en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

覃蒙尔(1998—),硕士研究生,主要从事喀斯特生态系统恢复机理研究,(E-mail)2423276689@qq.com。

通讯作者:

潘复静,博士,副研究员,主要从事生态恢复及地上地下生态学研究,(E-mail)panfujing@glut.edu.cn。

中图分类号:Q948.12

文献标识码:A

文章编号:1000-3142(2024)03-0465-12

DOI:10.11931/guihaia.gxzw202209060

参考文献
BELL C, CARRILLO Y, BOOT CM, et al. , 2014. Rhizosphere stoichiometry: are C∶N∶P ratios of plants, soils and enzymes conserved at the plant species-level? [J]. New Phytol, 201(2): 505-517.
参考文献
CAI YM, ZHAO QX, ZHANG CF, 2021. Effect of plant root exudates on soil phosphorus transformation under low phosphorus: A review [J]. J NE Agric Univ, 52(2): 79-86. [蔡银美, 赵庆霞, 张成富, 2021. 低磷下植物根系分泌物对土壤磷转化的影响研究进展 [J]. 东北农业大学学报, 52(2): 79-86. ]
参考文献
CHEN H, LI DL, XIAO KC, et al. , 2018. Soil microbial processes and resource limitation in karst and non-karst forests [J]. Funct Ecol, 32(5): 1400-1409.
参考文献
EGAMBERDIEVA D, RENELLA G, WIRTH S, et al. , 2010. Enzyme activities in the rhizosphere of plants [J]. Soil Biol Biochem, 22: 149-166.
参考文献
GIANFREDA L, 2015. Enzymes of importance to rhizosphere processes [J]. J Soil Sci Plant Nat, 15(2): 283-306.
参考文献
HU JL, CUI XA, WANG JH, et al. , 2019. The non-simultaneous enhancement of phosphorus acquisition and mobilization respond to enhanced arbuscular mycorrhization on maize (Zea mays L. ) [J]. Microorganisms, 7(12). DOI: 10. 3390/microorganisms7120651.
参考文献
HU L, SU Y, HE X, et al. , 2012. Response of soil organic carbon mineralization in typical karst soils following the addition of 14C-labeled rice straw and CaCO3 [J]. J Sci Food Agr, 92(5): 1112-1118.
参考文献
HU N, LAN JC, 2020. Impact of vegetation restoration on soil organic carbon stocks and aggregates in a karst rocky desertification area in Southwest China [J]. J Soils Sed, 20(3): 1264-1275.
参考文献
HUI Y, LIANG JH, CHEN J, et al. , 2015. Soil calcium speciation at different geomorphological positions in the Yaji karst experimental site in Guilin, China [J]. J Resour Ecol, 6(4): 224-229.
参考文献
JIANG T, XIANG SS, FANG XR, et al. , 2021. Gradient analysis of functional traits of different leaf habit plants in evergreen deciduous broad-leaved mixed forest in karst hills of Guilin, Southwest China [J]. J Anhui Agric Sci, 49(8): 104-113. [蒋婷, 向珊珊, 方秀茹, 等, 2021. 桂林岩溶石山常绿落叶阔叶混交林不同叶习性植物功能性状梯度分析 [J]. 安徽农业科学, 49(8): 104-113. ]
参考文献
JING X, CHEN X, XIAO W, et al. , 2018. Soil enzymatic responses to multiple environmental drivers in the Tibetan grasslands: Insights from two manipulative field experiments and a meta-analysis [J]. Pedobiologia, 71: 50-58.
参考文献
JONES DL, HODGE A, KUZYAKOV Y, 2004. Plant and mycorrhizal regulation of rhizodeposition [J]. New Phytol, 163(3): 459-480.
参考文献
KORANDA M, SCHNECKER J, KAISER C, et al. , 2011. Microbial processes and community composition in the rhizosphere of European beech — The influence of plant C exudates [J]. Soil Biol Biochem, 43(3): 551-558.
参考文献
LI MJ, YU LF, DU MF, et al. , 2018. C, N, and P stoichiometry and their interaction with plants, litter, and soil in a Cunninghamia lanceolata plantation with different ages [J]. Acta Ecol Sin, 38(21): 7772-7781. [李明军, 喻理飞, 杜明凤, 等, 2018. 不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系 [J]. 生态学报, 38(21): 7772-7781. ]
参考文献
LIANG X, LIU AQ, MA XQ, et al. , 2005. The effect of phosphorus deficiency stress on activities of and acid phosphatase in different clones of Chinese fir [J]. J Plant Ecol, 29(1): 54-59. [梁霞, 刘爱琴, 马祥庆, 等, 2005. 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响 [J]. 植物生态学报, 29(1): 54-59. ]
参考文献
LIANG YM, LI Q, PAN FJ, 2017. Ecological stoichiometric characteristics of Loropetalum chinense rhizosphere soils at different vegetation restoration stage in karst region [J]. Bull soil Water Conserv, 37(5): 123-127. [梁月明, 李强, 潘复静, 2017. 岩溶区不同恢复阶段檵木根际土壤生态化学计量学特征 [J]. 水土保持通报, 37(5): 123-127. ]
参考文献
LIANG YM, PAN FJ, MA JM, et al. , 2021. Long-term forest restoration influences succession patterns of soil bacterial communities [J]. Environ Sci Pollut Res, 28(16): 20598-20607.
参考文献
LIU JB, CHEN J, CHEN GS, et al. , 2020. Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests [J]. PLoS ONE, 15(2). DOI: 10. 1371/JOURNAL. PONE. 0220599.
参考文献
LIU L, 2017. Soil extracellular enzyme activities and their controlling factors in typical karst ecosystems, southwest China [D]. Guilin: Guangxi Normal University. [刘璐, 2017. 喀斯特典型生态系统土壤胞外酶活性及其影响因素 [D]. 桂林: 广西师范大学. ]
参考文献
LUO P, CHEN H, XIAO KC, et al. , 2017. Effects of topography, tree species and soil properties on soil enzyme activity in karst regions [J]. Chin J Environ Sci, 38(6): 2577-2585. [罗攀, 陈浩, 肖孔操, 等, 2017. 地形、树种和土壤属性对喀斯特山区土壤胞外酶活性的影响 [J]. 环境科学, 38(6): 2577-2585. ]
参考文献
MA XM, LIU Y, ZAREBANADKOUKI M, et al. , 2018. Spatiotemporal patterns of enzyme activities in the rhizosphere: effects of plant growth and root morphology [J]. Biol Fert Soils, 54(7): 819-828.
参考文献
MARGALEF O, SARDANS J, MASPONS J, et al. , 2021. The effect of global change on soil phosphatase activity [J]. Glob Change Biol, 27(22): 5989-6003.
参考文献
MILLER SS, LIU JQ, ALLAN DL, et al. , 2001. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin [J]. Plant Physiol, 127(2): 594-606.
参考文献
NADAL-ROMERO E, CAMMERAAT E, PEREZ-CARDIEL E, et al. , 2016. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas [J]. Agr Ecosyst Environ, 228: 91-100.
参考文献
PAN FJ, LIANG YM, ZHANG W, et al. , 2016. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere [J]. Front Plant Sci, 7: 687.
参考文献
PAN FJ, ZHANG W, WANG KL, et al. , 2011. Litter C∶N∶P ecological stoichiometry charater of plant communities in typical karst peak-cluster depression [J]. Acta Ecol Sin, 31(2): 335-343. [潘复静, 张伟, 王克林, 等, 2011. 典型喀斯特峰丛洼地植被群落凋落物C∶N∶P生态化学计量特征 [J]. 生态学报, 31(2): 335-343. ]
参考文献
PAN FJ, ZHANG W, LIANG YM, et al. , 2020a. Seasonal changes of soil organic acid concentrations in relation to available N and P at different stages of vegetation restoration in a karst ecosyst [J]. Chin J Ecol, 39(4): 1112-1120. [潘复静, 张伟, 梁月明, 等, 2020a. 喀斯特不同植被恢复阶段土壤有机酸季节变化与有效氮磷的关系 [J]. 生态学杂志, 39(4): 1112-1120. ]
参考文献
PAN FJ, WANG KL, ZHANG W, et al. , 2020b. Seasonal changes and rhizosphere effects of soil nutrients and enzymatic activities in two vegetation successions of karst ecosystem [J]. J Guilin For Univ, 40(1): 209-217. [潘复静, 王克林, 张伟, 等, 2020b. 喀斯特不同恢复阶段植物根际土养分和酶活性的季节性变化和根际效应 [J]. 桂林理工大学学报, 40(1): 209-217. ]
参考文献
PENG X, WANG W, 2016. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China [J]. Soil Boil Biochem, 98: 74-84.
参考文献
PHILLIPS RP, ERLITZ Y, BIER R, et al. , 2008. New approach for capturing soluble root exudates in forest soils [J]. Funct Ecol, 22(6): 990-999.
参考文献
RILLIG MC, CALDWELL BA, WOSTEN HAB, et al. , 2007. Role of proteins in soil carbon and nitrogen storage: controls on persistence [J]. Biogeochemistry, 85(1): 25-44.
参考文献
SINSABAUGH RL, HILL BH, SHAH JJF, 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 462(7274): 795-798.
参考文献
SINSABAUGH RL, SHAH JJF, 2012. Ecoenzymatic stoichiometry and ecological theory [J]. Ann Rev Ecol Evol Syst, 43(1): 313-343.
参考文献
SNAJDR J, DOBIASOVA P, URBANOVA M, et al. , 2013. Dominant trees affect microbial community composition and activity in post-mining afforested soils [J]. Soil Biol Biochem, 56: 105-115.
参考文献
SONG X, GAO Y, GREEN SM, et al. , 2017. Nitrogen loss from karst area in China in recent 50 years: An in-situ simulated rainfall experiment's assessment [J]. Rangel Ecol, 7(23): 10131-10142.
参考文献
SUI YY, JIAO XG, GAO CS, et al. , 2009. The relationship among organic matter content and soil microbial biomass and soil enzyme activities [J]. Chin J Soil Sci, 40(5): 1036-1039. [隋跃宇, 焦晓光, 高崇生, 等, 2009. 土壤有机质含量与土壤微生物量及土壤酶活性关系的研究 [J]. 土壤通报, 40(5): 1036-1039. ]
参考文献
SUN Y, XU XL, YAKOV K, 2014. Mechanisms of rhizosphere priming effects and their ecological significance [J]. J Plant Ecol, 38(1): 62-75. [孙悦, 徐兴良, YAKOV K, 2014. 根际激发效应的发生机制及其生态重要性 [J]. 植物生态学报, 38(1): 62-75. ]
参考文献
TANG Q, DING FJ, ZHU SX, et al. , 2020. Effects of different vegetative succession stages on soil chemical properties and enzyme activities in karst region of Maolan [J]. Ecol Environ Sci, 29(10): 1943-1952. [汤茜, 丁访军, 朱四喜, 等, 2020. 茂兰喀斯特地区不同植被演替阶段对土壤化学性质与酶活性的影响 [J]. 生态环境学报, 29(10): 1943-1952. ]
参考文献
TU LH, HU HL, HU TX, et al. , 2012. Effects of simulated nitrogen deposition on soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China [J]. Chin J Appl Ecol, 23(8): 2129-2134. [涂利华, 胡红玲, 胡庭兴, 等, 2012. 模拟氮沉降对华西雨屏区光皮桦林土壤酶活性的影响 [J]. 应用生态学报, 23(8): 2129-2134. ]
参考文献
VAN HALL RL, CAMMERAAT LH, KEESSTRA SD, et al. , 2017. Impact of secondary vegetation succession on soil quality in a humid Mediterranean landscape [J]. Catena, 149: 836-843.
参考文献
VITOUSEK PM, PORDER S, HOULTON BZ, et al. , 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecol Appl, 20(1): 5-15.
参考文献
VIVES-PERIS V, DEOLLAS C, GOMEZ-CADENAS A, et al. , 2020. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Rep, 39(1): 3-17.
参考文献
WANG K, ZHANG C, CHEN H, et al. , 2019. Karst landscapes of China: patterns, ecosystem processes and services [J]. Landscape Ecol, 34(12): 2743-2763.
参考文献
WANG KL, YUE YM, CHEN HS, et al. , 2019. The comprehensive treatment of karst rocky desertification and its regional restoration effects [J]. Acta Ecol Sin, 39(20): 7432-7440. [王克林, 岳跃民, 陈洪松, 等, 2019. 喀斯特石漠化综合治理及其区域恢复效应 [J]. 生态学报, 39(20): 7432-7440. ]
参考文献
WEI L, RAZAVI BS, WANG W, et al. , 2019. Labile carbon matters more than temperature for enzyme activity in paddy soil [J]. Soil Biol Biochem, 135: 134-143.
参考文献
WEN Z, WHITE PJ, SHEN J, et al. , 2022. Linking root exudation to belowground economic traits for resource acquisition [J]. New Phytol, 233(4): 1620-1635.
参考文献
XIAO XM, LIU JS, ZHOU C, et al. , 2014. Difference of root exudates from macadamia seedlings under different phosphorus supply [J]. Chin J Trop Crop, 35(2): 261-265. [肖晓明, 刘军生, 周程, 等, 2014. 不同磷水平下澳洲坚果幼苗根系分泌物的差异 [J]. 热带作物学报, 35(2): 261-265. ]
参考文献
XIE YR, ZHOU ZC, LIAO GH, et al. , 2005. Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances [J]. Sci Silv Sin, 41(3): 58-62. [谢钰容, 周志春, 廖国华, 等, 2005. 低磷胁迫下马尾松种源酸性磷酸酶活性差异 [J]. 林业科学, 41(3): 58-62. ]
参考文献
XU ZW, YU GR, ZHANG XY, et al. , 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC) [J]. Soil Biol Biochem, 104: 152-163.
参考文献
YUAN DX, 2008. Global view on karst rock desertification and integrating control measures and experiences of China [J]. Acta Pratac Sin, (9): 19-25. [袁道先, 2008. 岩溶石漠化问题的全球视野和我国的治理对策与经验 [J]. 草业科学, (9): 19-25. ]
参考文献
ZHANG W, WANG KL, LIU SJ, et al. , 2013. Soil nutrient accumulation and its affecting factors during vegetation succession in karst peak-cluster depressions of South China [J]. Chin J Appl Ecol, 24(7): 1801-1808. [张伟, 王克林, 刘淑娟, 等, 2013. 喀斯特峰丛洼地植被演替过程中土壤养分的积累及影响因素 [J]. 应用生态学报, 24(7): 1801-1808. ]
参考文献
ZHANG W, ZHAO J, PAN FJ, et al. , 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China [J]. Plant Soil, 391: 77-91.
参考文献
ZHANG X, DIPPOLD MA, KUZYAKOV Y, et al. , 2019. Spatial pattern of enzyme activities depends on root exudate composition [J]. Soil Biol Biochem, 133: 83-93.
参考文献
ZHANG XB, BAI XY, HE XB, 2011. Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest China [J]. Carbonate Evaporite, 26(2): 149-153.
参考文献
ZHANG XZ, LI TX, WANG YD, 2007. Relationship between growth environment and root exudates of plants: a review [J]. Chin J Soil Sci, 38(4): 785-789. [张锡洲, 李廷轩, 王永东, 2007. 植物生长环境与根系分泌物的关系 [J]. 土壤通报, 38(4): 785-789. ]
参考文献
ZHANG Y, 2014. Molecular regulation of phosphate starvation-induced acid phosphatase activity [D]. Beijing: Tsinghua University. [张烨, 2014. 低磷胁迫诱导植物酸性磷酸酶的分子调控机制 [D]. 北京: 清华大学. ]
参考文献
ZHOU MY, HE DM, LI YC, et al. , 2021. Research progress of the role of purple acid phosphatase in plant response to low phosphorus stress [J]. Mol Plant Breed, 19(11): 3763-3770. [周梦岩, 何冬梅, 李亚超, 等, 2021. 紫色酸性磷酸酶在植物响应低磷胁迫中的作用研究进展 [J]. 分子植物育种, 19(11): 3763-3770. ]
参考文献
ZHU JN, HUANG H, DU Y, et al. , 2022. The transgenerational effect of arbuscular mycorrhizal fungi on root phosphatase activity of host plant Medicago truncatula [J]. Chin J Ecol, 41(5): 912-918. [竹嘉妮, 黄弘, 杜勇, 等, 2022. 丛枝菌根真菌影响宿主植物蒺藜苜蓿根系酸性磷酸酶活性的跨世代效应 [J]. 生态学杂志, 41(5): 912-918. ]
参考文献
ZI HB, HU L, WANG CT, et al. , 2018. Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow [J]. Eur J Soil Sci, 69(3): 429-438.
目录contents

    摘要

    为了探究喀斯特地区植物根系分泌物酶活性对根际土酶活性和养分的影响,我们测定了灌草丛、灌木林、灌乔林和乔木林4个植被恢复阶段群落水平根系分泌物和根际土的β-1,4-葡萄糖苷酶(βG)、β-N-乙酰葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)和酸性磷酸酶(ACP)的活性与土壤碳氮磷的含量,并分析了它们之间的关系。结果表明:(1)根际土以及根系分泌物的4种酶活性在植被恢复后期显著高于植被恢复前期;乔木林的根系分泌物酶活性C∶P和N∶P比值显著高于其他植被恢复阶段,而根际土酶活性这2个比值则正好相反。(2)相关分析显示,根系分泌物酶活性与对应的土壤酶活性呈显著正相关;相对于根系分泌物酶活性,土壤酶活性与相关养分的相关系数值更高。另外,根际土以及根系分泌物βG、NAG和LAP酶活性与根际土有机碳(SOC)和全氮(TN)呈显著正相关,根际土以及根系分泌物ACP酶活性与根际土速效磷(AP)呈显著正相关。上述结果表明,植被恢复对根系分泌物酶和土壤酶活性的提高具有正向的作用,根系分泌物酶是土壤酶的有利补充,在碳氮磷养分循环过程中起到积极的促进作用。综上所述,调控根系分泌物分泌及其酶活性可能为喀斯特生态系统的植被恢复提供新的视角。

    Abstract

    In order to explore the effects of enzyme activities from plant root exudates on rhizosphere soil enzyme activities and nutrients in karst areas, the activities of β-1,4-glucosidase (βG), β-N-acetyl-glucosaminidase (NAG), leucine aminopeptidase (LAP), and acidic phosphatase (ACP) of fine root exudates and rhizosphere soils in four vegetation restoration stages, which are shrub-grassland, shrubland, shrub-arbor forest and arbor forest, were measured. And, their relationships with soil carbon (C), nitrogen (N), phosphorus (P) contents were analyzed. The results were as follows: (1) The four enzyme activities of rhizosphere soils and root exudates were significantly higher in the late stage of vegetation restoration than that in the early stage of vegetation restoration. The enzyme activities C∶P to N∶P ratios of root exudates in arbor forest were significantly higher than those of other three stages, while the two parameters of rhizosphere soils were opposite. (2) Correlation analysis showed that the enzyme activities of root exudates were positively correlated with the corresponding soil enzyme activity. Compared with the enzyme activities of root exudates, the correlation between soil enzyme activity and related nutrients became significantly stronger. In addition, the enzyme activities of βG, NAG and LAP in rhizosphere soils and root exudates were positively correlated with soil organic carbon (SOC) and total nitrogen (TN) in rhizosphere soil, while the enzyme activities of ACP in rhizosphere soils and root exudates were positively correlated with available phosphorus (AP) in rhizosphere soil. The above results indicate that vegetation restoration has positive effects on increasing enzyme activities of root exudates and soils. The enzymes of root exudates are the indispensable supplements for soils, and play an important role in promoting carbon, nitrogen and phosphorus nutrient cycling. To sum up, it will be that the regulation of root exudates and its enzyme activities may provide a new perspective for vegetation restoration in karst ecosystem.

  • 根系分泌物是植物在生长发育过程中通过根部向周围介质释放的有机化合物的总称(Vives-Peris et al.,2020)。根系分泌物作为植物-土壤-微生物之间物质和能量交流媒介,在缓解环境胁迫、改善土壤结构和活化土壤养分等方面均具有不可替代的作用(蔡银美等,2021)。根系分泌物通常分为低分子量和高分子量化合物,其中高分子量化合物主要有胞外酶等(Wen et al.,2022)。受根系的生理活动及环境胁迫的影响,植物根系往往会向其外部生长环境分泌大量的酶,如酸性磷酸酶(张锡洲等,2007;Ma et al.,2018)。有文献指出,与无根土壤相比,根际更高的酶活性不仅取决于微生物活性,还来自于根系(Zhang et al.,2019)。因此,植物根系分泌的酶被认为是土壤中细胞外酶的重要来源(Egamberdieva et al.,2010)。土壤酶是指土壤中具有生物催化能力的一类蛋白质(Jing et al.,2018),是土壤中最活跃的组分之一。土壤中的酶(根系和微生物等分泌的酶)作为土壤有机质分解和养分循环的主要因素(Peng &Wang,2016;Zi et al.,2018),表征土壤代谢过程(Gianfreda,2015)。土壤中的酶还能加速有机质分解,释放土壤有机质所固定的养分,为微生物和植物提供可利用性氮磷(孙悦等,2014)。有研究表明,植物根表面以及根系周围的磷酸酶活性的作用比根际以外、吸附在黏粒上以及有机质上的磷酸酶活性大(刘璐,2017),磷酸酶引起有机磷的矿化,进而促进可利用性磷的释放。因此,根系分泌物中蕴含的酶是土壤酶重要的一部分,在维持陆地生态系统碳氮磷养分平衡具重要作用。

  • 中国西南喀斯特地区是我国主要的生态脆弱区(王克林等,2019)。由于其独特的地上地下二元结构,土壤容易在光滑岩石表面蠕动,因此容易造成养分流失和石漠化发生(袁道先,2008;Zhang et al.,2011;Wang et al.,2019)。此外,由于该地区的岩溶系统以碳酸盐岩为主,富含钙,而钙容易与有机质和磷结合形成稳定化合物,从而使氮磷等养分释放的难度加大,氮磷可利用性变低(Hu et al.,2012;Hu &Lan,2020)。研究显示,喀斯特地区植被恢复早期土壤氮素供给较低,而植被恢复后期土壤磷素供给缺乏(梁月明等,2017)。有研究表明,植被恢复对恢复土壤质量有显著效果,能明显改善土壤物理、化学和生物特性(Nadal-Romero et al.,2016;Van Hall et al.,2017)。在喀斯特地区,很多研究主要注重于土壤酶对土壤养分的影响。随着植被恢复的进行,其养分限制差异性很可能影响不同恢复阶段的植物根系释放的酶种类及其数量变化,并影响土壤的养分循环。但是,目前还不清楚喀斯特地区植被恢复不同阶段的根系分泌物中酶活性的变化特征,也不明确其对土壤酶活性和土壤养分有效性的影响。因此,探讨根系分泌物酶和土壤酶的相互关系以及对土壤养分循环的作用和对加深喀斯特地区植被根系-土壤生态过程的认识具有重要意义。

  • 本文以灌草丛、灌木林、灌乔林和乔木林4个植被恢复阶段为研究对象,测定土壤以及根系分泌物中β-1,4-葡糖苷酶(β-1,4-glucosidase,βG)、β-N-乙酰葡糖胺糖苷酶(β-N-acetyl-glucosaminidase,NAG)、亮氨酸氨基肽酶(leucine aminopeptidase,LAP)、酸性磷酸酶(acidic phosphatase,ACP)的活性以及土壤有机碳、全氮、全磷和有效磷含量,分析这些指标的关系,探讨喀斯特地区植物根系分泌物酶活性对根际土酶活性和养分的影响。研究结果有助于完善喀斯特地区根际生态酶的理论研究体系,为该地区植被生态系统恢复提供科学依据。

  • 1 研究地区与方法

  • 1.1 研究区概况和样地设置

  • 研究区位于广西壮族自治区桂林市漓江流域的喀斯特生态系统,地处经纬度范围为 109°36′50″—111°29′30″ E、24°15′23″—26°23′30″ N。该区属亚热带季风气候,常年平均气温18.8℃,降水量1 915.2 mm,雨季高温多雨,旱季低温少雨,4月至8月降雨量占据全年降雨量的70%,主要集中于 6 月中旬至 7 月中旬(Hui et al.,2015)。

  • 在桂林市漓江流域典型喀斯特地区选择灌草丛、灌木林、灌乔林和乔木林4个植被恢复阶段作为研究对象。其中,灌草丛和灌乔林位于灵川县潮田乡毛村的岩溶试验场,灌木林位于桂林市七星区朝阳乡的丫吉试验场,乔木林位于阳朔县白沙镇冬瓜寨。研究区的土壤类型主要是由碳酸盐岩发育形成的石灰岩土。灌草丛的恢复年限为15年,优势种包括类芦(Neyraudia reynaudiana)和五节芒(Miscanthus floridulu)等;灌木林的恢复年限为30年,优势种包括檵木(Loropetalum chinense)、印度崖豆藤 (Millettia pulchra)和龙须藤 (Bauhinia championii)等;灌乔林的恢复年限为45年,优势种包括檵木、火棘(Pyracantha fortuneana)、皱叶雀梅藤(Sageretia rugosa)和银合欢(Leucaena leucocephala)等;乔木林的恢复年限为60年,优势种包括青冈(Quercus glauca)、茜树(Aidia cochinchinensis)、椴树(Tilia tuan)和圆叶乌桕(Sapium rotundifolium)等。

  • 在4个植被恢复阶段样地中,选择相同坡向的山坡,在中坡和下坡位置设置采样样方。在灌草丛、灌木林和灌乔林,每个阶段设计6个面积为10 m × 10 m的样方,在乔木林阶段设计6个面积为20 m × 20 m的样方。

  • 1.2 样品采集和处理

  • 在2020年5月采集根际土和根系分泌物样品。在每个植被恢复阶段按照不同样方随机选择6棵树采集分泌物和挖取根际土,分别共计4 × 6=24个样品。先采集根际土,再收集根系分泌物。采集的土样采用抖落法(梁月明等,2017),在每棵树的3个方位挖取0~20 cm土层完整的根系,先轻轻抖动根系,抖落不含根系的大块土壤,再采集附着在距离根0~5 mm的土壤作为根际土,混合均匀后代表该小区的土样品。去除土壤中的石头、植物根系和动物残体后,分成两部分,一部分放入4℃冰箱保存,用于土壤酶活性的测定;另一部分过10 目筛,风干后分别过 20 目和 100 目筛,用于土壤理化性质的测定。

  • 根系分泌物参考Phillips等(2008)的采集方法。在每棵树已经挖取了3处完整根系后,用镊子将附着于根系表面的土块等杂物除去,并用提前配制好的无碳营养液(成分包括0.1 mmol·L-1磷酸二氢钾、0.5 mmol·L-1硝酸铵、0.2 mmol·L-1硫酸镁、0.2 mmol·L-1硫酸钾和0.3 mmol·L-1硫酸钙)冲洗根系后,将洗净的根系埋回土中24 h,其作用是为了让树根有更多的时间从挖取和冲洗过程中可能受到的伤害或压力中恢复过来。24 h后将根系挖出,每处根系用无碳营养液冲洗干净。将 100 mL无菌注射器的尖端连接处用封口膜封紧避免溶液流出,注入 100 mL 无碳营养液,将洗净的根系小心放入注射器中,用封口膜封住注射器针筒口,防止溶液露出及土壤等杂物进入注射器,埋回土壤中收集。24 h后将注射器挖出,将连接处的根系剪断,把根系放入干净的信封中带回实验室烘干称量干重。记录注射器的溶液读数后,将同一棵树的3处根系分泌物样品用0.22 μm滤膜过滤到300 mL塑料瓶中,立即放入保温箱中带回实验室,放入-20℃冰箱保存。

  • 1.3 样品指标测定

  • 1.3.1 酶活性测定

  • 采用微孔板荧光光度法测定βG、NAG、LAP和ACP酶活性。其中,βG酶的底物为 4-methylumbelliferyl-β-D-glucoside;NAG酶的底物为 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide;LAP酶的底物为L-leucine-7-amido-4-methylcoumarin hydrochloride;ACP酶的底物为4-methylumbelliferyl-phosphate;标准物为4-methylumbelliferone。

  • (1)土壤酶活性:称量0.4 g鲜土于100 mL灭菌带盖玻璃瓶中,加入 50 mL 灭菌冷却后的醋酸钠或碳酸氢钠缓冲液,用高速匀浆机土壤悬液搅拌均匀,再用涡旋仪将悬浊液处于均浆状态。用移液枪取土壤悬浮物200 μL到 96 孔微孔板,再分别取50 μL加入缓冲液、标准物和底物。将 96 孔微孔板置于 20℃黑暗条件下培养,其中βG、NAG和ACP酶需要培养4 h,LAP酶需要培养18 h,培养后在每个孔里加入10 μL NaOH(1 mol·L-1)溶液使其反应终止,上酶标仪测定荧光值,激发波长365 nm,发射波长450 nm。经过负控制和淬灭校正后,酶活性结果用单位nmol·h-1·g-1表示(Pan et al.,2016;Chen et al.,2018)。

  • (2)根系分泌物酶活性:根系分泌物在进行过滤之后,用移液枪取根系分泌物液体200 μL到 96 孔微孔板,测定步骤和土壤酶活性测定方法一样。

  • 1.3.2 土壤理化性质

  • 土壤有机碳(soil organic carbon,SOC)采用 KCr2O7 + H2SO4氧化法测定。土壤全氮(total nitrogen,TN)采用红外消煮法并用流动注射仪(FIAstar 5000,FOSS,Hillerød,Denmark)测定(张伟等,2013)。土壤全磷(total phosphorus,TP)采用红外消煮后以钼蓝显色液进行显色,用紫外分光光度计进行测定。土壤有效磷(available phosphorus,AP)用 NaHCO3溶液浸提后以钼蓝显色液进行显色,用紫外分光光度计进行测定(Liang et al.,2021)。

  • 1.4 数据处理

  • βG与碳循环相关,NAG和LAP与氮循环相关,ACP与磷循环相关(Sinsabaugh &Shan,2012)。将lnβG∶ln(NAG+LAP)作为酶活性C∶N,lnβG∶ln(ACP)作为酶活性C∶P和ln(NAG+LAP)∶ln(ACP)作为酶活性 N∶P(Sinsabaugh et al.,2009)。酶活性的比值能够反映碳氮磷养分在土壤中循环的相对速率(Xu et al.,2017),揭示土壤养分循环的重要指标。所以,处理数据的时候,酶活性C∶N比值通过lnβG∶ln(NAG+LAP)计算,酶活性C∶P比值通过lnβG∶ln(ACP)计算,酶活性N∶P比值通过ln(NAG+LAP)∶ln(ACP)计算。

  • 用 Excel2021对原始数据进行统计和分析,通过SPSS 26.0对数据进行单因素方差分析(one-way ANOVA),比较不同植被恢复阶段根系分泌物酶活性和土壤酶活性及其比值的差异,采用Origin 2021软件作图。利用Pearson相关分析方法分析不同植被恢复阶段根系分泌物酶活性和土壤酶活性及其比值与土壤养分的相关性。采用 Canoco 5软件进行RDA分析,分析根系分泌物酶活性和土壤酶活性及其比值受土壤环境因子的影响情况。

  • 2 结果与分析

  • 2.1 不同植被恢复阶段土壤养分特征

  • 不同植被恢复阶段的土壤SOC和TP含量具有显著性差异,灌草丛和灌木林的土壤TN和AP含量无显著性差异(表1)。乔木林的土壤TN、TP和AP含量最高,灌乔林的土壤SOC含量最高,灌草丛的土壤SOC和TP含量最低,灌草丛和灌木林的土壤TN和AP含量最低。总体而言,除了土壤SOC含量,土壤TN、TP和AP含量随着植被的演替呈增加趋势。

  • 2.2 不同植被恢复阶段根系分泌物和土壤的酶活性及其比值的变化特征

  • 在不同植被恢复阶段的土壤酶活性中,乔木林的土壤LAP和ACP酶活性均显著高于其他植被恢复阶段,灌草丛的最低;乔木林和灌乔林的βG和NAG酶活性显著高于灌木林和灌草丛(图1:A)。在不同植被恢复阶段的根系分泌物酶活性中,乔木林的根系分泌物βG、NAG、LAP和ACP酶活性均显著高于其他植被恢复阶段,灌草丛的βG和ACP酶活性最低(图1:B)。总体上,土壤酶活性显著高于根系分泌物酶活性,植被恢复后期的植物根系分泌物酶活性和土壤酶活性均大于植被恢复早期的酶活性。

  • 表1 不同植被恢复阶段土壤理化性质

  • Table1 Soil physical and chemical properties at different vegetation restoration stages

  • 注:每行不同小写字母表示不同植被恢复阶段之间具有显著性差异(P<0.05)。

  • Note: Different lowercase letters in each row indicate significant differences between different vegetation restoration stages (P<0.05) .

  • 图1 不同植被恢复阶段根系分泌物酶活性和土壤酶活性变化

  • Fig.1 Changes of enzyme activities in root exudates and soils at different vegetation restoration stages

  • 由图2可知,在不同植被恢复阶段的土壤酶活性比值中,灌木林的土壤酶活性C∶N比值显著高于灌草丛;灌草丛的土壤酶活性C∶P和N∶P比值最高,而乔木林的C∶P和N∶P比值最低。在不同植被恢复阶段的根系分泌物酶比值中,灌木林的根系分泌物酶活性C∶N比值显著高于灌草丛;乔木林的根系分泌物酶活性C∶P和N∶P比值最高,灌草丛的C∶P最低,灌木林的N∶P比值最低。除了灌草丛之外,其他植被恢复阶段的根系分泌物酶C∶N比值高于土壤酶活性C∶N比值;而根系分泌物酶活性C∶P和N∶P比值均低于土壤酶活性C∶P和N∶P比值。

  • 图2 不同植被恢复阶段根系分泌物酶活性比值和土壤酶活性比值的变化

  • Fig.2 Changes in the ratio of enzymes between root exudates and soils at different vegetation restoration stages

  • 2.3 根系分泌物酶活性和比值、土壤酶活性与土壤养分之间的相关性

  • 相关分析显示,根系分泌物βG、NAG、LAP和ACP酶活性分别与对应的土壤βG、NAG、LAP和ACP酶活性呈显著正相关(图3)。根系分泌物βG、NAG和LAP与土壤SOC、TN、TP和AP呈显著正相关(P<0.01)。根系分泌物ACP酶活性与土壤AP呈显著正相关(P<0.05)。土壤βG、NAG、LAP和ACP酶活性与土壤SOC、TN、TP和AP呈显著正相关(P<0.01)。根系分泌物酶活性C∶P和N∶P比值与土壤SOC、TN、TP和AP呈显著正相关(P<0.01),而土壤酶活性C∶P和N∶P比值与土壤SOC、TN、TP和AP呈显著负相关(P<0.01)(表2)。

  • 以根系分泌物酶活性和土壤酶活性及其比值为响应变量,以土壤因子为解释变量进行冗余分析(RDA),结果表明,第一轴解释了变量的56.50%,第二轴解释了变量的6.32%, AP和TP是植被恢复过程中影响根系分泌物和土壤的酶活性及比值的关键环境因子(图4)。

  • 3 讨论

  • 3.1 不同植被恢复阶段根系分泌物酶活性和根际土酶活性及其比值的变化

  • 在不同植被恢复阶段中,植被恢复后期的根系分泌物酶活性均大于早期。这可能是植物提高养分有效性和吸收的一种策略。Zhang等(2015)研究表明,喀斯特地区植被恢复前期生态系统受氮素和磷素共同或其他营养物质的限制,植被恢复后期生态系统受磷素的限制。本研究中,乔木林的ACP酶活性显著高于其他植被恢复阶段的酶活性,在土壤磷养分缺乏的情况下,根系是植物代谢最活跃的部分(Bell et al.,2014),植物为了获取更高的矿质养分含量,利用提高根系释放胞外酶加速养分循环。

  • 土壤4种酶活性与根系分泌物酶活性的变化规律相同,其在植被恢复后期大于早期。这种现象与植被阶段植物物种和养分释放差异有关(潘复静等,2020a)。一般来说,植物树种可通过凋落物分解来调节根际土养分而影响土壤酶活性(Snajdr et al.,2013)。我们在进行植被调查后发现,恢复早期灌草丛阶段主要优势种为类芦和五节芒等,植物物种相对单一,归还和可供分解的凋落物少且植物生产力低,土壤养分恢复缓慢,导致土壤酶含量低于其他植被恢复阶段;而在植被恢复后期,乔木林主要优势种为青冈、椴树和圆叶乌桕等,树种类型为落叶乔木居多。落叶树种主要以提高资源利用效率为主(蒋婷等,2021)且植被覆盖下植物生物量大,土壤中枯枝落叶等丰富的凋落物的养分含量高,凋落物作为土壤微生物养分的主要来源,在一定在程度上刺激土壤微生物胞外酶的分泌(Wei et al.,2019),进而提高了乔木林的土壤酶活性。本研究中,相较于其他植被恢复阶段,乔木林具有最低的土壤酶活性C∶P和N∶P比值,灌草丛具有最高的土壤酶活性C∶P和N∶P比值。这是因为微生物对凋落物的分解作用是土壤中N素的主要来源(李明军等,2018),植被恢复前期的凋落物层少,植被覆盖度低,水源涵养能力弱,N损失更容易随地下径流移动(Song et al.,2017)。然而,在植被恢复后期,磷对基岩风化的钙有很强的吸附作用(Vitousek et al.,2010),因此导致乔木林土壤酶活性C∶P和N∶P比值变低。综上所述,植被的正向演替提高了根系分泌物酶活性和土壤酶活性。

  • 图3 根系分泌物酶与土壤酶之间的关系

  • Fig.3 Relationship between root exudates enzymes and soil enzymes

  • 3.2 根系分泌物酶活性对根际土酶活性的影响

  • 本研究中,根系分泌物βG、NAG、LAP和ACP酶活性分别与对应的土壤酶活性呈显著正相关,表明根系分泌物酶和土壤酶之间是相辅相成的,根系分泌物酶促进了土壤酶活性的提高,从而进一步提高土壤供给植物养分的能力。根际是土壤中根系周边的狭小区域,受植物根系与微生物活动的强烈影响(Jones et al.,2004),根系在一定程度下直接释放酶进入土壤中以补充土壤酶含量。Koranda等(2011)研究表明,和非根际土相比,根际土中蛋白水解酶活性增强,潘复静等(2020b)研究结果也显示根际土βG和 NAG酶活性显著高于非根际土。因此,在根际土中,植物根系释放酶来增加根际土壤中酶的含量。

  • 本研究结果显示,相对于根系分泌物酶活性与相关养分的相关性,土壤酶活性与相关养分的相关性明显变强了,说明根系分泌的酶提高了土壤酶从复杂有机物中释放可利用的碳、氮和磷化合物的能力。肖晓明等(2014)研究表明,在缺磷条件下,澳洲坚果幼苗的根系能分泌大量的酸性磷酸酶,活化有机磷,释放出磷酸根离子,实现对土壤磷营养的改良。本研究中,该区域植被恢复前期受氮素限制严重,植被恢复后期受磷素限制严重,灌草丛的根系分泌物NAG分泌量高于灌木林,乔木林根系积极释放ACP来增加土壤酶含量以应对养分缺乏。因此,根系分泌物酶是作为土壤酶的一种有利补充,明显提高了土壤酶的作用。

  • 表2 根系分泌物酶活性和土壤酶活性及比值与土壤因子的相关性

  • Table2 Correlation between the enzyme activities and ratios of root exudates and soil with soil factors

  • 注:*表示P<0.05;**表示P<0.01。

  • Note: *indicates P<0.05; **indicates P<0.01.

  • 3.3 根系分泌物酶和根际土酶与土壤养分的关系

  • 本研究中,土壤以及根系分泌物βG、NAG和LAP酶活性与土壤SOC和TN呈显著正相关。有研究表明,土壤有机质与水解酶之间关系密切,有机质和土壤酶之间呈正相关关系(隋跃宇等,2009;汤茜等,2020)。土壤酶由微生物和植物根系分泌物产生(Liu et al.,2020),氮素是合成土壤酶的重要元素,TN能增加植被地下细根生物量,促进根际微生物生长,致使土壤中相关酶活性增强(涂利华等,2012),说明在土壤酶参与养分循环过程中,土壤氮素正向释放是因为能适应生境条件异质,一定程度上决定了微生物产生的酶数量(罗攀等,2017)。

  • 本研究中,根系分泌物ACP与土壤AP呈显著正相关。RDA分析显示,AP是植被恢复过程中影响两种酶活性的关键环境因子之一。这是因为根系ACP分泌的增强是植物应对磷素缺乏的生理可塑性机制,该酶参与了根际有机磷的活化利用(竹嘉妮等,2022),是从有机分子中获取磷酸盐离子的最重要的生物策略。ACP不仅由菌根和腐生真菌或细菌等微生物产生(Margalef et al.,2021),还由植物根系释放。喀斯特是土壤磷素供应量比较稀缺的地区(潘复静等,2011)。植物根系可直接吸收利用土壤中无机态可溶性磷酸盐,而土壤中存在大量的磷酸酯、磷酸酐等有机磷却无法被植物直接吸收(周梦岩等,2021)。土壤有机磷的利用需要磷酸酶的水解,植物ACP的主要作用是分解土壤环境中的有机磷底物释放出可以供植物直接吸收利用的无机磷,从而提高了土壤磷素的有效性(Miller et al.,2001;张烨,2014)。有研究结果表明,在低磷下植物根系外泌ACP活性均呈显著增加的趋势(梁霞等,2005;谢钰容等,2005)。除此之外,土壤ACP酶与土壤AP呈显著正相关。这可能是由于根系分泌物中的ACP增加了土壤中ACP的含量,进一步促进土壤有机磷的转化过程,从而增加了土壤AP含量。Hu等(2019)研究表明,菌根化植物可以通过改善营养或扩大根系释放更多的酶,增强土壤中的磷酸酶活性是动员土壤磷的重要作用之一。根产生的生态酶还能在根部死亡后进入土壤(Rillig et al.,2007),会改变碳氮磷循环酶的水平。因此,根系分泌物酶是土壤养分循环的关键驱动因素,植物根系释放的酶能够直接参与土壤养分元素的有效转化过程,及时分泌胞外酶来获取自身所需的营养物质。

  • 图4 根系分泌物酶活性和土壤酶活性及比值与土壤环境因子的冗余分析 (RDA)

  • Fig.4 Redundancy analysis (RDA) of root exudates and soil enzyme activities and their ratios with soil environmental factors

  • 4 结论

  • (1)植被恢复对根系分泌物酶活性和土壤酶活性的影响显著,植被的正向演替提高了土壤酶和根系分泌物的酶活性。(2)根系分泌物酶活性与对应的土壤酶活性呈显著正相关,根系分泌物的酶活性提高了根际土中的酶活性。(3)植物根系分泌物酶活性与养分全量和有效性含量呈显著正相关关系,说明根系分泌物酶活性对土壤养分有效性提高具有积极作用,调控根系分泌物分泌及其酶活性对喀斯特生态系统土壤养分有效性的提高具有重要价值。

  • 参考文献

    • BELL C, CARRILLO Y, BOOT CM, et al. , 2014. Rhizosphere stoichiometry: are C∶N∶P ratios of plants, soils and enzymes conserved at the plant species-level? [J]. New Phytol, 201(2): 505-517.

    • CAI YM, ZHAO QX, ZHANG CF, 2021. Effect of plant root exudates on soil phosphorus transformation under low phosphorus: A review [J]. J NE Agric Univ, 52(2): 79-86. [蔡银美, 赵庆霞, 张成富, 2021. 低磷下植物根系分泌物对土壤磷转化的影响研究进展 [J]. 东北农业大学学报, 52(2): 79-86. ]

    • CHEN H, LI DL, XIAO KC, et al. , 2018. Soil microbial processes and resource limitation in karst and non-karst forests [J]. Funct Ecol, 32(5): 1400-1409.

    • EGAMBERDIEVA D, RENELLA G, WIRTH S, et al. , 2010. Enzyme activities in the rhizosphere of plants [J]. Soil Biol Biochem, 22: 149-166.

    • GIANFREDA L, 2015. Enzymes of importance to rhizosphere processes [J]. J Soil Sci Plant Nat, 15(2): 283-306.

    • HU JL, CUI XA, WANG JH, et al. , 2019. The non-simultaneous enhancement of phosphorus acquisition and mobilization respond to enhanced arbuscular mycorrhization on maize (Zea mays L. ) [J]. Microorganisms, 7(12). DOI: 10. 3390/microorganisms7120651.

    • HU L, SU Y, HE X, et al. , 2012. Response of soil organic carbon mineralization in typical karst soils following the addition of 14C-labeled rice straw and CaCO3 [J]. J Sci Food Agr, 92(5): 1112-1118.

    • HU N, LAN JC, 2020. Impact of vegetation restoration on soil organic carbon stocks and aggregates in a karst rocky desertification area in Southwest China [J]. J Soils Sed, 20(3): 1264-1275.

    • HUI Y, LIANG JH, CHEN J, et al. , 2015. Soil calcium speciation at different geomorphological positions in the Yaji karst experimental site in Guilin, China [J]. J Resour Ecol, 6(4): 224-229.

    • JIANG T, XIANG SS, FANG XR, et al. , 2021. Gradient analysis of functional traits of different leaf habit plants in evergreen deciduous broad-leaved mixed forest in karst hills of Guilin, Southwest China [J]. J Anhui Agric Sci, 49(8): 104-113. [蒋婷, 向珊珊, 方秀茹, 等, 2021. 桂林岩溶石山常绿落叶阔叶混交林不同叶习性植物功能性状梯度分析 [J]. 安徽农业科学, 49(8): 104-113. ]

    • JING X, CHEN X, XIAO W, et al. , 2018. Soil enzymatic responses to multiple environmental drivers in the Tibetan grasslands: Insights from two manipulative field experiments and a meta-analysis [J]. Pedobiologia, 71: 50-58.

    • JONES DL, HODGE A, KUZYAKOV Y, 2004. Plant and mycorrhizal regulation of rhizodeposition [J]. New Phytol, 163(3): 459-480.

    • KORANDA M, SCHNECKER J, KAISER C, et al. , 2011. Microbial processes and community composition in the rhizosphere of European beech — The influence of plant C exudates [J]. Soil Biol Biochem, 43(3): 551-558.

    • LI MJ, YU LF, DU MF, et al. , 2018. C, N, and P stoichiometry and their interaction with plants, litter, and soil in a Cunninghamia lanceolata plantation with different ages [J]. Acta Ecol Sin, 38(21): 7772-7781. [李明军, 喻理飞, 杜明凤, 等, 2018. 不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系 [J]. 生态学报, 38(21): 7772-7781. ]

    • LIANG X, LIU AQ, MA XQ, et al. , 2005. The effect of phosphorus deficiency stress on activities of and acid phosphatase in different clones of Chinese fir [J]. J Plant Ecol, 29(1): 54-59. [梁霞, 刘爱琴, 马祥庆, 等, 2005. 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响 [J]. 植物生态学报, 29(1): 54-59. ]

    • LIANG YM, LI Q, PAN FJ, 2017. Ecological stoichiometric characteristics of Loropetalum chinense rhizosphere soils at different vegetation restoration stage in karst region [J]. Bull soil Water Conserv, 37(5): 123-127. [梁月明, 李强, 潘复静, 2017. 岩溶区不同恢复阶段檵木根际土壤生态化学计量学特征 [J]. 水土保持通报, 37(5): 123-127. ]

    • LIANG YM, PAN FJ, MA JM, et al. , 2021. Long-term forest restoration influences succession patterns of soil bacterial communities [J]. Environ Sci Pollut Res, 28(16): 20598-20607.

    • LIU JB, CHEN J, CHEN GS, et al. , 2020. Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests [J]. PLoS ONE, 15(2). DOI: 10. 1371/JOURNAL. PONE. 0220599.

    • LIU L, 2017. Soil extracellular enzyme activities and their controlling factors in typical karst ecosystems, southwest China [D]. Guilin: Guangxi Normal University. [刘璐, 2017. 喀斯特典型生态系统土壤胞外酶活性及其影响因素 [D]. 桂林: 广西师范大学. ]

    • LUO P, CHEN H, XIAO KC, et al. , 2017. Effects of topography, tree species and soil properties on soil enzyme activity in karst regions [J]. Chin J Environ Sci, 38(6): 2577-2585. [罗攀, 陈浩, 肖孔操, 等, 2017. 地形、树种和土壤属性对喀斯特山区土壤胞外酶活性的影响 [J]. 环境科学, 38(6): 2577-2585. ]

    • MA XM, LIU Y, ZAREBANADKOUKI M, et al. , 2018. Spatiotemporal patterns of enzyme activities in the rhizosphere: effects of plant growth and root morphology [J]. Biol Fert Soils, 54(7): 819-828.

    • MARGALEF O, SARDANS J, MASPONS J, et al. , 2021. The effect of global change on soil phosphatase activity [J]. Glob Change Biol, 27(22): 5989-6003.

    • MILLER SS, LIU JQ, ALLAN DL, et al. , 2001. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin [J]. Plant Physiol, 127(2): 594-606.

    • NADAL-ROMERO E, CAMMERAAT E, PEREZ-CARDIEL E, et al. , 2016. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas [J]. Agr Ecosyst Environ, 228: 91-100.

    • PAN FJ, LIANG YM, ZHANG W, et al. , 2016. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere [J]. Front Plant Sci, 7: 687.

    • PAN FJ, ZHANG W, WANG KL, et al. , 2011. Litter C∶N∶P ecological stoichiometry charater of plant communities in typical karst peak-cluster depression [J]. Acta Ecol Sin, 31(2): 335-343. [潘复静, 张伟, 王克林, 等, 2011. 典型喀斯特峰丛洼地植被群落凋落物C∶N∶P生态化学计量特征 [J]. 生态学报, 31(2): 335-343. ]

    • PAN FJ, ZHANG W, LIANG YM, et al. , 2020a. Seasonal changes of soil organic acid concentrations in relation to available N and P at different stages of vegetation restoration in a karst ecosyst [J]. Chin J Ecol, 39(4): 1112-1120. [潘复静, 张伟, 梁月明, 等, 2020a. 喀斯特不同植被恢复阶段土壤有机酸季节变化与有效氮磷的关系 [J]. 生态学杂志, 39(4): 1112-1120. ]

    • PAN FJ, WANG KL, ZHANG W, et al. , 2020b. Seasonal changes and rhizosphere effects of soil nutrients and enzymatic activities in two vegetation successions of karst ecosystem [J]. J Guilin For Univ, 40(1): 209-217. [潘复静, 王克林, 张伟, 等, 2020b. 喀斯特不同恢复阶段植物根际土养分和酶活性的季节性变化和根际效应 [J]. 桂林理工大学学报, 40(1): 209-217. ]

    • PENG X, WANG W, 2016. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China [J]. Soil Boil Biochem, 98: 74-84.

    • PHILLIPS RP, ERLITZ Y, BIER R, et al. , 2008. New approach for capturing soluble root exudates in forest soils [J]. Funct Ecol, 22(6): 990-999.

    • RILLIG MC, CALDWELL BA, WOSTEN HAB, et al. , 2007. Role of proteins in soil carbon and nitrogen storage: controls on persistence [J]. Biogeochemistry, 85(1): 25-44.

    • SINSABAUGH RL, HILL BH, SHAH JJF, 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 462(7274): 795-798.

    • SINSABAUGH RL, SHAH JJF, 2012. Ecoenzymatic stoichiometry and ecological theory [J]. Ann Rev Ecol Evol Syst, 43(1): 313-343.

    • SNAJDR J, DOBIASOVA P, URBANOVA M, et al. , 2013. Dominant trees affect microbial community composition and activity in post-mining afforested soils [J]. Soil Biol Biochem, 56: 105-115.

    • SONG X, GAO Y, GREEN SM, et al. , 2017. Nitrogen loss from karst area in China in recent 50 years: An in-situ simulated rainfall experiment's assessment [J]. Rangel Ecol, 7(23): 10131-10142.

    • SUI YY, JIAO XG, GAO CS, et al. , 2009. The relationship among organic matter content and soil microbial biomass and soil enzyme activities [J]. Chin J Soil Sci, 40(5): 1036-1039. [隋跃宇, 焦晓光, 高崇生, 等, 2009. 土壤有机质含量与土壤微生物量及土壤酶活性关系的研究 [J]. 土壤通报, 40(5): 1036-1039. ]

    • SUN Y, XU XL, YAKOV K, 2014. Mechanisms of rhizosphere priming effects and their ecological significance [J]. J Plant Ecol, 38(1): 62-75. [孙悦, 徐兴良, YAKOV K, 2014. 根际激发效应的发生机制及其生态重要性 [J]. 植物生态学报, 38(1): 62-75. ]

    • TANG Q, DING FJ, ZHU SX, et al. , 2020. Effects of different vegetative succession stages on soil chemical properties and enzyme activities in karst region of Maolan [J]. Ecol Environ Sci, 29(10): 1943-1952. [汤茜, 丁访军, 朱四喜, 等, 2020. 茂兰喀斯特地区不同植被演替阶段对土壤化学性质与酶活性的影响 [J]. 生态环境学报, 29(10): 1943-1952. ]

    • TU LH, HU HL, HU TX, et al. , 2012. Effects of simulated nitrogen deposition on soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China [J]. Chin J Appl Ecol, 23(8): 2129-2134. [涂利华, 胡红玲, 胡庭兴, 等, 2012. 模拟氮沉降对华西雨屏区光皮桦林土壤酶活性的影响 [J]. 应用生态学报, 23(8): 2129-2134. ]

    • VAN HALL RL, CAMMERAAT LH, KEESSTRA SD, et al. , 2017. Impact of secondary vegetation succession on soil quality in a humid Mediterranean landscape [J]. Catena, 149: 836-843.

    • VITOUSEK PM, PORDER S, HOULTON BZ, et al. , 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecol Appl, 20(1): 5-15.

    • VIVES-PERIS V, DEOLLAS C, GOMEZ-CADENAS A, et al. , 2020. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Rep, 39(1): 3-17.

    • WANG K, ZHANG C, CHEN H, et al. , 2019. Karst landscapes of China: patterns, ecosystem processes and services [J]. Landscape Ecol, 34(12): 2743-2763.

    • WANG KL, YUE YM, CHEN HS, et al. , 2019. The comprehensive treatment of karst rocky desertification and its regional restoration effects [J]. Acta Ecol Sin, 39(20): 7432-7440. [王克林, 岳跃民, 陈洪松, 等, 2019. 喀斯特石漠化综合治理及其区域恢复效应 [J]. 生态学报, 39(20): 7432-7440. ]

    • WEI L, RAZAVI BS, WANG W, et al. , 2019. Labile carbon matters more than temperature for enzyme activity in paddy soil [J]. Soil Biol Biochem, 135: 134-143.

    • WEN Z, WHITE PJ, SHEN J, et al. , 2022. Linking root exudation to belowground economic traits for resource acquisition [J]. New Phytol, 233(4): 1620-1635.

    • XIAO XM, LIU JS, ZHOU C, et al. , 2014. Difference of root exudates from macadamia seedlings under different phosphorus supply [J]. Chin J Trop Crop, 35(2): 261-265. [肖晓明, 刘军生, 周程, 等, 2014. 不同磷水平下澳洲坚果幼苗根系分泌物的差异 [J]. 热带作物学报, 35(2): 261-265. ]

    • XIE YR, ZHOU ZC, LIAO GH, et al. , 2005. Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances [J]. Sci Silv Sin, 41(3): 58-62. [谢钰容, 周志春, 廖国华, 等, 2005. 低磷胁迫下马尾松种源酸性磷酸酶活性差异 [J]. 林业科学, 41(3): 58-62. ]

    • XU ZW, YU GR, ZHANG XY, et al. , 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC) [J]. Soil Biol Biochem, 104: 152-163.

    • YUAN DX, 2008. Global view on karst rock desertification and integrating control measures and experiences of China [J]. Acta Pratac Sin, (9): 19-25. [袁道先, 2008. 岩溶石漠化问题的全球视野和我国的治理对策与经验 [J]. 草业科学, (9): 19-25. ]

    • ZHANG W, WANG KL, LIU SJ, et al. , 2013. Soil nutrient accumulation and its affecting factors during vegetation succession in karst peak-cluster depressions of South China [J]. Chin J Appl Ecol, 24(7): 1801-1808. [张伟, 王克林, 刘淑娟, 等, 2013. 喀斯特峰丛洼地植被演替过程中土壤养分的积累及影响因素 [J]. 应用生态学报, 24(7): 1801-1808. ]

    • ZHANG W, ZHAO J, PAN FJ, et al. , 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China [J]. Plant Soil, 391: 77-91.

    • ZHANG X, DIPPOLD MA, KUZYAKOV Y, et al. , 2019. Spatial pattern of enzyme activities depends on root exudate composition [J]. Soil Biol Biochem, 133: 83-93.

    • ZHANG XB, BAI XY, HE XB, 2011. Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest China [J]. Carbonate Evaporite, 26(2): 149-153.

    • ZHANG XZ, LI TX, WANG YD, 2007. Relationship between growth environment and root exudates of plants: a review [J]. Chin J Soil Sci, 38(4): 785-789. [张锡洲, 李廷轩, 王永东, 2007. 植物生长环境与根系分泌物的关系 [J]. 土壤通报, 38(4): 785-789. ]

    • ZHANG Y, 2014. Molecular regulation of phosphate starvation-induced acid phosphatase activity [D]. Beijing: Tsinghua University. [张烨, 2014. 低磷胁迫诱导植物酸性磷酸酶的分子调控机制 [D]. 北京: 清华大学. ]

    • ZHOU MY, HE DM, LI YC, et al. , 2021. Research progress of the role of purple acid phosphatase in plant response to low phosphorus stress [J]. Mol Plant Breed, 19(11): 3763-3770. [周梦岩, 何冬梅, 李亚超, 等, 2021. 紫色酸性磷酸酶在植物响应低磷胁迫中的作用研究进展 [J]. 分子植物育种, 19(11): 3763-3770. ]

    • ZHU JN, HUANG H, DU Y, et al. , 2022. The transgenerational effect of arbuscular mycorrhizal fungi on root phosphatase activity of host plant Medicago truncatula [J]. Chin J Ecol, 41(5): 912-918. [竹嘉妮, 黄弘, 杜勇, 等, 2022. 丛枝菌根真菌影响宿主植物蒺藜苜蓿根系酸性磷酸酶活性的跨世代效应 [J]. 生态学杂志, 41(5): 912-918. ]

    • ZI HB, HU L, WANG CT, et al. , 2018. Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow [J]. Eur J Soil Sci, 69(3): 429-438.

  • 参考文献

    • BELL C, CARRILLO Y, BOOT CM, et al. , 2014. Rhizosphere stoichiometry: are C∶N∶P ratios of plants, soils and enzymes conserved at the plant species-level? [J]. New Phytol, 201(2): 505-517.

    • CAI YM, ZHAO QX, ZHANG CF, 2021. Effect of plant root exudates on soil phosphorus transformation under low phosphorus: A review [J]. J NE Agric Univ, 52(2): 79-86. [蔡银美, 赵庆霞, 张成富, 2021. 低磷下植物根系分泌物对土壤磷转化的影响研究进展 [J]. 东北农业大学学报, 52(2): 79-86. ]

    • CHEN H, LI DL, XIAO KC, et al. , 2018. Soil microbial processes and resource limitation in karst and non-karst forests [J]. Funct Ecol, 32(5): 1400-1409.

    • EGAMBERDIEVA D, RENELLA G, WIRTH S, et al. , 2010. Enzyme activities in the rhizosphere of plants [J]. Soil Biol Biochem, 22: 149-166.

    • GIANFREDA L, 2015. Enzymes of importance to rhizosphere processes [J]. J Soil Sci Plant Nat, 15(2): 283-306.

    • HU JL, CUI XA, WANG JH, et al. , 2019. The non-simultaneous enhancement of phosphorus acquisition and mobilization respond to enhanced arbuscular mycorrhization on maize (Zea mays L. ) [J]. Microorganisms, 7(12). DOI: 10. 3390/microorganisms7120651.

    • HU L, SU Y, HE X, et al. , 2012. Response of soil organic carbon mineralization in typical karst soils following the addition of 14C-labeled rice straw and CaCO3 [J]. J Sci Food Agr, 92(5): 1112-1118.

    • HU N, LAN JC, 2020. Impact of vegetation restoration on soil organic carbon stocks and aggregates in a karst rocky desertification area in Southwest China [J]. J Soils Sed, 20(3): 1264-1275.

    • HUI Y, LIANG JH, CHEN J, et al. , 2015. Soil calcium speciation at different geomorphological positions in the Yaji karst experimental site in Guilin, China [J]. J Resour Ecol, 6(4): 224-229.

    • JIANG T, XIANG SS, FANG XR, et al. , 2021. Gradient analysis of functional traits of different leaf habit plants in evergreen deciduous broad-leaved mixed forest in karst hills of Guilin, Southwest China [J]. J Anhui Agric Sci, 49(8): 104-113. [蒋婷, 向珊珊, 方秀茹, 等, 2021. 桂林岩溶石山常绿落叶阔叶混交林不同叶习性植物功能性状梯度分析 [J]. 安徽农业科学, 49(8): 104-113. ]

    • JING X, CHEN X, XIAO W, et al. , 2018. Soil enzymatic responses to multiple environmental drivers in the Tibetan grasslands: Insights from two manipulative field experiments and a meta-analysis [J]. Pedobiologia, 71: 50-58.

    • JONES DL, HODGE A, KUZYAKOV Y, 2004. Plant and mycorrhizal regulation of rhizodeposition [J]. New Phytol, 163(3): 459-480.

    • KORANDA M, SCHNECKER J, KAISER C, et al. , 2011. Microbial processes and community composition in the rhizosphere of European beech — The influence of plant C exudates [J]. Soil Biol Biochem, 43(3): 551-558.

    • LI MJ, YU LF, DU MF, et al. , 2018. C, N, and P stoichiometry and their interaction with plants, litter, and soil in a Cunninghamia lanceolata plantation with different ages [J]. Acta Ecol Sin, 38(21): 7772-7781. [李明军, 喻理飞, 杜明凤, 等, 2018. 不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系 [J]. 生态学报, 38(21): 7772-7781. ]

    • LIANG X, LIU AQ, MA XQ, et al. , 2005. The effect of phosphorus deficiency stress on activities of and acid phosphatase in different clones of Chinese fir [J]. J Plant Ecol, 29(1): 54-59. [梁霞, 刘爱琴, 马祥庆, 等, 2005. 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响 [J]. 植物生态学报, 29(1): 54-59. ]

    • LIANG YM, LI Q, PAN FJ, 2017. Ecological stoichiometric characteristics of Loropetalum chinense rhizosphere soils at different vegetation restoration stage in karst region [J]. Bull soil Water Conserv, 37(5): 123-127. [梁月明, 李强, 潘复静, 2017. 岩溶区不同恢复阶段檵木根际土壤生态化学计量学特征 [J]. 水土保持通报, 37(5): 123-127. ]

    • LIANG YM, PAN FJ, MA JM, et al. , 2021. Long-term forest restoration influences succession patterns of soil bacterial communities [J]. Environ Sci Pollut Res, 28(16): 20598-20607.

    • LIU JB, CHEN J, CHEN GS, et al. , 2020. Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests [J]. PLoS ONE, 15(2). DOI: 10. 1371/JOURNAL. PONE. 0220599.

    • LIU L, 2017. Soil extracellular enzyme activities and their controlling factors in typical karst ecosystems, southwest China [D]. Guilin: Guangxi Normal University. [刘璐, 2017. 喀斯特典型生态系统土壤胞外酶活性及其影响因素 [D]. 桂林: 广西师范大学. ]

    • LUO P, CHEN H, XIAO KC, et al. , 2017. Effects of topography, tree species and soil properties on soil enzyme activity in karst regions [J]. Chin J Environ Sci, 38(6): 2577-2585. [罗攀, 陈浩, 肖孔操, 等, 2017. 地形、树种和土壤属性对喀斯特山区土壤胞外酶活性的影响 [J]. 环境科学, 38(6): 2577-2585. ]

    • MA XM, LIU Y, ZAREBANADKOUKI M, et al. , 2018. Spatiotemporal patterns of enzyme activities in the rhizosphere: effects of plant growth and root morphology [J]. Biol Fert Soils, 54(7): 819-828.

    • MARGALEF O, SARDANS J, MASPONS J, et al. , 2021. The effect of global change on soil phosphatase activity [J]. Glob Change Biol, 27(22): 5989-6003.

    • MILLER SS, LIU JQ, ALLAN DL, et al. , 2001. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin [J]. Plant Physiol, 127(2): 594-606.

    • NADAL-ROMERO E, CAMMERAAT E, PEREZ-CARDIEL E, et al. , 2016. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas [J]. Agr Ecosyst Environ, 228: 91-100.

    • PAN FJ, LIANG YM, ZHANG W, et al. , 2016. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere [J]. Front Plant Sci, 7: 687.

    • PAN FJ, ZHANG W, WANG KL, et al. , 2011. Litter C∶N∶P ecological stoichiometry charater of plant communities in typical karst peak-cluster depression [J]. Acta Ecol Sin, 31(2): 335-343. [潘复静, 张伟, 王克林, 等, 2011. 典型喀斯特峰丛洼地植被群落凋落物C∶N∶P生态化学计量特征 [J]. 生态学报, 31(2): 335-343. ]

    • PAN FJ, ZHANG W, LIANG YM, et al. , 2020a. Seasonal changes of soil organic acid concentrations in relation to available N and P at different stages of vegetation restoration in a karst ecosyst [J]. Chin J Ecol, 39(4): 1112-1120. [潘复静, 张伟, 梁月明, 等, 2020a. 喀斯特不同植被恢复阶段土壤有机酸季节变化与有效氮磷的关系 [J]. 生态学杂志, 39(4): 1112-1120. ]

    • PAN FJ, WANG KL, ZHANG W, et al. , 2020b. Seasonal changes and rhizosphere effects of soil nutrients and enzymatic activities in two vegetation successions of karst ecosystem [J]. J Guilin For Univ, 40(1): 209-217. [潘复静, 王克林, 张伟, 等, 2020b. 喀斯特不同恢复阶段植物根际土养分和酶活性的季节性变化和根际效应 [J]. 桂林理工大学学报, 40(1): 209-217. ]

    • PENG X, WANG W, 2016. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China [J]. Soil Boil Biochem, 98: 74-84.

    • PHILLIPS RP, ERLITZ Y, BIER R, et al. , 2008. New approach for capturing soluble root exudates in forest soils [J]. Funct Ecol, 22(6): 990-999.

    • RILLIG MC, CALDWELL BA, WOSTEN HAB, et al. , 2007. Role of proteins in soil carbon and nitrogen storage: controls on persistence [J]. Biogeochemistry, 85(1): 25-44.

    • SINSABAUGH RL, HILL BH, SHAH JJF, 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 462(7274): 795-798.

    • SINSABAUGH RL, SHAH JJF, 2012. Ecoenzymatic stoichiometry and ecological theory [J]. Ann Rev Ecol Evol Syst, 43(1): 313-343.

    • SNAJDR J, DOBIASOVA P, URBANOVA M, et al. , 2013. Dominant trees affect microbial community composition and activity in post-mining afforested soils [J]. Soil Biol Biochem, 56: 105-115.

    • SONG X, GAO Y, GREEN SM, et al. , 2017. Nitrogen loss from karst area in China in recent 50 years: An in-situ simulated rainfall experiment's assessment [J]. Rangel Ecol, 7(23): 10131-10142.

    • SUI YY, JIAO XG, GAO CS, et al. , 2009. The relationship among organic matter content and soil microbial biomass and soil enzyme activities [J]. Chin J Soil Sci, 40(5): 1036-1039. [隋跃宇, 焦晓光, 高崇生, 等, 2009. 土壤有机质含量与土壤微生物量及土壤酶活性关系的研究 [J]. 土壤通报, 40(5): 1036-1039. ]

    • SUN Y, XU XL, YAKOV K, 2014. Mechanisms of rhizosphere priming effects and their ecological significance [J]. J Plant Ecol, 38(1): 62-75. [孙悦, 徐兴良, YAKOV K, 2014. 根际激发效应的发生机制及其生态重要性 [J]. 植物生态学报, 38(1): 62-75. ]

    • TANG Q, DING FJ, ZHU SX, et al. , 2020. Effects of different vegetative succession stages on soil chemical properties and enzyme activities in karst region of Maolan [J]. Ecol Environ Sci, 29(10): 1943-1952. [汤茜, 丁访军, 朱四喜, 等, 2020. 茂兰喀斯特地区不同植被演替阶段对土壤化学性质与酶活性的影响 [J]. 生态环境学报, 29(10): 1943-1952. ]

    • TU LH, HU HL, HU TX, et al. , 2012. Effects of simulated nitrogen deposition on soil enzyme activities in a Betula luminifera plantation in Rainy Area of West China [J]. Chin J Appl Ecol, 23(8): 2129-2134. [涂利华, 胡红玲, 胡庭兴, 等, 2012. 模拟氮沉降对华西雨屏区光皮桦林土壤酶活性的影响 [J]. 应用生态学报, 23(8): 2129-2134. ]

    • VAN HALL RL, CAMMERAAT LH, KEESSTRA SD, et al. , 2017. Impact of secondary vegetation succession on soil quality in a humid Mediterranean landscape [J]. Catena, 149: 836-843.

    • VITOUSEK PM, PORDER S, HOULTON BZ, et al. , 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecol Appl, 20(1): 5-15.

    • VIVES-PERIS V, DEOLLAS C, GOMEZ-CADENAS A, et al. , 2020. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Rep, 39(1): 3-17.

    • WANG K, ZHANG C, CHEN H, et al. , 2019. Karst landscapes of China: patterns, ecosystem processes and services [J]. Landscape Ecol, 34(12): 2743-2763.

    • WANG KL, YUE YM, CHEN HS, et al. , 2019. The comprehensive treatment of karst rocky desertification and its regional restoration effects [J]. Acta Ecol Sin, 39(20): 7432-7440. [王克林, 岳跃民, 陈洪松, 等, 2019. 喀斯特石漠化综合治理及其区域恢复效应 [J]. 生态学报, 39(20): 7432-7440. ]

    • WEI L, RAZAVI BS, WANG W, et al. , 2019. Labile carbon matters more than temperature for enzyme activity in paddy soil [J]. Soil Biol Biochem, 135: 134-143.

    • WEN Z, WHITE PJ, SHEN J, et al. , 2022. Linking root exudation to belowground economic traits for resource acquisition [J]. New Phytol, 233(4): 1620-1635.

    • XIAO XM, LIU JS, ZHOU C, et al. , 2014. Difference of root exudates from macadamia seedlings under different phosphorus supply [J]. Chin J Trop Crop, 35(2): 261-265. [肖晓明, 刘军生, 周程, 等, 2014. 不同磷水平下澳洲坚果幼苗根系分泌物的差异 [J]. 热带作物学报, 35(2): 261-265. ]

    • XIE YR, ZHOU ZC, LIAO GH, et al. , 2005. Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances [J]. Sci Silv Sin, 41(3): 58-62. [谢钰容, 周志春, 廖国华, 等, 2005. 低磷胁迫下马尾松种源酸性磷酸酶活性差异 [J]. 林业科学, 41(3): 58-62. ]

    • XU ZW, YU GR, ZHANG XY, et al. , 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC) [J]. Soil Biol Biochem, 104: 152-163.

    • YUAN DX, 2008. Global view on karst rock desertification and integrating control measures and experiences of China [J]. Acta Pratac Sin, (9): 19-25. [袁道先, 2008. 岩溶石漠化问题的全球视野和我国的治理对策与经验 [J]. 草业科学, (9): 19-25. ]

    • ZHANG W, WANG KL, LIU SJ, et al. , 2013. Soil nutrient accumulation and its affecting factors during vegetation succession in karst peak-cluster depressions of South China [J]. Chin J Appl Ecol, 24(7): 1801-1808. [张伟, 王克林, 刘淑娟, 等, 2013. 喀斯特峰丛洼地植被演替过程中土壤养分的积累及影响因素 [J]. 应用生态学报, 24(7): 1801-1808. ]

    • ZHANG W, ZHAO J, PAN FJ, et al. , 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China [J]. Plant Soil, 391: 77-91.

    • ZHANG X, DIPPOLD MA, KUZYAKOV Y, et al. , 2019. Spatial pattern of enzyme activities depends on root exudate composition [J]. Soil Biol Biochem, 133: 83-93.

    • ZHANG XB, BAI XY, HE XB, 2011. Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest China [J]. Carbonate Evaporite, 26(2): 149-153.

    • ZHANG XZ, LI TX, WANG YD, 2007. Relationship between growth environment and root exudates of plants: a review [J]. Chin J Soil Sci, 38(4): 785-789. [张锡洲, 李廷轩, 王永东, 2007. 植物生长环境与根系分泌物的关系 [J]. 土壤通报, 38(4): 785-789. ]

    • ZHANG Y, 2014. Molecular regulation of phosphate starvation-induced acid phosphatase activity [D]. Beijing: Tsinghua University. [张烨, 2014. 低磷胁迫诱导植物酸性磷酸酶的分子调控机制 [D]. 北京: 清华大学. ]

    • ZHOU MY, HE DM, LI YC, et al. , 2021. Research progress of the role of purple acid phosphatase in plant response to low phosphorus stress [J]. Mol Plant Breed, 19(11): 3763-3770. [周梦岩, 何冬梅, 李亚超, 等, 2021. 紫色酸性磷酸酶在植物响应低磷胁迫中的作用研究进展 [J]. 分子植物育种, 19(11): 3763-3770. ]

    • ZHU JN, HUANG H, DU Y, et al. , 2022. The transgenerational effect of arbuscular mycorrhizal fungi on root phosphatase activity of host plant Medicago truncatula [J]. Chin J Ecol, 41(5): 912-918. [竹嘉妮, 黄弘, 杜勇, 等, 2022. 丛枝菌根真菌影响宿主植物蒺藜苜蓿根系酸性磷酸酶活性的跨世代效应 [J]. 生态学杂志, 41(5): 912-918. ]

    • ZI HB, HU L, WANG CT, et al. , 2018. Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow [J]. Eur J Soil Sci, 69(3): 429-438.