en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘涛(1982-),硕士,副研究员,研究方向为果树栽培育种,(E-mail)737689429@qq.com。

通讯作者:

汪得凯,博士,研究员,研究方向为药用植物资源,(E-mail)kay77@163.com。

中图分类号:Q939

文献标识码:A

文章编号:1000-3142(2023)07-1222-14

DOI:10.11931/guihaia.gxzw202209062

参考文献
BERHONGARAY G, JANSSENS IA, KING JS, et al. , 2013. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture [J]. Plant Soil, 373(1-2): 269-283.
参考文献
BONFANTE P, ANCA IA, 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions [J]. Ann Rev Microbiol, 63: 363-383.
参考文献
CHAPARRO JM, BADRI DV, VIVANCO JM, 2013. Rhizosphere microbiome assemblage is affected by plant development [J]. ISME J, 8(4): 790-803.
参考文献
DE BOER W, FOLMAN LB, SUMMERBELL RC, et al. , 2005. Living in a fungal world: impact of fungi on soil bacterial niche development [J]. FEMS Microbiol Rev, 29(4): 795-811.
参考文献
EDWARDS J, JOHNSON C, SANTOS-MEDELLíN C, et al. , 2015. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proc Natl Acad Sci, 112(8): E911-920.
参考文献
FAN RF, WANG RF, DU YQ, et al. , 2021. Community composition and ecological function of rhizosphere fungi and medicinal parts endophytic fungi in Polygonatum sibiricum [J]. Guihaia, 41(5): 799-807. [樊锐锋, 王若凡, 杜艳秋, 等, 2021. 黄精根际及药用部位内生真菌群落组成和生态功能分析 [J]. 广西植物, 41(5): 799-807. ]
参考文献
FIERERN, 2017. Embracing the unknown: disentangling the complexities of the soil microbiome [J]. Nat Rev Microbiol, 15(10): 579-590.
参考文献
GAO JF, ZHOU W, LIU N, 2022. Differential analysis of phenolic acids from different parts of Kadsura coccinea [J]. J Chin Med Mat, 45(2): 351-358. [高渐飞, 周玮, 刘妮, 2022. 黑老虎不同部位酚酸类成分差异分析 [J]. 中药材, 45(2): 351-358. ]
参考文献
GAO Y, ZHOU J, RUAN HL, 2020. Trichothecenes from an endophytic fungus Alternaria sp. sb23 [J]. Planta Med, 86(13/14): 976-982.
参考文献
HOBBIE SE, OGDAHL M, CHOROVER J, et al. , 2007. Tree species effects on soil organic matter dynamics: the role of soil cation composition [J]. Ecosystems, 10(6): 999-1018.
参考文献
HUANG SZ, DUAN LP, WANG H, et al. , 2019. Two new AChE inhibitors isolated from Li folk herb Heilaohu “Kadsura coccinea” stems [J]. Molecules, 24(19): 3628.
参考文献
JIA M, CHEN L, XIN HL, et al. , 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review [J]. Front Microbiol, 7: 906.
参考文献
JIANG LC, WEI JM, BAI SS, et al. , 2020. Characteristics of rhizosphere soil fungi community of Schisandra sphenanthera Rehd. Et Wils [J]. J Yanan Univ (Nat Sci Ed), 39(4): 15-20. [江林春, 韦洁敏, 白尚尚, 等, 2020. 华中五味子根际土壤真菌群落特征研究 [J]. 延安大学学报(自然科学版), 39(4): 15-20. ]
参考文献
JIN H, YANG XY, LIU HY, et al. , 2021. The structure of rhizosphere soil and endophytic fungal communities associated with Stipa purpurea and their correlation with soil environmental factors [J]. Acta Microbiol Sin, 61(11): 3520-3541. [金辉, 杨晓燕, 柳皓月, 等, 2021. 紫花针茅根际和体内真菌群落结构及与土壤环境因子的相关性研究 [J]. 微生物学报, 61(11): 3520-3541. ]
参考文献
LI MJ, ZHOU ZJ, XING LJ, et al. , 2021. Correlation analysis between diversity of AM fungi and nutrient in root-zone soil of Atractylodes chinensis [J]. Chin J Biol Control, 37(6): 1288-1297. [李铭杰, 周志杰, 邢礼军, 等, 2021. 北苍术根区土壤中AM真菌多样性及其与土壤养分相关性分析 [J]. 中国生物防治学报, 37(6): 1288-1297. ]
参考文献
LIU T, MA N, JIN JF, et al. , 2023. Composition structure and ecological function analyses of endophytic and rhizosphere soil fungi in Kadsura coccinea [J]. Guihaia, 43(5): 869-879. [刘涛, 马楠, 金吉芬, 等, 2023. 黑老虎内生真菌及根际土壤真菌的群落结构与生态功能分析 [J]. 广西植物, 43(5): 869-879. ]
参考文献
LIU T, WEI Q, WU XB, et al. , 2009. Research status and development and utilization prospect of wild fruit species Kadsura coccinea (Lem. ) A. C. Smith [J]. J Anhui Agric Sci, 37(23): 10971-10972. [刘涛, 韦茜, 吴小波, 等, 2009. 野生水果黑老虎的研究现状及开发利用前景 [J]. 安徽农业科学, 37(23): 10971-10972. ]
参考文献
LU HY, WEI TY, LOU HH, et al. , 2021. A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses [J]. J Fung (Basel), 7(9): 719.
参考文献
MIGUEL RM, JOSE GMV, MEIKE P, et al. , 2020. Diversity of fungi in soils with different degrees of degradation in Germany and Panama [J]. Mycobiology, 48(1): 20-28.
参考文献
NGUYEN NH, SONG Z, BATES ST, et al. , 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild [J]. Fung Ecol, 20: 241-248.
参考文献
NING Q, CHEN L, LI F, et al. , 2022. Effects of Mortierella on nutrient availability and straw decomposition in soil [J]. Acta Pedol Sin, 59(1): 206-217. [宁琪, 陈林, 李芳, 等, 2022. 被孢霉对土壤养分有效性和秸秆降解的影响 [J]. 土壤学报, 59(1): 206-217. ]
参考文献
PAN ZY, FU JF, ZHOU RJ, et al. , 2007. Preliminary study of soil fungi in Schisandra chinensis garden and screening antagonism strains [J]. J Jilin Agric Univ, 29(6): 636-639. [潘争艳, 傅俊范, 周如军, 等, 2007. 五味子园根际真菌多样性初探及拮抗菌株筛选 [J]. 吉林农业大学学报, 29(6): 636-639. ]
参考文献
PATTENCL, GLICK BR, 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system [J]. Appl Environ Microb, 68(8): 3795-3795.
参考文献
QIN D, SHEN WY, WANG JQ, et al. , 2019. Enhanced production of unusual triterpenoids from Kadsura angustifolia fermented by a symbiont endophytic fungus, Penicillium sp. SWUKD4. 1850 [J]. Phytochemistry, 158: 56-66.
参考文献
QIN D, SHEN WY, GAO TC, et al. , 2020. Kadanguslactones A-E, further oxygenated terpenoids from Kadsura angustifolia fermented by a symbiotic endophytic fungus, Penicillium ochrochloron SWUKD4. 1850 [J]. Phytochemistry, 174: 112335.
参考文献
RODRIGUEZ RJ, WHITE JF, ARNOLD AE, et al. , 2009. Fungal endophytes: diversity and functional roles [J]. New Phytol, 182(2): 314-330.
参考文献
ROESCH LF, FULTHORPE RR, RIVA A, et al. , 2007. Triplett EW. Pyrosequencing enumerates and contrasts soil microbial diversity [J]. ISME J, 1(4): 283-290.
参考文献
SMITH AP, MARíN-SPIOTTA E, DE GRAAFF MA, et al. , 2014. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change [J]. Soil Biol Biochem, 77: 292-303.
参考文献
SRITALAHAREUTHAI V, TEMVIRIYANUKUL P, ON-NOM N, et al. , 2020. Phenolic profiles, antioxidant, and inhibitory activities of Kadsura heteroclita (Roxb. ) Craib and Kadsura coccinea (Lem. ) A. C. Sm [J]. Foods, 9(9): 1222.
参考文献
SUI YY, JIAO XG, GAO CS, et al. , 2009. The relationship among organic matter content and soil microbial biomass and soil enzyme activities [J]. Chin J Soil Sci, 40(5): 1036-1039. [隋跃宇, 焦晓光, 高崇生, 等, 2009. 土壤有机质含量与土壤微生物量及土壤酶活性关系的研究 [J]. 土壤通报, 40(5): 1036-1039. ]
参考文献
TIWARI P, BAE H, 2022. Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery [J]. Microorganisms, 10(2): 360.
参考文献
WANG L, 2011. Resistance screening on heavy metal and taxonomic studies of strains belong to Phialophora and Exophiala [D]. Kumming: Yunnan University. [王璐, 2011. 瓶霉属(Phialophora)和外瓶霉属(Exophiala)菌株重金属耐性筛选及分类学研究 [D]. 昆明: 云南大学. ]
参考文献
WANG L, QIN D, ZANG K, et al. , 2017. Metabolites from the co-culture of nigranoic acid and Umbelopsis dimorpha SWUKD3. 1410, an endophytic fungus from Kadsura angustifolia [J]. Nat Prod Res, 31(12): 1414-1421.
参考文献
WANG LJ, LIAO SQ, LIANG J, et al. , 2021. Analysis and evaluation of nutritional components of Kadsura coccinea seeds [J]. Chin Oils Fats, 46(12): 112-117. [王丽军, 廖苏奇, 梁洁, 等, 2021. 黑老虎种子的营养成分分析及评价 [J]. 中国油脂, 46(12): 112-117. ]
参考文献
WANG Y, CHANG F, CHENG HY, et al. , 2019. Fungal diversity and differential analysis of fungi community composition in Paris polyphylla var. chinensis rhizosphere and endophytic [J]. Chin Trad Herb Drugs, 50(5): 1232-1237. [王艳, 常帆, 程虎印, 等, 2019. 重楼根际及药用部位内生真菌多样性与群落结构差异分析 [J]. 中草药, 50(5): 1232-1237. ]
参考文献
YANG RY, DENG QZ, TIAN LP, et al. , 2022. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Ophiopogon japonicus in different habitats [J]. Acta Bot Boreal-Occident Sin, 42(1): 145-153. [杨蕊毓, 邓錡璋, 田丽平, 等, 2022. 不同生境下川麦冬根围土壤丛枝菌根真菌多样性 [J]. 西北植物学报, 42(1): 145-153. ]
参考文献
YU J, ZHOU XF, YANG SJ, et al. , 2013. Design and application of specific 16S rDNA-targeted primers for assessing endophytic diversity in Dendrobium officinale using nested PCR-DGGE [J]. Appl Microbiol Biotechnol, 97(22): 9825-9836.
参考文献
ZHANG SH, FANG Q, JIA HM, et al. , 2021. Difference analysis of fungal community among bulk soil, rhizosphere, and rhizomes of Ligusticum chuanxiong Hort [J]. Biotechnol Bull, 37(4): 56-69. [张秫华, 方千, 贾红梅, 等, 2021. 川芎非根际、根际及根茎内生真菌群落差异分析 [J]. 生物技术通报, 37(4): 56-69. ]
参考文献
ZHANG YQ, XU YH, WEN XS, et al. , 2021. Response surface methodology for optimizing fermentation process of the endophytic fungus Purpureocillium lilacinum WG9 preventing Schisandra chinensis brown spot disease [J]. Mycosystema, 40(6): 1561-1574. [张誉荠, 许永华, 文湘穗, 等, 2021. 响应面法优化北五味子褐斑病内生生防真菌淡紫拟青霉WG9发酵工艺及发酵产物稳定性研究 [J]. 菌物学报, 40(6): 1561-1574. ]
参考文献
ZHOU J, MIAO YF, FANG K, et al. , 2019. Diversity of the endophytic and rhizosphere soil fungi of Ageratina adenophora [J]. Ecol Sci, 38(5): 1-7. [周婕, 苗一方, 方楷, 等, 2019. 紫茎泽兰内生真菌及其根际土壤真菌的多样性研究 [J]. 生态科学, 38(5): 1-7. ]
目录contents

    摘要

    为探究不同生长条件下黑老虎根际和根部内生真菌群落组成和多样性及其与土壤环境因子的相关性,该文应用Illumina高通量测序方法对贵州3个不同生境下黑老虎根际和根部内生真菌进行了研究。结果表明:(1)3种生境下,根际土壤真菌OTU数量(3867)远多于根部内生真菌(801),其中根际土壤真菌共有的OTU为72个,共注释到5个门、49个属,大多为子囊菌门;属水平上被孢霉属、外瓶柄霉属、柱孢属占比较高;根部内生真菌共有的OTU为14个,共注释到2个门、11个属,子囊菌门(13个,占比92.9%)占绝对优势,属水平上被孢霉属、外瓶柄霉属、柱孢属和丛赤壳属占比最高; 所有样本中,共有的OTU仅为6个,注释到2个门、5个属,子囊菌门(5个,占比83.3%)为优势门;在属水平上,占比最高的为外瓶柄霉属(2个,33.3%),其余分别为被孢霉属、柱孢属和丛赤壳属。Alpha多样性分析表明,根际土壤的真菌群落多样性和丰富度均显著高于根部内生真菌,而野生生境的真菌多样性高于栽培生境。(2)在门水平上,3个生境下主要内生真菌类群均为子囊菌门(Ascomycota)和担子菌门(Basidiomycota),占总菌群的88.28%;在属水平上,不同生境条件下,根际和根部内生真菌群落结构差异明显;栽培生境下,根部内生真菌菌群具有一定的偏好性,而野生生境下,根部内生真菌菌群均匀度更高;FUNGuild真菌群落功能预测显示,栽培生境下的病理-腐生营养型(pathotroph-saprotroph) 在根部内生真菌中占比较高,而野生生境下的腐生营养型(saprotroph)及共生营养型(symbiotroph)占比较高。(3)土壤环境因子对根部内生真菌和根际真菌的影响方式不同,其中土壤总钾(TK)和土壤总磷(TP)与黑老虎根部内生真菌香农指数和辛普森指数显著正相关,而土壤有机质(SOM)、总氮(TN)和速效氮(AN)与黑老虎根际土壤真菌Ace指数和Chao1指数显著正相关。综上表明,SOM、TN、AN是影响黑老虎根际土壤真菌群落的主要土壤环境因子。

    Abstract

    Kadsura coccinea is a perennial vine medicinal plant, and its growth, development, and authentic medicinal qualities are affected by growing habitat, rhizosphere soil, and endophytic fungi. In order to explore the composition and diversity of fungal community in K. coccinea under different habitats, as well as their correlations with soil environmental factors, the rhizosphere and root endophytic fungi of K. coccinea from three different habitats in Guizhou were studied based on Illumina high-throughput sequencing method. The results were as follows: (1) Under three habitats, the number of OTU detected in rhizosphere soil (3867) was much more than that in root endophyte (801). The common OTU of rhizosphere soil was 72, which were annotated to 5 phyla and 49 genera, most of which were ascomycetes. At the genus level, the proportions of Mortierella, Exophiala, and Cylindrocarpon were relatively high. The common OTU of root endophytic fungi was 14, which were annotated to 2 phylums and 11 genera. Ascomycetes (13, accounting for 92.9%) were overwhelmingly dominant. At the genus level, Mortierella, Exophiala, Cylindrocarpon and Nectria were dominant genra. There were only 6 OTU in total, annotated to 2 phylums and 5 genera, and the ascomycetes phylum (5, accounting for 83.3%) were the dominant phylum. At the genus level, Exophiala (2, 33.3%) accounted for the highest proportion and the rest were Mortierella, Cylindrocarpon and Nectria, respectively. Alpha diversity analysis showed that the diversity and richness of fungal communities in rhizosphere soil were significantly higher than those in root endophytic fungi, while the diversity of fungi under wild habits was higher than that under cultivated habits. (2) At the phylum level, the main endophytic fungal groups under three habitats were Ascomycota and Basidiomycota, accounting for 88.28% of the total flora. At the genus level, the community structures of endophytic fungi in rhizosphere and root were significantly different under different habitats. The endophytic fungi flora in the root had a certain preference under the cultivation habitat, while the evenness under the wild habitat was higher than that under cultivation habitat. The prediction functions of fungal community based on FUNGuild showed that pathotroph-saprotroph type in the root endophytic fungi was relatively high under the cultural habit, while the proportion of saprophytic type and symbiotroph type was relatively high under the wild habit. (3) Soil environmental factors had different effects on root endophytic fungi and rhizosphere fungi in K. coccinea. Total potassium (TK) and total phosphorus (TP) in soil were positively correlated with Shannon index and Simpson index of endophytic fungi in K. coccinea root; whereas, soil organic matter (SOM), total nitrogen (TN) and available nitrogen (AN) were positively correlated with Ace index and Chao1 index of rhizosphere soil fungi. In conclusion, SOM, TN and AN are the main soil environmental factors affecting the rhizosphere soil fungal community of the K. coccinea.

  • 黑老虎(Kadsura coccinea)隶属五味子科(Schisandraceae)南五味子属(Kadsura),其果实富含多种氨基酸、维生素C、粗蛋白质、可溶性糖等营养成分,是一种历史悠久的民间药材植物。近年来,黑老虎因丰富的营养和独特的风味而深受消费者的欢迎,在贵州黔东南、湖北恩施及湖南通道等南方地区,作为一种新型特色水果,成为脱贫致富的林下产业(刘涛等,2009;高渐飞等,2022)。黑老虎在医药、保健食品及食品领域展现出广阔的应用前景(Sritalahareuthai et al.,2020;王丽军等,2021)。

  • 植物宿主与内生真菌、根际土壤真菌交互作用,形成复杂的调控网络,共同维持生态系统的动态平衡(Jia et al.,2016;Lu et al.,2021)。植物内生真菌生活在宿主体内,不会引起宿主明显病症,与宿主协同进化,利用宿主营养供自身需要,同时在植物生长发育、增强逆境抵抗能力和生物系统演化等方面发挥重要作用(Huang et al.,2019)。此外,内生真菌在与宿主的长期相互作用中,通过影响和调节宿主次生代谢产物的合成及累积影响宿主活性物质的分布和含量,或可以产生与宿主植物类似的次生代谢物,广泛应用于农学、医学、工业和生物技术等领域(Tiwari &Bae,2022)。根际真菌一方面利用植物中的碳水化合物进行生长发育,在有机质转化、碳-氮循环和促进土壤环境健康等方面发挥重要作用,另一方面其自身新陈代谢所产生的产物反过来可以促进或抑制植物的生长(Bonfante &Anca,2009; Fierer,2017)。而同为木兰科的五味子内生真菌研究有一些报道,五味子属植物中含有丰富的内生真菌,从不同来源、不同组织中分离的内生菌具有抗氧化、拮抗植物病原菌等功能(潘争艳等,2007;Gao et al.,2020;张誉荠等,2021)。此外,从五味子中陆续分离的一些内生真菌能够产生与宿主植物类似的木脂素及三萜类,或具有转化宿主次生代谢物的功能(Wang et al.,2017;Qin et al.,2019;Qin et al.,2020)。刘涛等(2023)利用高通量测序技术对黑老虎不同组织内生真菌进行了分析,明确了不同组织内生真菌群落的结构和功能特征。植物内生真菌和根际真菌群落组成和结构受物种、地理环境、气候和土壤特性等多种因素影响(Patten &Glick,2002; Chaparro et al.,2013; 王艳等,2019)。目前,对黑老虎及南五味子属的研究多集中于营养成分和药理学研究,而对黑老虎根际真菌和内生真菌组成和多样性研究尚不多见。

  • 本研究采用ITS高通量测序技术研究了栽培和野生生境下多年生成熟黑老虎根际真菌和根部内生真菌群落结构、组成和多样性,并开展了真菌多样性和土壤理化因子的相关性分析,以期为黑老虎资源保护、土壤根际微生态环境研究及有益微生物的发掘和利用提供基础。

  • 1 材料与方法

  • 1.1 采样地点及样品处理

  • 选取贵州省3个黑老虎代表性研究样地(3个样地)。贵阳(GY)样地,贵阳市贵州果树研究所黑老虎种质资源圃(106°39′38.33″ E、26°29′59.00″ N),海拔1 051 m,为多年生人工管理种质资源圃,土壤类型为中厚层红黄壤;榕江(RJ)样地,黔东南苗族侗族自治州榕江县古州镇(108°29′15.18″ E、25°55′52.43″ N),海拔361 m,为野生样地,土壤类型为中厚层红黄壤为主,富含有机质;福泉(FQ)样地,黔南布依族苗族自治州福泉市金山街道(107°24′15.48″ E、26°44′36.62″ N),海拔928 m,为野生样地,土壤类型以石灰石为主,富含P,福泉有“亚洲磷都”之美誉。3个样地分别代表不同栽培生境、不同土壤类型和不同酸碱度,代表了贵州黑老虎生长的主要生境。

  • 于果实采收季节,分别在3个样地选取生长多年、藤蔓高度木质化的健康植株,用铲子去除地表植被和杂质,使用小锄头轻轻刨开土壤,寻找主根周边的细根(直径≤2 mm),挖取少量带土的细根(Berhongaray et al.,2013)。每3株样品合并为1个生物学重复,每个样本设置3个生物学重复,将样品收集至无菌采样袋中并密封保存,迅速置于冷链箱内,于4 h内带回实验室处理。

  • 将黑老虎根部的土壤抖落,留存附着在根部无法抖落的为根际土(rhizosphere soil,Rh)(Edwards et al.,2015),将根系样品转移至无菌50 mL离心管中(含20 mL无菌10 mmol·L-1 PBS溶液),置于摇床(苏州培英实验设备有限公司,培英,型号:THZ-C-1),120 r·min-1,室温下振荡20 min(Yu et al.,2013)。使用无菌镊子挑除根系,剩余悬浮液高速离心(6 000 g,4℃)20 min,沉淀即为根际土样品,液氮速冻后,置于-80℃冰箱备用。剩余的根系样品(root,R)用自来水冲去表面多余的根际土,进行表面消毒(75%乙醇浸泡2 min,5%次氯酸处理3 min,无菌水清洗3次)获得表面消毒的根组织样品,液氮速冻后,置于-80℃冰箱用于DNA 提取。

  • 1.2 土壤理化指标测定

  • 土壤pH值测定:称取3 g土壤样品于50 mL烧杯中,加入7.5 mL去除CO2的蒸馏水(水土比2.5∶1),用水平振荡器剧烈振荡2 min,使土粒充分分散后,放置30 min后用pH计测定,1 h内完成测定。每个样品测定3次,计算平均值。土壤总氮(total nitrogen,TN)采用半微量凯氏定氮法,总磷(total phosphorus,TP)采用NaOH碱熔-钼锑抗分光光度法,土壤总钾(total potassium,TK)测定采用NaOH熔融法,土壤速效氮(avaliable nitrogen,AN)的测定采用碱解扩散法,土壤速效磷(available phosphorus,AP)的测定采用分光光度法,土壤速效钾(available potassium,AK)的测定采用乙酸铵浸提法,土壤有机质(soil organic matter,SOM)的测定采用重铬酸钾容量法。每个样品重复3次。

  • 1.3 DNA提取及高通量测序

  • 根系样品DNA提取采用植物基因组DNA提取试剂盒(货号:DP305,天根生化科技有限公司,北京)。根际土壤样品DNA提取采用土壤DNA提取试剂盒(货号:DP336,天根生化科技有限公司,北京)。ITS引物:fITS7(5′-GTGARTCATCGAA TCTTTG-3′)和ITS4(5′-TCCTCCGCTTATTGATATG C-3′)。反应体系(25 μL):2×Phanta Max master mix 12.5 μL,正、反向引物(1 μmol·L-1)各2.5 μL,DNA μL (50 ng),ddH2O 6.5 μL。PCR 反应条件:94℃/1 min-(94℃/10 s-50℃/30 s-72℃/45 s)×32个循环-72℃/10 min。PCR产物经2%琼脂糖凝胶电泳确证,用AMPure XT beads(Beckman Coulter Genomics,Danvers,MA,USA)纯化,Qubit(Invitrogen,USA)定量。扩增子文库的大小和数量分别用Agilent 2100生物分析仪(Agilent,USA)和Illumina(Kapa Biosciences,Woburn,MA,USA)文库定量试剂盒进行评估。高通量测序委托杭州联川生物技术有限公司完成,所用平台为高通量二代测序仪(Illumina,HiSeq 4000,USA)。测序原始数据已提交至NCBI数据库(项目号为PRJNA855296,样品编号为SAMN29487930-SAMN29487947)。

  • 1.4 数据处理及分析

  • 高通量测序获得的下机数据根据Barcode拆分后,去除Barcode和接头序列,并进行质控、过滤,得到Clean data。使用PEAR(v0.9.6)软件对reads进行拼接合并获得原始Tags。用Fqtrim筛选Q20>20的序列。利用Vsearch(v2.3.4)去除嵌合体获得最终有效数据用于进一步分析。样本的α多样性指数采用mothur(http://www.mothur.org/wiki/ Schloss_SOP#Alpha_diversity)软件计算。应用Usearch 软件(vesion 7.0 http://drive5.com/uparse/)对有效数据序列在97%的相似度下进行OTU(Operational Taxonomic Units)聚类,采用Qiime2进行OTU物种注释分析,获得样品OTU的分类学信息。韦恩图、PCoA分析、RDA分析等利用联川云平台(https://www.omicstudio.cn/index)进行。利用FUNGuild软件对真菌进行功能预测分析(Nguyen et al.,2016)。采用SPSS 26对土壤理化性质进行显著性差异分析。

  • 2 结果与分析

  • 2.1 3个样地黑老虎根际土壤理化特性

  • 由表1可知,3个不同生境下,黑老虎根际土壤的理化指标存在显著差异,野生生境土壤主要养分指标高于栽培生境。3个生境中,贵阳栽培生境(GY,pH=4.66)和榕江野生生境(RJ,pH=4.63)下的根际土壤为酸性(pH<6.5),福泉野生生境下的根际土壤pH呈中性(FQ,pH=7.22),主要是由于福泉土壤类型以石灰土最多,土壤pH呈中性,福泉素有“亚洲磷都”之美誉,土壤富含P,此外K含量也较多。RJ根际土壤的TN、AN和SOM含量在3个样地中最高;FQ根际土壤的TP、TK、AP含量在3个样地中最高;GY栽培生境下根际土壤TN、TP、TK、AN、AK、AP及SOM含量均显著低于野生生境(RJ和FQ)。野生生境下的土壤营养元素和有机质含量高于栽培生境,并且生态系统更为平衡。原因可能为野生生境为茂密的树林,存在较多腐殖质,有机质含量更为丰富且含水量较高,土壤较为疏松,矿质营养元素不易流失;而人工苗圃在管理过程中施用肥料不多,腐殖质和有机质偏少且土壤存在一定程度的板结,土壤中的N、P、K等元素随雨水流失较为严重。

  • 表1 3个样地黑老虎根际土壤理化特性

  • Table1 Physical and chemical indices of rhizosphere soil ofKadsura coccinea in three sample plots

  • 注: 不同小写字母表示在P<0.05 水平上存在显著差异。

  • Note: Different lowercase letters indicate significant differences (P<0.05) .

  • 2.2 黑老虎根际土壤真菌及根部内生真菌测序

  • 对Illumina高通量测序数据进行双端拼接、质量控制、嵌合体过滤后,进行高质量数据统计,共获得有效序列1 463 619个,样品有效reads为76 878~84 980对,每个样品平均为81 312对reads,有效率在93.59%~98.70%之间,Q20全部在99%以上。18个样品的OTU稀释曲线随测序数目增加逐渐趋于平缓,并且各样品测序覆盖度均在99.95%以上(图1),表明测序数据量能较全面地反映测序样品的真菌群落组成,测序质量评价各项指标均符合ITS测序要求,可以进行后续分析和研究。

  • 以≥97%的相似性聚类得到4 328个OTU,3个样地根际土壤真菌和根部内生真菌分别检测到OTU数为3 867个和801个,其中根际土壤中各地区OTU 数从多到少依次为RJ_Rh(1 358个)> FQ_Rh(1 090个)> GY_Rh(994个),共有的OTU为72个。共有的OTU共注释到5个门,绝大多数为子囊菌门(50个,占比68.4%);共注释到49个属,占比前几位的有未分类属(7个,9.7%)、被孢霉属(6个,8.3%),外瓶柄霉属、柱孢属、丛赤壳属和隐球菌属均为3个,各占比4.2%。根部内生真菌中,各地区OTU数从多到少依次为FQ_R(330)> GY_R(243)>RJ_R(153),共有的OTU为14个。14个共有的OTU共注释到2个门,子囊菌门有13个,占比92.9%;共注释到11个属,占比最高的为外瓶柄霉属(3个,21.4%),其余属均为1个,各占比7.1%。根际土壤真菌和内生真菌所有样品共有的OTU仅为6个,注释到2个门,子囊菌门为5个,占比83.3%;注释到5个属,占比最高的为外瓶霉属(2个,33.3%),其余分别为被孢霉属、柱孢属和丛赤壳属(图2)。图2结果显示3个样地样品中,真菌OTU数量均为根际土壤>根内,FQ野生样地OTU多样性较高。共有的OTU中,被孢霉属、外瓶柄霉属、柱孢属和丛赤壳属最为常见。

  • 2.3 黑老虎根际土壤真菌和根部内生真菌多样性

  • Alpha多样性分析表明,3种生境下,根际土壤的真菌群落多样性和丰富度均显著高于根部内生真菌。3个样地根际土壤真菌中,香农指数(Shannon index)和辛普森指数(Simpson index)无显著差异,RJ_Rh中Chao1指数和Ace指数显著高于GY_Rh和FQ_Rh。3个样地根部内生真菌中,FQ_R香农指数显著高于GY_R和RJ_R,GY_R辛普森指数显著低于RJ_R和FQ_R,而RJ_R的Chao1指数和Ace指数显著低于FQ_R,与GY_R无显著差异(表2)。这说明了3个生境根际土壤真菌多样性和优势度无显著差异,RJ_R的根际真菌群落丰度高于其余两地,3个样地根部内生真菌中, FQ_R的真菌群落多样性显著高于其他两地,GY_R栽培生境的真菌优势度显著低于两个野生生境(RJ_R和FQ_R)。

  • 通过无权重距离矩阵(unweighted_unifrac_distance_matrix)算法对3个样地样品进行主坐标分析(PCoA)分析,结果显示,主坐标1和主坐标2分别解释了25.25%和13.76%的多样性,合计解释了39.01%的多样性,3个生境下的根部内生真菌群落聚集于第二、第三象限,根际土壤真菌群落聚集于第一、第四象限,显示3个不同生境中根际土壤真菌更为相似,而根部内生真菌群落更为相似(图3)。结果表明,黑老虎根部内生真菌受地域影响较小,具有明显的种属特异性。另外,从PCoA结果可以看出,同一类样本的3个生物重复均能很好地聚在一起,说明本研究所采用的样本重复性好,数据可靠性高。

  • 2.4 黑老虎根际土壤和根部内生真菌组成和结构

  • 3 个生境下共18个黑老虎根际土壤和根样品中,共检测到了真菌12个门,依次为GY(10个)、RJ(9个)和FQ(9个),3个样地相差不大。3个样地6组样品中,真菌优势类群均为子囊菌门(Ascomycota)和担子菌门(Basidiomycota),其中,子囊菌门占比最高,占比范围48.02%~88.38%,在栽培生境(GY_R)的根内(Y1)占比高达88.38%,而在栽培生境的根际土壤(GY_Rh)中占比最低(48.02%)。GY_Rh和FQ_Rh中,存在26.17%和13.68%的未分类真菌(图4:A)。

  • 在属水平上,共注释到509个属,3个生境中注释到的真菌属依次为RJ(375)> FQ(299)>GY(274)。3个生境下,优势属的结构和丰度存在明显差异,根部内生真菌中,栽培生境(GY_R)下,外瓶霉属(Exophiala,77.81%)优势明显,其他属占比均不超过4%,2个野生生境下,RJ_R的优势菌群为Cladophialophora(21.68%)、黄丝菌属(Cephalotheca,19.46%)和Flagelloscypha(19.32%),FQ_R的优势菌群为蜡壳耳目未分类属(19.7%)、外瓶霉属(15.20%)和球囊菌门未分类属(Glomeromycota_unclassified,12.12%)。3个样地的根际土壤真菌,被孢霉属(Mortierella)占比均最高,分别为8.57%(GY_Rh)、21.43%(RJ_Rh)和13.53%(FQ_Rh)。此外, GY_Rh优势菌群还有癣囊腔菌属(Plectosphaerella,4.34%)和外瓶霉属(4.15%), RJ_Rh中优势菌群为新丛赤壳属(Neonectria,7.15%),Y3中优势菌群为癣囊腔菌属(5.97%)和柱孢属(Cylindrocarpon,4.31%)(图4:B)。结果显示,栽培生境下,根部内生真菌菌群具有一定的偏好性,部分菌群具有优越性,而野生生境下,菌群均匀度更高。

  • 图1 黑老虎根际土壤和根部内生真菌的OTU稀释曲线

  • Fig.1 Fungal OTU rarefaction curves of rhizosphere soil (Rh) and root (R) of Kadsura coccinea

  • 以相对丰度Top20的属制作的热图显示,3个生境下,根部内生真菌和根际真菌群落均存在显著差异,其中根际土壤真菌群落聚为一类,与PCoA聚类图结果一致,表明黑老虎根际土壤真菌群落结构受生境影响较小,黑老虎根部内生真菌群落具有一定的物种特异性(图5)。

  • 2.5 黑老虎根际土壤真菌及根部内生真菌群落功能预测

  • 利用FUNGuild软件对黑老虎根际土壤及根部内生真菌进行功能预测,结果显示真菌7个营养类型在3个生境的根际土壤和根组织中分布不均,其中病理-腐生营养型和腐生营养型两个类型为优势菌群。3个样地的根际土壤样本中,腐生-共生营养型占比相当高,而在根部内生真菌中占比较低。与内生真菌相比,根际真菌中不同营养类型真菌菌群的分布更为均匀。根部内生真菌中,栽培生境下(GY_R),病理-腐生营养型占比较高,RJ_R的腐生营养型占比较高,FQ_R的共生营养型占比较高(图6:A)。

  • 图2 黑老虎不同生境真菌群落OTU分布韦恩图

  • Fig.2 Venn diagram of fungal OTU detected inKadsura coccinea under different habitats

  • 3 个生境下6组样本预测得到61个生态共位群(guild),不同生态共位群在3个生境下的根际土壤真菌分布更为相似,GY_R群落中动物病原-真菌寄生虫-未定义腐生营养型占比较高,而RJ_R中未定义腐生营养型占比较高,FQ_R中动物病原-真菌寄生虫-未定义腐生营养型和丛枝菌根占比较高(图6:B)。

  • 2.6 黑老虎根际土壤真菌群落结构与土壤环境因子相关性

  • 利用土壤理化因子与根部内生真菌和根际真菌群落多样性指数分别做Pearson相关性分析。根部内生真菌中,TK与根部内生真菌香农指数和辛普森指数正相关, TP与香农指数正相关(P<0.05),但未达极显著水平(图7:A)。根际土壤真菌中,土壤SOM、AN和TN与根际土壤真菌Ace指数和Chao1指数呈极显著(P<0.01)正相关(图7:B)。这说明土壤环境因子对黑老虎内生真菌和根际土壤真菌群落结构的影响不同,TK和TP主要影响内生真菌群落的多样性,而SOM、TN和AN主要影响根际土壤真菌群落的丰度,对根际土壤真菌群落结构的影响大于内生真菌。

  • 图3 不同生境下黑老虎根际和体内真菌群落的主坐标分析

  • Fig.3 PCoA analysis of fungal community in rhizosphere soil and root in Kadsura coccinea under different habitats

  • 为探究土壤理化因子与根际真菌群落结构的相关性,通过冗余分析(redundancy analysis,RDA)分别研究了土壤理化因子与根际真菌与门水平和丰度排序前20的属之间的相互关系(图8)。在门水平上,第一、第二排序轴累计解释率分别为62.5%和22.5%,累计解释率为85.0%,能较好地反映黑老虎土壤理化因子与根际真菌门水平的相互关系。SOM、AN、TN和TK与担子菌门(Basidiomycota)和接合菌门(Zygomycota)呈现较强的正相关。在属水平上,第一、第二排序轴累计解释率分别为75.6%和15.0%,累计解释率为90.6%,能较好地反映黑老虎根际真菌群落与土壤理化因子之间的相互关系。TN、AN、SOM和TK与新丛枝壳属、黄丝菌属、被孢霉属等箭头方向一致,呈现较强的正相关,与真菌_未分类(Fungi_unclassified)、外瓶霉属、肉座菌属(Hypocrea)等箭头方向相反,呈现明显的负相关。综上表明,SOM、TN、AN和TK对黑老虎根际土壤真菌群落丰度影响较大,是影响黑老虎根际土壤真菌结构的主要因素。

  • 表2 黑老虎根际土壤和根内真菌群落多样性指数分析

  • Table2 Diversity index analysis of rhizosphere soil and root endophytic fungal communities in Kadsura coccinea

  • 注: 不同小写字母表示显著差异 (P<0.05)。

  • Note: Different lowercases indicate significant differences (P<0.05) .

  • 3 讨论与结论

  • 本研究利用高通量测序技术研究了不同生境下黑老虎根内生真菌及根际土壤真菌群落组成和多样性,3个样地根际土壤和根部内生真菌共有的OTU分别为72个和14个,根际土壤真菌和内生真菌所有样品共有的OTU仅为6个,各地特有的OTU有较大差异。这表明根际土壤真菌具有一定的地域专化性和宿主专一性,与其他物种结果相类似(周婕等,2019)。3个样地中,黑老虎根际土壤真菌的OTU数量和多样性均显著高于根部内生真菌,土壤中含有微生物所需的食物来源和生长环境,是地球上微生物含量最为丰富的区域(Roesch et al.,2007),与重楼(王艳等,2019)、黄精(樊锐锋等,2021)、川穹(张秫华等,2021)等研究结果一致。此外,3个样地根际土壤真菌多样性(香农指数和辛普森指数)无显著差异,原因可能为3个样地均在贵州省内,地理位置、大气候和生态环境具有一定的相似性。但是,3个样地根际土壤真菌的丰富度(Chao1指数和Ace指数)存在显著差异,其中RJ_Rh根际土壤真菌丰富度显著高于GY_Rh和FQ_Rh,de Boe等(2005)研究表明植物根系及其分泌物、动植物残体和SOM是土壤真菌可利用的主要能源,榕江土壤丰富的有机质为真菌群落的繁殖提供了丰富的养分,可能是榕江根际土壤真菌丰富度高于另外两地的原因。3个样地根部内生真菌中, FQ_R的真菌群落多样性显著高于其他两地,GY_R栽培生境的真菌优势度显著低于两个野生生境(RJ_R和FQ_R),可能是因为野生生境受人工干预,栽培生境的植被、土壤结构和营养元素趋于不均衡,导致栽培生境下黑老虎根内生真菌的多样性偏低。

  • 图4 不同生境下黑老虎真菌群落物种组成差异

  • Fig.4 Distribution of OTU in Kadsura coccinea under different habitats

  • 图5 不同生境下黑老虎根际和根部内生真菌属水平的相对丰度热图

  • Fig.5 Heat map of the relative abundance of fungal community in rhizosphere soil and root inKadsura coccinea under different habitats

  • 图6 黑老虎根际土壤和根部内生真菌的功能预测分析

  • Fig.6 FUNGuild analysis of rhizosphere soils and root endophytic fungi in Kadsura coccinea

  • 图7 土壤环境因子与黑老虎根部内生真菌(A)和土壤根际土壤真菌(B)群落多样性指数的皮尔森相关性分析

  • Fig.7 Pearson correlation analysis of environmental factors with endophytic fungi (A) and soil rhizosphere fungal (B) community diversity indices of Kadsura coccinea

  • 图8 黑老虎根际土壤真菌与土壤环境因子RDA分析

  • Fig.8 RDA analysis of rhizosphere soil fungi with soil environmental factors in Kadsura coccinea

  • 本研究发现子囊菌门和担子菌门是黑老虎根际和根部内生真菌的优势类群,子囊菌门大都为陆生,可分解土壤中动植物腐烂的遗骸和有机质,释放有机物供植物吸收利用,其含量的高低与土壤肥力有关。担子菌门常与植物形成共生菌根,促进植物的生长和发育(Miguel et al.,2020)。本研究结果与五味子属(江林春等,2020)及其他中药材如重楼(王艳等,2019)、黄精(樊锐锋等,2021)、川穹(张秫华等,2021)等一致。在属水平上,根部内生真菌中, GY_R、RJ_R和FQ_R的优势菌属分别为外瓶霉属(77.81%)、Cladophialophora(21.68%)和蜡壳耳目未分类属(19.7%)、外瓶霉属(15.20%)。外瓶霉属在栽培生境(GY)的根中丰度较高(77.81%)。其原因可能为外瓶霉属有在土壤、水和空气等不同生态系统中有着广泛的分布,多为人、畜和水产鱼类等的真菌病害,在植物中,有耐重金属特性的报道(王璐,2011)。栽培生境下,长期施用化肥农药,受到人类活动干扰较多,外瓶霉属上升为优势菌群。根际土壤真菌中,3个样地的优势菌属均含被孢霉属,而其他优势菌群各不相同。被孢霉属为土壤碳及养分转化的关键成员,在植物生长发育、代谢中均发挥关键作用(宁琪等,2022)。在属水平上,对不同生境下根际土壤和根部内生真菌的α多样性分析显示,不同生境下黑老虎根际土壤和根部内生真菌群落的丰度和多样性存在显著差异。FUNGuild功能预测结果显示,7个营养类型在6组样本中分布不均,栽培生境下(GY)病理-腐生营养型及动物病原-真菌寄生虫-未定义腐生营养型真菌在黑老虎根内生菌中比例最高,推测可能是由于在栽培生境下,由于生态平衡遭到破坏,造成植株体内病原菌和寄生虫等侵害机会增加,病原菌潜伏或以条件性致病方式寄生于植物根内,是导致栽培生境下植物更容易发生病害的原因之一(Rodriguez et al.,2009)。王艳等(2019)发现,野生生境下的重楼内生真菌和土壤真菌菌群丰度和多样性显著高于园区环境,与本研究结果较为一致。

  • 植物根际土壤和根内真菌在植物生长发育、低于逆境和维持土壤微生态环境中发挥重要作用,其结构和组成受土壤环境因子如湿度、pH值、N、P、K、SOM等理化因素的影响(Roesch et al.,2007)。本研究结果显示,3个不同生境下,黑老虎根际土壤的理化指标存在明显差异,野生生境下的土壤营养元素和有机质含量高于栽培生境,说明栽培生境下,要注意合理施用营养元素和有机肥,确保植物生长的需要和土壤生态环境平衡。同时,本研究结果也为后续的人工苗圃管理提供了重要信息。土壤理化因子与根部内生真菌多样性相关分析显示,土壤TK和TP与根部内生真菌香农指数相关显著,表明TK和TP主要影响根部内生真菌的多样性,对丰度和优势度影响不明显。根际土壤真菌中,土壤SOM、AN和TN与根际土壤真菌Ace和Chao1指数极显著相关。这表明土壤环境因子对根际土壤真菌群落结构影响大于根部内生真菌且主要影响根部内生真菌的多样性,而对根际土壤真菌的影响主要为丰度。李铭杰等(2021)发现,土壤SOM、pH、AP、AK与北苍术根区土壤丛枝菌根真菌Shannon指数、Simpson指数呈正相关,其中SOM对丛枝菌根真菌群落多样性影响最大。杨蕊毓等(2022)研究发现,川麦冬根围土壤丛枝菌根多样性指数及群落组成与土壤理化因子TK、TP、TN相关性显著。金辉等(2021)对紫花针茅根际土壤和内生真菌研究分析发现,土壤理化因子pH、AK、Fe、Ca 和Mg 与Ace指数、Chao1指数和Shannon指数等真菌多样性指数显著相关(P<0.05)或极显著相关(P<0.01),与本研究结果具有部分相似性。N是植物生长发育所需的大量元素,植物通过根系分泌物和物生物互作,形成植物-土壤的氮素化学循环,因此N与土壤微生物群落和根内生菌均发生交互作用(Hobbie et al.,2007)。有机质含量影响土壤真菌的群落结构,主要由于SOM在微生物和酶的作用下发生分解,同时为土壤微生物提供丰富的养分来促进了土壤真菌的生长 (隋跃宇等, 2009; Smith et al.,2014)。

  • 土壤TN、AN、SOM和TK是影响黑老虎根际土壤真菌结构的主要因素。RDA分析结果显示,被孢霉属与TN、AN和SOM呈现较强的正相关。被孢霉属是接合菌亚门接合菌纲毛霉目被孢霉科,能显著提高土壤可溶性有机碳、AN和AP的含量(宁琪等,2022)。本研究结果表明,多施有机肥、氮肥和钾肥,可以改善土壤微生物菌群结构,促进黑老虎生长发育。本研究为今后黑老虎根内有益真菌的分离与鉴定提供了重要信息,同时也为黑老虎的引种驯化和生态栽培提供了理论依据。

  • 参考文献

    • BERHONGARAY G, JANSSENS IA, KING JS, et al. , 2013. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture [J]. Plant Soil, 373(1-2): 269-283.

    • BONFANTE P, ANCA IA, 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions [J]. Ann Rev Microbiol, 63: 363-383.

    • CHAPARRO JM, BADRI DV, VIVANCO JM, 2013. Rhizosphere microbiome assemblage is affected by plant development [J]. ISME J, 8(4): 790-803.

    • DE BOER W, FOLMAN LB, SUMMERBELL RC, et al. , 2005. Living in a fungal world: impact of fungi on soil bacterial niche development [J]. FEMS Microbiol Rev, 29(4): 795-811.

    • EDWARDS J, JOHNSON C, SANTOS-MEDELLíN C, et al. , 2015. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proc Natl Acad Sci, 112(8): E911-920.

    • FAN RF, WANG RF, DU YQ, et al. , 2021. Community composition and ecological function of rhizosphere fungi and medicinal parts endophytic fungi in Polygonatum sibiricum [J]. Guihaia, 41(5): 799-807. [樊锐锋, 王若凡, 杜艳秋, 等, 2021. 黄精根际及药用部位内生真菌群落组成和生态功能分析 [J]. 广西植物, 41(5): 799-807. ]

    • FIERERN, 2017. Embracing the unknown: disentangling the complexities of the soil microbiome [J]. Nat Rev Microbiol, 15(10): 579-590.

    • GAO JF, ZHOU W, LIU N, 2022. Differential analysis of phenolic acids from different parts of Kadsura coccinea [J]. J Chin Med Mat, 45(2): 351-358. [高渐飞, 周玮, 刘妮, 2022. 黑老虎不同部位酚酸类成分差异分析 [J]. 中药材, 45(2): 351-358. ]

    • GAO Y, ZHOU J, RUAN HL, 2020. Trichothecenes from an endophytic fungus Alternaria sp. sb23 [J]. Planta Med, 86(13/14): 976-982.

    • HOBBIE SE, OGDAHL M, CHOROVER J, et al. , 2007. Tree species effects on soil organic matter dynamics: the role of soil cation composition [J]. Ecosystems, 10(6): 999-1018.

    • HUANG SZ, DUAN LP, WANG H, et al. , 2019. Two new AChE inhibitors isolated from Li folk herb Heilaohu “Kadsura coccinea” stems [J]. Molecules, 24(19): 3628.

    • JIA M, CHEN L, XIN HL, et al. , 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review [J]. Front Microbiol, 7: 906.

    • JIANG LC, WEI JM, BAI SS, et al. , 2020. Characteristics of rhizosphere soil fungi community of Schisandra sphenanthera Rehd. Et Wils [J]. J Yanan Univ (Nat Sci Ed), 39(4): 15-20. [江林春, 韦洁敏, 白尚尚, 等, 2020. 华中五味子根际土壤真菌群落特征研究 [J]. 延安大学学报(自然科学版), 39(4): 15-20. ]

    • JIN H, YANG XY, LIU HY, et al. , 2021. The structure of rhizosphere soil and endophytic fungal communities associated with Stipa purpurea and their correlation with soil environmental factors [J]. Acta Microbiol Sin, 61(11): 3520-3541. [金辉, 杨晓燕, 柳皓月, 等, 2021. 紫花针茅根际和体内真菌群落结构及与土壤环境因子的相关性研究 [J]. 微生物学报, 61(11): 3520-3541. ]

    • LI MJ, ZHOU ZJ, XING LJ, et al. , 2021. Correlation analysis between diversity of AM fungi and nutrient in root-zone soil of Atractylodes chinensis [J]. Chin J Biol Control, 37(6): 1288-1297. [李铭杰, 周志杰, 邢礼军, 等, 2021. 北苍术根区土壤中AM真菌多样性及其与土壤养分相关性分析 [J]. 中国生物防治学报, 37(6): 1288-1297. ]

    • LIU T, MA N, JIN JF, et al. , 2023. Composition structure and ecological function analyses of endophytic and rhizosphere soil fungi in Kadsura coccinea [J]. Guihaia, 43(5): 869-879. [刘涛, 马楠, 金吉芬, 等, 2023. 黑老虎内生真菌及根际土壤真菌的群落结构与生态功能分析 [J]. 广西植物, 43(5): 869-879. ]

    • LIU T, WEI Q, WU XB, et al. , 2009. Research status and development and utilization prospect of wild fruit species Kadsura coccinea (Lem. ) A. C. Smith [J]. J Anhui Agric Sci, 37(23): 10971-10972. [刘涛, 韦茜, 吴小波, 等, 2009. 野生水果黑老虎的研究现状及开发利用前景 [J]. 安徽农业科学, 37(23): 10971-10972. ]

    • LU HY, WEI TY, LOU HH, et al. , 2021. A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses [J]. J Fung (Basel), 7(9): 719.

    • MIGUEL RM, JOSE GMV, MEIKE P, et al. , 2020. Diversity of fungi in soils with different degrees of degradation in Germany and Panama [J]. Mycobiology, 48(1): 20-28.

    • NGUYEN NH, SONG Z, BATES ST, et al. , 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild [J]. Fung Ecol, 20: 241-248.

    • NING Q, CHEN L, LI F, et al. , 2022. Effects of Mortierella on nutrient availability and straw decomposition in soil [J]. Acta Pedol Sin, 59(1): 206-217. [宁琪, 陈林, 李芳, 等, 2022. 被孢霉对土壤养分有效性和秸秆降解的影响 [J]. 土壤学报, 59(1): 206-217. ]

    • PAN ZY, FU JF, ZHOU RJ, et al. , 2007. Preliminary study of soil fungi in Schisandra chinensis garden and screening antagonism strains [J]. J Jilin Agric Univ, 29(6): 636-639. [潘争艳, 傅俊范, 周如军, 等, 2007. 五味子园根际真菌多样性初探及拮抗菌株筛选 [J]. 吉林农业大学学报, 29(6): 636-639. ]

    • PATTENCL, GLICK BR, 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system [J]. Appl Environ Microb, 68(8): 3795-3795.

    • QIN D, SHEN WY, WANG JQ, et al. , 2019. Enhanced production of unusual triterpenoids from Kadsura angustifolia fermented by a symbiont endophytic fungus, Penicillium sp. SWUKD4. 1850 [J]. Phytochemistry, 158: 56-66.

    • QIN D, SHEN WY, GAO TC, et al. , 2020. Kadanguslactones A-E, further oxygenated terpenoids from Kadsura angustifolia fermented by a symbiotic endophytic fungus, Penicillium ochrochloron SWUKD4. 1850 [J]. Phytochemistry, 174: 112335.

    • RODRIGUEZ RJ, WHITE JF, ARNOLD AE, et al. , 2009. Fungal endophytes: diversity and functional roles [J]. New Phytol, 182(2): 314-330.

    • ROESCH LF, FULTHORPE RR, RIVA A, et al. , 2007. Triplett EW. Pyrosequencing enumerates and contrasts soil microbial diversity [J]. ISME J, 1(4): 283-290.

    • SMITH AP, MARíN-SPIOTTA E, DE GRAAFF MA, et al. , 2014. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change [J]. Soil Biol Biochem, 77: 292-303.

    • SRITALAHAREUTHAI V, TEMVIRIYANUKUL P, ON-NOM N, et al. , 2020. Phenolic profiles, antioxidant, and inhibitory activities of Kadsura heteroclita (Roxb. ) Craib and Kadsura coccinea (Lem. ) A. C. Sm [J]. Foods, 9(9): 1222.

    • SUI YY, JIAO XG, GAO CS, et al. , 2009. The relationship among organic matter content and soil microbial biomass and soil enzyme activities [J]. Chin J Soil Sci, 40(5): 1036-1039. [隋跃宇, 焦晓光, 高崇生, 等, 2009. 土壤有机质含量与土壤微生物量及土壤酶活性关系的研究 [J]. 土壤通报, 40(5): 1036-1039. ]

    • TIWARI P, BAE H, 2022. Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery [J]. Microorganisms, 10(2): 360.

    • WANG L, 2011. Resistance screening on heavy metal and taxonomic studies of strains belong to Phialophora and Exophiala [D]. Kumming: Yunnan University. [王璐, 2011. 瓶霉属(Phialophora)和外瓶霉属(Exophiala)菌株重金属耐性筛选及分类学研究 [D]. 昆明: 云南大学. ]

    • WANG L, QIN D, ZANG K, et al. , 2017. Metabolites from the co-culture of nigranoic acid and Umbelopsis dimorpha SWUKD3. 1410, an endophytic fungus from Kadsura angustifolia [J]. Nat Prod Res, 31(12): 1414-1421.

    • WANG LJ, LIAO SQ, LIANG J, et al. , 2021. Analysis and evaluation of nutritional components of Kadsura coccinea seeds [J]. Chin Oils Fats, 46(12): 112-117. [王丽军, 廖苏奇, 梁洁, 等, 2021. 黑老虎种子的营养成分分析及评价 [J]. 中国油脂, 46(12): 112-117. ]

    • WANG Y, CHANG F, CHENG HY, et al. , 2019. Fungal diversity and differential analysis of fungi community composition in Paris polyphylla var. chinensis rhizosphere and endophytic [J]. Chin Trad Herb Drugs, 50(5): 1232-1237. [王艳, 常帆, 程虎印, 等, 2019. 重楼根际及药用部位内生真菌多样性与群落结构差异分析 [J]. 中草药, 50(5): 1232-1237. ]

    • YANG RY, DENG QZ, TIAN LP, et al. , 2022. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Ophiopogon japonicus in different habitats [J]. Acta Bot Boreal-Occident Sin, 42(1): 145-153. [杨蕊毓, 邓錡璋, 田丽平, 等, 2022. 不同生境下川麦冬根围土壤丛枝菌根真菌多样性 [J]. 西北植物学报, 42(1): 145-153. ]

    • YU J, ZHOU XF, YANG SJ, et al. , 2013. Design and application of specific 16S rDNA-targeted primers for assessing endophytic diversity in Dendrobium officinale using nested PCR-DGGE [J]. Appl Microbiol Biotechnol, 97(22): 9825-9836.

    • ZHANG SH, FANG Q, JIA HM, et al. , 2021. Difference analysis of fungal community among bulk soil, rhizosphere, and rhizomes of Ligusticum chuanxiong Hort [J]. Biotechnol Bull, 37(4): 56-69. [张秫华, 方千, 贾红梅, 等, 2021. 川芎非根际、根际及根茎内生真菌群落差异分析 [J]. 生物技术通报, 37(4): 56-69. ]

    • ZHANG YQ, XU YH, WEN XS, et al. , 2021. Response surface methodology for optimizing fermentation process of the endophytic fungus Purpureocillium lilacinum WG9 preventing Schisandra chinensis brown spot disease [J]. Mycosystema, 40(6): 1561-1574. [张誉荠, 许永华, 文湘穗, 等, 2021. 响应面法优化北五味子褐斑病内生生防真菌淡紫拟青霉WG9发酵工艺及发酵产物稳定性研究 [J]. 菌物学报, 40(6): 1561-1574. ]

    • ZHOU J, MIAO YF, FANG K, et al. , 2019. Diversity of the endophytic and rhizosphere soil fungi of Ageratina adenophora [J]. Ecol Sci, 38(5): 1-7. [周婕, 苗一方, 方楷, 等, 2019. 紫茎泽兰内生真菌及其根际土壤真菌的多样性研究 [J]. 生态科学, 38(5): 1-7. ]

  • 参考文献

    • BERHONGARAY G, JANSSENS IA, KING JS, et al. , 2013. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture [J]. Plant Soil, 373(1-2): 269-283.

    • BONFANTE P, ANCA IA, 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions [J]. Ann Rev Microbiol, 63: 363-383.

    • CHAPARRO JM, BADRI DV, VIVANCO JM, 2013. Rhizosphere microbiome assemblage is affected by plant development [J]. ISME J, 8(4): 790-803.

    • DE BOER W, FOLMAN LB, SUMMERBELL RC, et al. , 2005. Living in a fungal world: impact of fungi on soil bacterial niche development [J]. FEMS Microbiol Rev, 29(4): 795-811.

    • EDWARDS J, JOHNSON C, SANTOS-MEDELLíN C, et al. , 2015. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proc Natl Acad Sci, 112(8): E911-920.

    • FAN RF, WANG RF, DU YQ, et al. , 2021. Community composition and ecological function of rhizosphere fungi and medicinal parts endophytic fungi in Polygonatum sibiricum [J]. Guihaia, 41(5): 799-807. [樊锐锋, 王若凡, 杜艳秋, 等, 2021. 黄精根际及药用部位内生真菌群落组成和生态功能分析 [J]. 广西植物, 41(5): 799-807. ]

    • FIERERN, 2017. Embracing the unknown: disentangling the complexities of the soil microbiome [J]. Nat Rev Microbiol, 15(10): 579-590.

    • GAO JF, ZHOU W, LIU N, 2022. Differential analysis of phenolic acids from different parts of Kadsura coccinea [J]. J Chin Med Mat, 45(2): 351-358. [高渐飞, 周玮, 刘妮, 2022. 黑老虎不同部位酚酸类成分差异分析 [J]. 中药材, 45(2): 351-358. ]

    • GAO Y, ZHOU J, RUAN HL, 2020. Trichothecenes from an endophytic fungus Alternaria sp. sb23 [J]. Planta Med, 86(13/14): 976-982.

    • HOBBIE SE, OGDAHL M, CHOROVER J, et al. , 2007. Tree species effects on soil organic matter dynamics: the role of soil cation composition [J]. Ecosystems, 10(6): 999-1018.

    • HUANG SZ, DUAN LP, WANG H, et al. , 2019. Two new AChE inhibitors isolated from Li folk herb Heilaohu “Kadsura coccinea” stems [J]. Molecules, 24(19): 3628.

    • JIA M, CHEN L, XIN HL, et al. , 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review [J]. Front Microbiol, 7: 906.

    • JIANG LC, WEI JM, BAI SS, et al. , 2020. Characteristics of rhizosphere soil fungi community of Schisandra sphenanthera Rehd. Et Wils [J]. J Yanan Univ (Nat Sci Ed), 39(4): 15-20. [江林春, 韦洁敏, 白尚尚, 等, 2020. 华中五味子根际土壤真菌群落特征研究 [J]. 延安大学学报(自然科学版), 39(4): 15-20. ]

    • JIN H, YANG XY, LIU HY, et al. , 2021. The structure of rhizosphere soil and endophytic fungal communities associated with Stipa purpurea and their correlation with soil environmental factors [J]. Acta Microbiol Sin, 61(11): 3520-3541. [金辉, 杨晓燕, 柳皓月, 等, 2021. 紫花针茅根际和体内真菌群落结构及与土壤环境因子的相关性研究 [J]. 微生物学报, 61(11): 3520-3541. ]

    • LI MJ, ZHOU ZJ, XING LJ, et al. , 2021. Correlation analysis between diversity of AM fungi and nutrient in root-zone soil of Atractylodes chinensis [J]. Chin J Biol Control, 37(6): 1288-1297. [李铭杰, 周志杰, 邢礼军, 等, 2021. 北苍术根区土壤中AM真菌多样性及其与土壤养分相关性分析 [J]. 中国生物防治学报, 37(6): 1288-1297. ]

    • LIU T, MA N, JIN JF, et al. , 2023. Composition structure and ecological function analyses of endophytic and rhizosphere soil fungi in Kadsura coccinea [J]. Guihaia, 43(5): 869-879. [刘涛, 马楠, 金吉芬, 等, 2023. 黑老虎内生真菌及根际土壤真菌的群落结构与生态功能分析 [J]. 广西植物, 43(5): 869-879. ]

    • LIU T, WEI Q, WU XB, et al. , 2009. Research status and development and utilization prospect of wild fruit species Kadsura coccinea (Lem. ) A. C. Smith [J]. J Anhui Agric Sci, 37(23): 10971-10972. [刘涛, 韦茜, 吴小波, 等, 2009. 野生水果黑老虎的研究现状及开发利用前景 [J]. 安徽农业科学, 37(23): 10971-10972. ]

    • LU HY, WEI TY, LOU HH, et al. , 2021. A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses [J]. J Fung (Basel), 7(9): 719.

    • MIGUEL RM, JOSE GMV, MEIKE P, et al. , 2020. Diversity of fungi in soils with different degrees of degradation in Germany and Panama [J]. Mycobiology, 48(1): 20-28.

    • NGUYEN NH, SONG Z, BATES ST, et al. , 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild [J]. Fung Ecol, 20: 241-248.

    • NING Q, CHEN L, LI F, et al. , 2022. Effects of Mortierella on nutrient availability and straw decomposition in soil [J]. Acta Pedol Sin, 59(1): 206-217. [宁琪, 陈林, 李芳, 等, 2022. 被孢霉对土壤养分有效性和秸秆降解的影响 [J]. 土壤学报, 59(1): 206-217. ]

    • PAN ZY, FU JF, ZHOU RJ, et al. , 2007. Preliminary study of soil fungi in Schisandra chinensis garden and screening antagonism strains [J]. J Jilin Agric Univ, 29(6): 636-639. [潘争艳, 傅俊范, 周如军, 等, 2007. 五味子园根际真菌多样性初探及拮抗菌株筛选 [J]. 吉林农业大学学报, 29(6): 636-639. ]

    • PATTENCL, GLICK BR, 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system [J]. Appl Environ Microb, 68(8): 3795-3795.

    • QIN D, SHEN WY, WANG JQ, et al. , 2019. Enhanced production of unusual triterpenoids from Kadsura angustifolia fermented by a symbiont endophytic fungus, Penicillium sp. SWUKD4. 1850 [J]. Phytochemistry, 158: 56-66.

    • QIN D, SHEN WY, GAO TC, et al. , 2020. Kadanguslactones A-E, further oxygenated terpenoids from Kadsura angustifolia fermented by a symbiotic endophytic fungus, Penicillium ochrochloron SWUKD4. 1850 [J]. Phytochemistry, 174: 112335.

    • RODRIGUEZ RJ, WHITE JF, ARNOLD AE, et al. , 2009. Fungal endophytes: diversity and functional roles [J]. New Phytol, 182(2): 314-330.

    • ROESCH LF, FULTHORPE RR, RIVA A, et al. , 2007. Triplett EW. Pyrosequencing enumerates and contrasts soil microbial diversity [J]. ISME J, 1(4): 283-290.

    • SMITH AP, MARíN-SPIOTTA E, DE GRAAFF MA, et al. , 2014. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change [J]. Soil Biol Biochem, 77: 292-303.

    • SRITALAHAREUTHAI V, TEMVIRIYANUKUL P, ON-NOM N, et al. , 2020. Phenolic profiles, antioxidant, and inhibitory activities of Kadsura heteroclita (Roxb. ) Craib and Kadsura coccinea (Lem. ) A. C. Sm [J]. Foods, 9(9): 1222.

    • SUI YY, JIAO XG, GAO CS, et al. , 2009. The relationship among organic matter content and soil microbial biomass and soil enzyme activities [J]. Chin J Soil Sci, 40(5): 1036-1039. [隋跃宇, 焦晓光, 高崇生, 等, 2009. 土壤有机质含量与土壤微生物量及土壤酶活性关系的研究 [J]. 土壤通报, 40(5): 1036-1039. ]

    • TIWARI P, BAE H, 2022. Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery [J]. Microorganisms, 10(2): 360.

    • WANG L, 2011. Resistance screening on heavy metal and taxonomic studies of strains belong to Phialophora and Exophiala [D]. Kumming: Yunnan University. [王璐, 2011. 瓶霉属(Phialophora)和外瓶霉属(Exophiala)菌株重金属耐性筛选及分类学研究 [D]. 昆明: 云南大学. ]

    • WANG L, QIN D, ZANG K, et al. , 2017. Metabolites from the co-culture of nigranoic acid and Umbelopsis dimorpha SWUKD3. 1410, an endophytic fungus from Kadsura angustifolia [J]. Nat Prod Res, 31(12): 1414-1421.

    • WANG LJ, LIAO SQ, LIANG J, et al. , 2021. Analysis and evaluation of nutritional components of Kadsura coccinea seeds [J]. Chin Oils Fats, 46(12): 112-117. [王丽军, 廖苏奇, 梁洁, 等, 2021. 黑老虎种子的营养成分分析及评价 [J]. 中国油脂, 46(12): 112-117. ]

    • WANG Y, CHANG F, CHENG HY, et al. , 2019. Fungal diversity and differential analysis of fungi community composition in Paris polyphylla var. chinensis rhizosphere and endophytic [J]. Chin Trad Herb Drugs, 50(5): 1232-1237. [王艳, 常帆, 程虎印, 等, 2019. 重楼根际及药用部位内生真菌多样性与群落结构差异分析 [J]. 中草药, 50(5): 1232-1237. ]

    • YANG RY, DENG QZ, TIAN LP, et al. , 2022. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Ophiopogon japonicus in different habitats [J]. Acta Bot Boreal-Occident Sin, 42(1): 145-153. [杨蕊毓, 邓錡璋, 田丽平, 等, 2022. 不同生境下川麦冬根围土壤丛枝菌根真菌多样性 [J]. 西北植物学报, 42(1): 145-153. ]

    • YU J, ZHOU XF, YANG SJ, et al. , 2013. Design and application of specific 16S rDNA-targeted primers for assessing endophytic diversity in Dendrobium officinale using nested PCR-DGGE [J]. Appl Microbiol Biotechnol, 97(22): 9825-9836.

    • ZHANG SH, FANG Q, JIA HM, et al. , 2021. Difference analysis of fungal community among bulk soil, rhizosphere, and rhizomes of Ligusticum chuanxiong Hort [J]. Biotechnol Bull, 37(4): 56-69. [张秫华, 方千, 贾红梅, 等, 2021. 川芎非根际、根际及根茎内生真菌群落差异分析 [J]. 生物技术通报, 37(4): 56-69. ]

    • ZHANG YQ, XU YH, WEN XS, et al. , 2021. Response surface methodology for optimizing fermentation process of the endophytic fungus Purpureocillium lilacinum WG9 preventing Schisandra chinensis brown spot disease [J]. Mycosystema, 40(6): 1561-1574. [张誉荠, 许永华, 文湘穗, 等, 2021. 响应面法优化北五味子褐斑病内生生防真菌淡紫拟青霉WG9发酵工艺及发酵产物稳定性研究 [J]. 菌物学报, 40(6): 1561-1574. ]

    • ZHOU J, MIAO YF, FANG K, et al. , 2019. Diversity of the endophytic and rhizosphere soil fungi of Ageratina adenophora [J]. Ecol Sci, 38(5): 1-7. [周婕, 苗一方, 方楷, 等, 2019. 紫茎泽兰内生真菌及其根际土壤真菌的多样性研究 [J]. 生态科学, 38(5): 1-7. ]