0.3%蔗糖的1/2MS培养基上,采用侵染法共培养3 d,其毛状根诱导率最高,可达58.76%。

  • 5 存在问题与展望

  • 5.1 存在的问题

  • 虽然有关穿心莲组织离体培养再生完整植株的报道已有很多(Purkayastha et al.,2008;Dandin &Murthy,2012;Bansi &Rout,2013),但要进行大规模生产应用,其离体再生效率还需进一步提高,激素配比有待进一步优化。此外,对于药用植物而言,再生植株的遗传稳定性及药效成分含量高低既是其离体再生技术体系的又一重要评价指标,也是该技术体系能否大规模进行生产应用的关键和前提(缪剑华等,2017)。然而,目前很少有将再生植株的遗传稳定性及药效成分含量高低作为再生体系的评价指标。本研究发现,在穿心莲愈伤组织、细胞、不定根及毛状根培养生产穿心莲内酯相关报道中,通过优化培养条件和使用诱导子均可显著提高培养物穿心莲内酯含量,并且多个诱导子联用及优化培养条件联用还可进一步提高培养物穿心莲内酯产量,但鲜有该方面的研究报道。

  • 5.2 展望

  • 虽然前人已在穿心莲离体培养方面取得了一定的技术性突破,组织离体再生技术体系日渐成熟,愈伤组织培养、细胞悬浮培养、不定根及毛状根培养技术体系日益完善,并通过优化培养条件、使用诱导子诱导等方法,使培养物的活性成分(如穿心莲内酯)的积累量已有了较大提升,但相对还处于基础研究阶段,距规模化生产应用还存在较大差距(Murthy &Dalawai,2021)。相对于大宗中药材而言,在穿心莲离体培养技术及其生产活性成分的基础研究还缺乏系统性,基于植物器官、组织及细胞离体培养生产重要次生代谢产物的一些关键技术还有待攻克。其他大宗中药材在植物离体培养及产生重要活性成分方面的研究思路,尤其是已得到规模化生产应用的相关技术的研究思路,对穿心莲相关研究具有很高的借鉴价值。笔者认为,未来在穿心莲离体培养技术及产生重要活性成分方面应重点关注以下3个方面。

  • 5.2.1 熟化完善穿心莲组织离体再生技术体系,建立全面系统的评价体系

  • 通过优化植物生长调节剂配比、种类组合及培养条件等途径,熟化完善穿心莲组织离体再生技术体系,提高组织培养效率。对其他药用植物的研究表明,利用ISSR、EST-SSR、RAPD、AFLP等分子标记或2种以上分子标记联用对药用植物再生植株进行遗传稳定性评价是可靠且可行的(Mamdouh et al.,2021; Sharma et al.,2022; Babanina et al.,2023)。因此,未来应在使穿心莲组织离体再生技术体系高效化的同时,综合运用多种分子标记检测手段,加强穿心莲再生植株遗传稳定性及其主要活性成分跟踪研究,建立全面系统的穿心莲组织离体再生技术评价体系。

  • 5.2.2 优化培养条件和高效诱导子联用,进一步提高穿心莲内酯等重要活性成分产量

  • 目前,已在人参(Panax ginseng)(Huang et al.,2013)、肉苁蓉(Cistanche deserticola)(Cheng et al.,2005)、贯叶连翘(Hypericum perforatum)(Conceiçao et al.,2006)、水飞蓟(Silybum marianum)(Sánchez-Sampedro et al.,2005)、金盏菊(Calendula officinalis)(Wiktorowska et al.,2010)等诸多药用植物上,通过诱导子诱导使其细胞群的次生代谢产物积累增强。穿心莲内酯的生物合成途径已逐渐明晰(Das &Bandyopadhyay,2021;钟楚等,2021),但针对其生物合成途径有目的地调控穿心莲内酯含量的相关研究较少。因此,未来在穿心莲离体培养生产穿心莲内酯方面,应针对其生物合成途径进行有目的地优化培养条件和高效诱导子联用研究,以进一步提高其穿心莲内酯等重要活性成分含量,为该技术的规模化生产应用提供可靠且高效的技术支撑。

  • 5.2.3 通过细胞悬浮培养技术,开展生产穿心莲内酯的生物反应器培养研究

  • 生物反应器培养具有生产规模大、周年生产、不受季节及区域性影响、自动化程度高、生产成本低等特点,在药用植物次生代谢产物规模化生产方面应用前景广阔。目前,已在人参细胞悬浮培养(Thanh et al.,2014)、不定根(Song et al.,2017)及毛状根培养(Kochan et al.,2018)、西洋参毛状根培养(Kochan et al.,2017)、白芷不定根培养(Hwang et al.,2022)等方面,建立了相应活性成分生产的生物反应器培养技术体系,人参皂苷等重要活性成分已通过生物反应器实现规模化生产(Thanh et al.,2014;Luthra et al.,2021)。相比之下,针对穿心莲该方面的研究严重滞后。目前,通过细胞悬浮培养生产穿心莲内酯的研究较为深入,技术也较为成熟。因此,未来在穿心莲细胞悬浮培养生产穿心莲内酯的生物反应器培养研究方面具有广阔前景。

  • 参考文献

    • AHMED N, PRAVEEN N, 2023. Effect of salicylic acid, jasmonic acid, and a combination of both on andrographolide production in cell suspension cultures of Andrographis paniculata (Burm. f. ) Nees [J]. J Appl Biol Biotechnol, 11(2): 198-203.

    • BABANINA SS, YEGOROVA NA, STAVTSEVA IV, et al. , 2023. Genetic stability of lavender (Lavandula angustifolia Mill. ) plants obtained during long-term Clonal micropropagation [J]. Russ Agric Sci, 49(2): 132-139.

    • BANSI T S, ROUT GR, 2013. Plant regeneration protocol of Andrographis paniculata (Burm. f. ) - an important medicinal plant [J]. Afr J Biotechnol, 12(39): 5738-5742.

    • BROOKS DM, BENDER CL, KUNKEL BN, 2005. The pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana [J]. Mol Plant Pathol, 6(6): 629-639.

    • BURGOS RA, ALARCÓN P, QUIROGA J, et al. , 2020. Andrographolide, an anti-inflammatory multitarget drug: all roads lead to cellular metabolism [J]. Molecules, 26(1): 1-17.

    • CHEN DL, ZHONG C, LIN Y, 2020. Advances in germplasm resources, breeding and cultivation of medicinal plants Andrographis paniculata [J]. Jiangsu Agric Sci, 48(21): 34-40. [陈东亮, 钟楚, 林阳, 2020. 药用植物穿心莲种质资源、育种及栽培研究进展 [J]. 江苏农业科学, 48(21): 34-40. ]

    • CHEN RZ, 2017. Establishment and asexual propagation of aseptic explants of medicinal plants Andrographis paniculata [J]. Fujian Sci Technol Trop Crops, 42(2): 23-26. [陈荣珠, 2017. 药用植物穿心莲无菌外植体建立及无性繁殖 [J]. 福建热作科技, 42(2): 23-26. ]

    • CHENG XY, GUO B, ZHOU HY, et al. , 2005. Repeated elicitation enhances phenylethanoid glycosides accumulation in cell suspension cultures of Cistanche deserticola [J]. Biochem Eng J, 24(3): 203-207.

    • CONCEIÇAO LF, FERRERES F, TAVARES RM, et al. , 2006. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation [J]. Phytochemistry, 67(2): 149-155.

    • DAI Y, LI T, ZHANG Y, et al. , 2018. Preliminary study on rapid propagation system of aseptic explants of Andrographis paniculata [J]. Seed, 37(8): 88-89. [戴燚, 李涛, 张艺, 等, 2018. 穿心莲无菌外植体快繁体系初探 [J]. 种子, 37(8): 88-89. ]

    • DALAWAI D, AWARE C, JADHAV JP, et al. , 2021. RP-HPLC analysis of diterpene lactones in leaves and stem of different species of Andrographis [J]. Nat Prod Res, 35(13): 2239-2242.

    • DANDIN VS, MURTHY HN, 2012. Regeneration of Andrographis paniculata Nees: analysis of genetic fidelity and andrographolide content in micropropagated plants [J]. Afr J Biotechnol, 11(61): 12464-12471.

    • DAS D, BANDYOPADHYAY M, 2015. Tissue organisation is necessary for accumulation of andrographolide in in vitro cultures of Andrographis paniculata (Burm. f. ) Nees. [J]. J Bot Soc Bengal, 69(1): 27-34.

    • DAS D, BANDYOPADHYAY M, 2021. Manipulation of DXP pathway for andrographolide production in callus cultures of Andrographis paniculata [J]. Planta, 254: 1-17.

    • DAWANDE AA, SAHAY S, 2020. Copper sulphate elicitation of optimized suspension culture of Andrographis paniculata Nees yields unprecedented level of andrographolide [J]. J Microbiol Biotechnol Food Sci, 9(4): 688-694.

    • ESPINOSA-LEAL CA, PUENTE-GARZA CA, GARCÍA-LARA S, 2018. In vitro plant tissue culture: means for production of biological active compounds [J]. Planta, 248: 1-18.

    • GANDI S, RAO K, CHODISETTI B, et al. , 2012. Elicitation of andrographolide in the suspension cultures of Andrographis paniculata [J]. Appl Biochem Biotechnol, 168: 1729-1738.

    • HUANG C, QIAN ZG, ZHONG JJ, 2013. Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N′-dicyclohexylcarbodiimide elicitation [J]. J Biotechnol, 165: 30-36.

    • HUANG G, ZHANG HY, HUANG X, 2010. Tissue culture of Andrographis paniculata (Burm. f. ) Nees [J]. Chin Agric Sci Bull, 26(4): 33-36. [黄格, 张慧英, 黄翔, 2010. 药用植物穿心莲的组织培养 [J]. 中国农学通报, 26(4): 33-36. ]

    • HWANG HD, HAN JE, MURTHY HN, et al. , 2022. Establishment of bioreactor cultures for the production of chlorogenic acid and ferulic acid from adventitious roots by optimization of culture conditions in Angelica acutiloba (Siebold & Zucc. ) Kitag [J]. Plant Biotechnol Rep, 16(2): 173-182.

    • ISLAM MT, ALI E S, UDDIN SJ, et al. , 2018. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer [J]. Cancer Lett, 420: 129-145.

    • JINDAL N, KAJLA S, CHAUDHURY A, 2016. Establishment of callus cultures of Andrographis paniculata for the assessment of andrographolide content [J]. Int J Res Ayurveda Pharm, 7(2): 197-201.

    • JI X, 2018. Study on the creation of a new haploid germplasm of Andrographis paniculata (Burm. f. ) Nees based on the development of androgenesis in vitro [D]. Guangzhou: Guangzhou University of Chinese Medicine: 1-55. [姬璇, 2018. 基于体外雄核发育的穿心莲单倍体新种质创制研究 [D]. 广州: 广州中医药大学: 1-55. ]

    • JI X, LIN YF, DOU XR, et al. , 2017. Optimization of aseptic germination conditions for Andrographis paniculata (Burm. f. ) Nees. seeds [J]. Trad Chin Drug Res Pharmacol, 28(3): 388-391. [姬璇, 林玉凤, 窦晓蓉, 等, 2017. 穿心莲种子无菌萌发条件优化研究 [J]. 中药新药与临床药理, 28(3): 388-391. ]

    • KADAPATTI SS, MURTHY HN, 2021. Rapid plant regeneration, analysis of genetic fidelity, and neoandrographolide content of micropropagated plants of Andrographis alata (Vahl) Nees. [J]. J Genet Eng Biotechnol, 19(20): 1-8.

    • KANDANUR SGS, TAMANG N, GOLAKOTI NR, et al. , 2019. Andrographolide: a natural product template for the generation of structurally and biologically diverse diterpenes [J]. Eur J Med Chem, 176: 513-533.

    • KHAN MK, MISRA P, SHHARMA T, et al. , 2014. Effect of adenine sulphate on in vitro mass propagation of Stevia rebaudiana Bertoni [J]. J Med Plant Res, 8(13): 543-549.

    • KOCHAN E, BALCERCZAK E, LIPERT A, et al. , 2018. Methyl jasmonate as a control factor of the synthase squalene gene promoter and ginsenoside production in American ginseng hairy root cultured in shake flasks and a nutrient sprinkle bioreactor [J]. Ind Crops Prod, 115: 182-193.

    • KOCHAN E, SZYMCZYK P, KUŹMA Ł, et al. , 2017. Yeast extract stimulates ginsenoside production in hairy root cultures of American ginseng cultivated in shake flasks and nutrient sprinkle bioreactors [J]. Molecules, 22(6): 880.

    • KULUEV B, AVALBAEV A, NURGALEEVA E, et al. , 2015. Role of Aintegumenta-like gene NtANTL in the regulation of tobacco organ growth [J]. J Plant Physiol, 189: 11-23.

    • LOYOLA-VARGAS VM, OCHOA-ALEJO N, 2018. Somatic embryogenesis: fundamental aspects and applications [M]. Switzerland: Springer, Cham: 309-315.

    • LUTHRA R, ROY A, PANDIT S, et al. , 2021. Biotechnological methods for the production of ginsenosides [J]. S Afr J Bot, 141: 25-36.

    • MAHOBIA A, JHA Z, 2015. Efficiency of method and media composition on transformation of Andrographis paniculata for hairy root production [J]. J Cell Tiss Res, 15(1): 4897-4902.

    • MAMDOUH D, MAHGOUB HA, GABR AM, et al. , 2021. Genetic stability, phenolic, flavonoid, ferulic acid contents, and antioxidant activity of micropropagated Lycium schweinfurthii plants [J]. Plants, 10: 2089.

    • MARWANI E, PRATIWID, WARDHANI K, et al. , 2015. Development of hairy root culture of Andrographis paniculata for in vitro adrographollide production [J]. J Med Bioeng, 4(6): 446-450.

    • MIAO JQ, 2022. Effects of adventitious root induction and culture conditions of Panax ginseng and American ginseng on growth and saponin content [D]. Changchun: Jilin Agricultural University: 1-81. [苗佳琪, 2022. 人参、西洋参不定根诱导及培养条件对其生长和皂苷含量的影响 [D]. 长春: 吉林农业大学: 1-81. ]

    • MIAO JH, XIAO PG, HUANG LQ, 2017. Conservation of medicinal plants [M]. Beijing: Science Press: 208-210. [缪剑华, 肖培根, 黄璐琦, 2017. 药用植物保育学 [M]. 北京: 科学出版社: 208-210. ]

    • MISHRA S, TIWARI SK, KAKKAR A, et al. , 2010. Andrographolide content in Madhya pradesh, India [J]. Int J Pharma Bio Sci, 1(2): 1-5.

    • MUR L A, KENTON P, ATZORN R, et al. , 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death [J]. Plant Physiol, 140(1): 249-262.

    • MURTHY HN, DALAWAI D, 2021. Biotechnological production of diterpenoid lactones from cell and organ cultures of Andrographis paniculata [J]. Appl Microbiol Biotechnol, 105: 7683-7694.

    • MURTHY HN, LEE EJ, PAEK KY, 2014. Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation [J]. Plant Cell Tiss Organ Cult, 118: 1-16.

    • NAtional Pharmacopoeia Committee, 2020. Pharmacopoeia of the People’s Republic of China [M]. 2000 ed. Vol. I. Beijing: China Medical Science and Technology Press: 280-281. [国家药典委员会, 2020. 中华人民共和国药典 [M]. 2020年版. 一部. 北京: 中国医药科技出版社: 280-281. ]

    • PAEK KY, CHAKRABARTY D, HAHN EJ, 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants [J]. Plant Cell Tiss Organ Cult, 81: 287-300.

    • PRAVEEN N, MANOHAR SH, NAIK PM, et al. , 2009. Production of andrographolide from adventitious root cultures of Andrographis paniculata [J]. Curr Sci, 96: 694-697.

    • PURKAYASTHA J, SUGLA T, PAUL A, et al. , 2008. Rapid in vitro multiplication and plant regeneration from nodal explants of Andrographis paniculata: a valuable medicinal plant [J]. In vitro Cell Dev Biol Plant, 4(4): 442-447.

    • RAFI M, DEVI AF, SYAFITRI UD, et al. , 2020. Classification of Andrographis paniculata extracts by solvent extraction using HPLC fingerprint and chemometric analysis [J]. BMC Res Notes, 13: 1-6.

    • REN X, XU W, SUN J, et al. , 2021. Current trends on repurposing and pharmacological enhancement of andrographolide [J]. Curr Med Chem, 28(12): 2346-2368.

    • RENCY AS, PANDIAN S, RAAMESH M, 2018. Influence of adenine sulphate on multiple shoot induction in Clitoria ternatea L. and analysis of phyto-compounds in in vitro grown plants [J]. Biocatal Agric Biotechnol, 16: 181-191.

    • SÁNCHEZ-SAMPEDRO MA, FERNÁNDEZ-TÁRRAGO J, CORCHETE P, 2005. Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L. ) Gaertn. [J]. J Biotechnol, 119(1): 60-69.

    • SHARMA N, MALHOTRA EV, CHANDRA R, et al. , 2022. Cryopreservation and genetic stability assessment of regenerants of the critically endangered medicinal plant Dioscorea deltoidea Wall. ex Griseb. for cryobanking of germplasm [J]. In vitro Cell Dev Biol Plant, 58(4): 521-529.

    • SHARMA SN, JHA Z, 2012. Production of andrographolide from callus and cell suspension culture of Andrographis paniculata [J]. J Cell Tiss Res, 12(3): 3423-3429.

    • SHARMA SN, JHA Z, SINHA RK, 2013. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata [J]. Nat Prod Commun, 8(8): 1045-1047.

    • SHE XH, ZHANG ZH, LI M, 2022. Polyploidy induction of Andrographis paniculata (Burn. f. ) Nees and its response to cinnamic acid [J]. N Hortic, (2): 94-103. [佘晓环, 张梓豪, 李明, 2022. 穿心莲四倍体的诱导及其愈伤组织对肉桂酸胁迫的响应 [J]. 北方园艺, (2): 94-103. ]

    • SHARMA SN, JHA Z, SINHA RK, et al. , 2014. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata [J]. Physiol Plant, 153(2): 221-229.

    • SINGH S, PANDEY P, GHOSH S, et al. , 2018. Anti-cancer labdane diterpenoids from adventitious roots of Andrographis paniculata: augmentation of production prospect endowed with pathway gene expression [J]. Protoplasma, 255: 1387-1400.

    • SINHA RK, SHARMA SN, VERMA SS, et al. , 2018. Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the Andrographis paniculata [J]. Acta Physiol Plant, 40: 165.

    • SONG X, WU H, PIAO X, et al. , 2017. Microbial transformation of ginsenosides extracted from Panax ginseng adventitious roots in an airlift bioreactor [J]. Electron J Biotechnol, 26: 20-26.

    • SRINATH M, SHAILAJA A, BINDU BBV, et al. , 2022. Comparative analysis of biomass, ethrel elicitation, light induced differential MVA/MEP pathway gene expression and andrographolide production in adventitious root cultures of Andrographis paniculata (Burm. F. ) Nees [J]. Plant Cell Tiss Organ Cult, 149: 335-349.

    • TAJIDIN NE, SHAARI K, MAULIDIANI M, et al. , 2019. Metabolite profiling of Andrographis paniculata (Burm. f. ) Nees. young and mature leaves at different harvest ages using 1H NMR-based metabolomics approach [J]. Sci Rep, 9: 16766.

    • THANH NT, MURTHY HN, PAEK KY, 2014. Optimization of ginseng cell culture in airlift bioreactors and developing the large-scale production system [J]. Ind Crops Prod, 60: 343-348.

    • VAKIL MM, MENDHULKAR VD, 2013a. Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f. ) Nees [J]. Bot Stud, 54: 1-8.

    • VAKIL MM, MENDHULKAR VD, 2013b. Salicylic acid and chitosan mediated abiotic stress in cell suspension culture of Andrographis paniculata (Burm. f. ) Nees. for andrographolide synthesis [J]. Int J Pharm Sci Res, 4(9): 3453-3459.

    • VIDYALAKSHMI A, ANANTHI S, 2013. Induction of andrographolide, a biologically active ingredient in callus of Andrographis paniculata (Burm. f. ) Nees [J]. Bioeng Biosci, 1(1): 1-4.

    • WIKTOROWSKA E, DŁUGOSZ M, JANISZOWSKA, 2010. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. [J]. Enzyme Microb Technol, 46(1): 14-20.

    • YAN B, 2016. Induction of tetraploids through colchicine treatment in Andrographis paniculata (Burm. f) Nees [D]. Guangzhou: Guangzhou University of Chinese Medicine: 1-82. [闫斌, 2016. 穿心莲多倍体诱导研究 [D]. 广州: 广州中医药大学: 1-82. ]

    • YAN B, PAN CM, HE J, et al. , 2016. Study on the strengthening and rooting of tissue culture seedlings and transplanting matrix of Andrographis paniculata [J]. Lishizhen Med Mat Med Res, 27(7): 1730-1732. [闫斌, 潘超美, 何洁, 等, 2016. 穿心莲组培苗的壮苗生根与移栽基质研究 [J]. 时珍国医国药, 27(7): 1730-1732. ]

    • YUE W, MING QL, LIN B, et al. , 2016. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites [J]. Crit Rev Biotechnol, 36(2): 215-232.

    • ZAHEER M, GIRI CC, 2015. Multiple shoot induction and jasmonic versus salicylic acid driven elicitation for enhanced andrographolide production in Andrographis paniculata [J]. Plant Cell Tiss Organ Cult, 122: 553-563.

    • ZAHEER M, GIRI CC, 2017. Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata [J]. Res Chem Intermed, 43(4): 2433-2444.

    • ZHENG X Y, SPIVEY N W, ZENG W, et al. , 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation [J]. Cell Host Microbe, 11(6): 587-596.

    • ZHONG C, JIAN SF, CHEN DL, et al. , 2021. Advances in regulation studies on accumulation and biosynthesis of andrographolide components in Andrographis paniculata [J]. Guihaia, 41(10): 1746-1754. [钟楚, 简少芬, 陈东亮, 等, 2021. 穿心莲内酯类成分积累与生物合成的调控研究进展 [J]. 广西植物, 41(10): 1746-1754. ]

  • 参考文献

    • AHMED N, PRAVEEN N, 2023. Effect of salicylic acid, jasmonic acid, and a combination of both on andrographolide production in cell suspension cultures of Andrographis paniculata (Burm. f. ) Nees [J]. J Appl Biol Biotechnol, 11(2): 198-203.

    • BABANINA SS, YEGOROVA NA, STAVTSEVA IV, et al. , 2023. Genetic stability of lavender (Lavandula angustifolia Mill. ) plants obtained during long-term Clonal micropropagation [J]. Russ Agric Sci, 49(2): 132-139.

    • BANSI T S, ROUT GR, 2013. Plant regeneration protocol of Andrographis paniculata (Burm. f. ) - an important medicinal plant [J]. Afr J Biotechnol, 12(39): 5738-5742.

    • BROOKS DM, BENDER CL, KUNKEL BN, 2005. The pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana [J]. Mol Plant Pathol, 6(6): 629-639.

    • BURGOS RA, ALARCÓN P, QUIROGA J, et al. , 2020. Andrographolide, an anti-inflammatory multitarget drug: all roads lead to cellular metabolism [J]. Molecules, 26(1): 1-17.

    • CHEN DL, ZHONG C, LIN Y, 2020. Advances in germplasm resources, breeding and cultivation of medicinal plants Andrographis paniculata [J]. Jiangsu Agric Sci, 48(21): 34-40. [陈东亮, 钟楚, 林阳, 2020. 药用植物穿心莲种质资源、育种及栽培研究进展 [J]. 江苏农业科学, 48(21): 34-40. ]

    • CHEN RZ, 2017. Establishment and asexual propagation of aseptic explants of medicinal plants Andrographis paniculata [J]. Fujian Sci Technol Trop Crops, 42(2): 23-26. [陈荣珠, 2017. 药用植物穿心莲无菌外植体建立及无性繁殖 [J]. 福建热作科技, 42(2): 23-26. ]

    • CHENG XY, GUO B, ZHOU HY, et al. , 2005. Repeated elicitation enhances phenylethanoid glycosides accumulation in cell suspension cultures of Cistanche deserticola [J]. Biochem Eng J, 24(3): 203-207.

    • CONCEIÇAO LF, FERRERES F, TAVARES RM, et al. , 2006. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation [J]. Phytochemistry, 67(2): 149-155.

    • DAI Y, LI T, ZHANG Y, et al. , 2018. Preliminary study on rapid propagation system of aseptic explants of Andrographis paniculata [J]. Seed, 37(8): 88-89. [戴燚, 李涛, 张艺, 等, 2018. 穿心莲无菌外植体快繁体系初探 [J]. 种子, 37(8): 88-89. ]

    • DALAWAI D, AWARE C, JADHAV JP, et al. , 2021. RP-HPLC analysis of diterpene lactones in leaves and stem of different species of Andrographis [J]. Nat Prod Res, 35(13): 2239-2242.

    • DANDIN VS, MURTHY HN, 2012. Regeneration of Andrographis paniculata Nees: analysis of genetic fidelity and andrographolide content in micropropagated plants [J]. Afr J Biotechnol, 11(61): 12464-12471.

    • DAS D, BANDYOPADHYAY M, 2015. Tissue organisation is necessary for accumulation of andrographolide in in vitro cultures of Andrographis paniculata (Burm. f. ) Nees. [J]. J Bot Soc Bengal, 69(1): 27-34.

    • DAS D, BANDYOPADHYAY M, 2021. Manipulation of DXP pathway for andrographolide production in callus cultures of Andrographis paniculata [J]. Planta, 254: 1-17.

    • DAWANDE AA, SAHAY S, 2020. Copper sulphate elicitation of optimized suspension culture of Andrographis paniculata Nees yields unprecedented level of andrographolide [J]. J Microbiol Biotechnol Food Sci, 9(4): 688-694.

    • ESPINOSA-LEAL CA, PUENTE-GARZA CA, GARCÍA-LARA S, 2018. In vitro plant tissue culture: means for production of biological active compounds [J]. Planta, 248: 1-18.

    • GANDI S, RAO K, CHODISETTI B, et al. , 2012. Elicitation of andrographolide in the suspension cultures of Andrographis paniculata [J]. Appl Biochem Biotechnol, 168: 1729-1738.

    • HUANG C, QIAN ZG, ZHONG JJ, 2013. Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N′-dicyclohexylcarbodiimide elicitation [J]. J Biotechnol, 165: 30-36.

    • HUANG G, ZHANG HY, HUANG X, 2010. Tissue culture of Andrographis paniculata (Burm. f. ) Nees [J]. Chin Agric Sci Bull, 26(4): 33-36. [黄格, 张慧英, 黄翔, 2010. 药用植物穿心莲的组织培养 [J]. 中国农学通报, 26(4): 33-36. ]

    • HWANG HD, HAN JE, MURTHY HN, et al. , 2022. Establishment of bioreactor cultures for the production of chlorogenic acid and ferulic acid from adventitious roots by optimization of culture conditions in Angelica acutiloba (Siebold & Zucc. ) Kitag [J]. Plant Biotechnol Rep, 16(2): 173-182.

    • ISLAM MT, ALI E S, UDDIN SJ, et al. , 2018. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer [J]. Cancer Lett, 420: 129-145.

    • JINDAL N, KAJLA S, CHAUDHURY A, 2016. Establishment of callus cultures of Andrographis paniculata for the assessment of andrographolide content [J]. Int J Res Ayurveda Pharm, 7(2): 197-201.

    • JI X, 2018. Study on the creation of a new haploid germplasm of Andrographis paniculata (Burm. f. ) Nees based on the development of androgenesis in vitro [D]. Guangzhou: Guangzhou University of Chinese Medicine: 1-55. [姬璇, 2018. 基于体外雄核发育的穿心莲单倍体新种质创制研究 [D]. 广州: 广州中医药大学: 1-55. ]

    • JI X, LIN YF, DOU XR, et al. , 2017. Optimization of aseptic germination conditions for Andrographis paniculata (Burm. f. ) Nees. seeds [J]. Trad Chin Drug Res Pharmacol, 28(3): 388-391. [姬璇, 林玉凤, 窦晓蓉, 等, 2017. 穿心莲种子无菌萌发条件优化研究 [J]. 中药新药与临床药理, 28(3): 388-391. ]

    • KADAPATTI SS, MURTHY HN, 2021. Rapid plant regeneration, analysis of genetic fidelity, and neoandrographolide content of micropropagated plants of Andrographis alata (Vahl) Nees. [J]. J Genet Eng Biotechnol, 19(20): 1-8.

    • KANDANUR SGS, TAMANG N, GOLAKOTI NR, et al. , 2019. Andrographolide: a natural product template for the generation of structurally and biologically diverse diterpenes [J]. Eur J Med Chem, 176: 513-533.

    • KHAN MK, MISRA P, SHHARMA T, et al. , 2014. Effect of adenine sulphate on in vitro mass propagation of Stevia rebaudiana Bertoni [J]. J Med Plant Res, 8(13): 543-549.

    • KOCHAN E, BALCERCZAK E, LIPERT A, et al. , 2018. Methyl jasmonate as a control factor of the synthase squalene gene promoter and ginsenoside production in American ginseng hairy root cultured in shake flasks and a nutrient sprinkle bioreactor [J]. Ind Crops Prod, 115: 182-193.

    • KOCHAN E, SZYMCZYK P, KUŹMA Ł, et al. , 2017. Yeast extract stimulates ginsenoside production in hairy root cultures of American ginseng cultivated in shake flasks and nutrient sprinkle bioreactors [J]. Molecules, 22(6): 880.

    • KULUEV B, AVALBAEV A, NURGALEEVA E, et al. , 2015. Role of Aintegumenta-like gene NtANTL in the regulation of tobacco organ growth [J]. J Plant Physiol, 189: 11-23.

    • LOYOLA-VARGAS VM, OCHOA-ALEJO N, 2018. Somatic embryogenesis: fundamental aspects and applications [M]. Switzerland: Springer, Cham: 309-315.

    • LUTHRA R, ROY A, PANDIT S, et al. , 2021. Biotechnological methods for the production of ginsenosides [J]. S Afr J Bot, 141: 25-36.

    • MAHOBIA A, JHA Z, 2015. Efficiency of method and media composition on transformation of Andrographis paniculata for hairy root production [J]. J Cell Tiss Res, 15(1): 4897-4902.

    • MAMDOUH D, MAHGOUB HA, GABR AM, et al. , 2021. Genetic stability, phenolic, flavonoid, ferulic acid contents, and antioxidant activity of micropropagated Lycium schweinfurthii plants [J]. Plants, 10: 2089.

    • MARWANI E, PRATIWID, WARDHANI K, et al. , 2015. Development of hairy root culture of Andrographis paniculata for in vitro adrographollide production [J]. J Med Bioeng, 4(6): 446-450.

    • MIAO JQ, 2022. Effects of adventitious root induction and culture conditions of Panax ginseng and American ginseng on growth and saponin content [D]. Changchun: Jilin Agricultural University: 1-81. [苗佳琪, 2022. 人参、西洋参不定根诱导及培养条件对其生长和皂苷含量的影响 [D]. 长春: 吉林农业大学: 1-81. ]

    • MIAO JH, XIAO PG, HUANG LQ, 2017. Conservation of medicinal plants [M]. Beijing: Science Press: 208-210. [缪剑华, 肖培根, 黄璐琦, 2017. 药用植物保育学 [M]. 北京: 科学出版社: 208-210. ]

    • MISHRA S, TIWARI SK, KAKKAR A, et al. , 2010. Andrographolide content in Madhya pradesh, India [J]. Int J Pharma Bio Sci, 1(2): 1-5.

    • MUR L A, KENTON P, ATZORN R, et al. , 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death [J]. Plant Physiol, 140(1): 249-262.

    • MURTHY HN, DALAWAI D, 2021. Biotechnological production of diterpenoid lactones from cell and organ cultures of Andrographis paniculata [J]. Appl Microbiol Biotechnol, 105: 7683-7694.

    • MURTHY HN, LEE EJ, PAEK KY, 2014. Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation [J]. Plant Cell Tiss Organ Cult, 118: 1-16.

    • NAtional Pharmacopoeia Committee, 2020. Pharmacopoeia of the People’s Republic of China [M]. 2000 ed. Vol. I. Beijing: China Medical Science and Technology Press: 280-281. [国家药典委员会, 2020. 中华人民共和国药典 [M]. 2020年版. 一部. 北京: 中国医药科技出版社: 280-281. ]

    • PAEK KY, CHAKRABARTY D, HAHN EJ, 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants [J]. Plant Cell Tiss Organ Cult, 81: 287-300.

    • PRAVEEN N, MANOHAR SH, NAIK PM, et al. , 2009. Production of andrographolide from adventitious root cultures of Andrographis paniculata [J]. Curr Sci, 96: 694-697.

    • PURKAYASTHA J, SUGLA T, PAUL A, et al. , 2008. Rapid in vitro multiplication and plant regeneration from nodal explants of Andrographis paniculata: a valuable medicinal plant [J]. In vitro Cell Dev Biol Plant, 4(4): 442-447.

    • RAFI M, DEVI AF, SYAFITRI UD, et al. , 2020. Classification of Andrographis paniculata extracts by solvent extraction using HPLC fingerprint and chemometric analysis [J]. BMC Res Notes, 13: 1-6.

    • REN X, XU W, SUN J, et al. , 2021. Current trends on repurposing and pharmacological enhancement of andrographolide [J]. Curr Med Chem, 28(12): 2346-2368.

    • RENCY AS, PANDIAN S, RAAMESH M, 2018. Influence of adenine sulphate on multiple shoot induction in Clitoria ternatea L. and analysis of phyto-compounds in in vitro grown plants [J]. Biocatal Agric Biotechnol, 16: 181-191.

    • SÁNCHEZ-SAMPEDRO MA, FERNÁNDEZ-TÁRRAGO J, CORCHETE P, 2005. Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L. ) Gaertn. [J]. J Biotechnol, 119(1): 60-69.

    • SHARMA N, MALHOTRA EV, CHANDRA R, et al. , 2022. Cryopreservation and genetic stability assessment of regenerants of the critically endangered medicinal plant Dioscorea deltoidea Wall. ex Griseb. for cryobanking of germplasm [J]. In vitro Cell Dev Biol Plant, 58(4): 521-529.

    • SHARMA SN, JHA Z, 2012. Production of andrographolide from callus and cell suspension culture of Andrographis paniculata [J]. J Cell Tiss Res, 12(3): 3423-3429.

    • SHARMA SN, JHA Z, SINHA RK, 2013. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata [J]. Nat Prod Commun, 8(8): 1045-1047.

    • SHE XH, ZHANG ZH, LI M, 2022. Polyploidy induction of Andrographis paniculata (Burn. f. ) Nees and its response to cinnamic acid [J]. N Hortic, (2): 94-103. [佘晓环, 张梓豪, 李明, 2022. 穿心莲四倍体的诱导及其愈伤组织对肉桂酸胁迫的响应 [J]. 北方园艺, (2): 94-103. ]

    • SHARMA SN, JHA Z, SINHA RK, et al. , 2014. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata [J]. Physiol Plant, 153(2): 221-229.

    • SINGH S, PANDEY P, GHOSH S, et al. , 2018. Anti-cancer labdane diterpenoids from adventitious roots of Andrographis paniculata: augmentation of production prospect endowed with pathway gene expression [J]. Protoplasma, 255: 1387-1400.

    • SINHA RK, SHARMA SN, VERMA SS, et al. , 2018. Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the Andrographis paniculata [J]. Acta Physiol Plant, 40: 165.

    • SONG X, WU H, PIAO X, et al. , 2017. Microbial transformation of ginsenosides extracted from Panax ginseng adventitious roots in an airlift bioreactor [J]. Electron J Biotechnol, 26: 20-26.

    • SRINATH M, SHAILAJA A, BINDU BBV, et al. , 2022. Comparative analysis of biomass, ethrel elicitation, light induced differential MVA/MEP pathway gene expression and andrographolide production in adventitious root cultures of Andrographis paniculata (Burm. F. ) Nees [J]. Plant Cell Tiss Organ Cult, 149: 335-349.

    • TAJIDIN NE, SHAARI K, MAULIDIANI M, et al. , 2019. Metabolite profiling of Andrographis paniculata (Burm. f. ) Nees. young and mature leaves at different harvest ages using 1H NMR-based metabolomics approach [J]. Sci Rep, 9: 16766.

    • THANH NT, MURTHY HN, PAEK KY, 2014. Optimization of ginseng cell culture in airlift bioreactors and developing the large-scale production system [J]. Ind Crops Prod, 60: 343-348.

    • VAKIL MM, MENDHULKAR VD, 2013a. Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f. ) Nees [J]. Bot Stud, 54: 1-8.

    • VAKIL MM, MENDHULKAR VD, 2013b. Salicylic acid and chitosan mediated abiotic stress in cell suspension culture of Andrographis paniculata (Burm. f. ) Nees. for andrographolide synthesis [J]. Int J Pharm Sci Res, 4(9): 3453-3459.

    • VIDYALAKSHMI A, ANANTHI S, 2013. Induction of andrographolide, a biologically active ingredient in callus of Andrographis paniculata (Burm. f. ) Nees [J]. Bioeng Biosci, 1(1): 1-4.

    • WIKTOROWSKA E, DŁUGOSZ M, JANISZOWSKA, 2010. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. [J]. Enzyme Microb Technol, 46(1): 14-20.

    • YAN B, 2016. Induction of tetraploids through colchicine treatment in Andrographis paniculata (Burm. f) Nees [D]. Guangzhou: Guangzhou University of Chinese Medicine: 1-82. [闫斌, 2016. 穿心莲多倍体诱导研究 [D]. 广州: 广州中医药大学: 1-82. ]

    • YAN B, PAN CM, HE J, et al. , 2016. Study on the strengthening and rooting of tissue culture seedlings and transplanting matrix of Andrographis paniculata [J]. Lishizhen Med Mat Med Res, 27(7): 1730-1732. [闫斌, 潘超美, 何洁, 等, 2016. 穿心莲组培苗的壮苗生根与移栽基质研究 [J]. 时珍国医国药, 27(7): 1730-1732. ]

    • YUE W, MING QL, LIN B, et al. , 2016. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites [J]. Crit Rev Biotechnol, 36(2): 215-232.

    • ZAHEER M, GIRI CC, 2015. Multiple shoot induction and jasmonic versus salicylic acid driven elicitation for enhanced andrographolide production in Andrographis paniculata [J]. Plant Cell Tiss Organ Cult, 122: 553-563.

    • ZAHEER M, GIRI CC, 2017. Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata [J]. Res Chem Intermed, 43(4): 2433-2444.

    • ZHENG X Y, SPIVEY N W, ZENG W, et al. , 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation [J]. Cell Host Microbe, 11(6): 587-596.

    • ZHONG C, JIAN SF, CHEN DL, et al. , 2021. Advances in regulation studies on accumulation and biosynthesis of andrographolide components in Andrographis paniculata [J]. Guihaia, 41(10): 1746-1754. [钟楚, 简少芬, 陈东亮, 等, 2021. 穿心莲内酯类成分积累与生物合成的调控研究进展 [J]. 广西植物, 41(10): 1746-1754. ]