Page 98 - 《广西植物》2023年第2期
P. 98
2 9 2 广 西 植 物 43 卷
基酸序列聚集在一起ꎬ真菌的聚集在一起ꎬ软体动 Membr Biolꎬ 212(2): 83-91.
物的聚集在一起ꎬ藻类单独在一个分支ꎬ植物又根 KUMAR Rꎬ CHADHA Sꎬ SARASWAT Dꎬ et al.ꎬ 2011.
据单子叶植物纲和双子叶植物纲又分属各自的分 Histatin 5 uptake by Candida albicans utilizes polyamine
transporters Dur3 and Dur31 proteins [J]ꎬ J Biol Chemꎬ 286
支(图 6)ꎮ 棉花属于双子叶植物ꎬ所以它聚在双
(51): 43748-43758.
子叶植物的大分支上ꎬ其中棉花的 3 个 DUR3 亲缘 LI FGꎬ FAN GYꎬ WANG KBꎬ et al.ꎬ 2014. Genome sequence
关系最近聚在一个分支ꎮ of the cultivated cotton Gossypium arboreum [J]. Nat Genetꎬ
DUR3 直系同源基因和旁系同源基因的 K / K 46(6): 562-574.
a s LI FGꎬ FAN ZYꎬ LU GHꎬ et al.ꎬ 2015. Genome sequence of
比值普遍均大于 1ꎬ说明这些基因在进化过程中主
cultivated Upland cotton ( Gossypium hirsutum TM ̄1 )
要受到正向选择的作用ꎮ 此外ꎬ植物 DUR3 的基因 provides insights into genome evolution [J]. Nat Biotechnolꎬ
结构具有一定的规律可以遵循ꎬDUR3 基因的外显 33(5): 524-530.
子个数的分析结果表明ꎬ双子叶植物的外显子个 LIU GWꎬ SUN ALꎬ LI DQꎬ et al.ꎬ 2015. Molecular
identification and functional analysis of a maize (Zea mays)
数普遍较多ꎬ单子叶植物的外显子个数普遍较少ꎮ
DUR3 homolog that transports urea with high affinity
本研究结果为研究植物 DUR3 基因的结构进化提 [J]. Plantaꎬ 241(4): 861-874.
供了理论参考ꎮ LIU LHꎬ LUDEWIG Uꎬ WOLF B FROMMERꎬ et al.ꎬ
+
2003a. AtDUR3 encodes a new type of high ̄affinity urea/ H
symporter in Arabidopsis [J]. Plant Cellꎬ 15(3): 790-800.
参考文献: LIU LHꎬ LUDEWIG Uꎬ GASSERT Bꎬ et al.ꎬ 2003b. Urea
transport by nitrogen ̄regulated tonoplast intrinsic proteins in
Arabidopsis [J]. Plant Physiolꎬ 133(3): 1220-1228.
BEIER MPꎬ FUJITA Tꎬ SASAKI Kꎬ et al.ꎬ 2019. The urea
MARSCHNER Hꎬ 1995. Mineral nutrition of higher plants
transporter DUR3 contributes to rice production under
nitrogen ̄deficient and field conditions [ J ]. Physiol [M]. London: Academic Press: 889.
UEMURA Tꎬ KASHIWAGI Kꎬ IGARASHI Kꎬ 2006. Polyamine
Plantarumꎬ 167(1): 75-89.
uptake by DUR3 and SAM3 in Saccharomyces cerevisiae
BOHNER Aꎬ KOJIMA Sꎬ HAJIREZAEI Mꎬ et al.ꎬ 2015. Urea
[J]. J Biol Chemꎬ 282(10): 7733-7741.
retranslocation from senescing Arabidopsis leaves is promoted
WANG KBꎬ WANG ZWꎬ LI FGꎬ et al.ꎬ 2012a. The draft
by DUR3 ̄mediated urea retrieval from leaf apoplast [ J].
genome of a diploid cotton Gossypium raimondii [ J]. Nat
Plant Jꎬ 81(3): 377-387.
Genetꎬ 44(10): 1098-1103.
CAO FQꎬ LIU GWꎬ WANG WHꎬ et al.ꎬ 2009. Molecular
WANG WHꎬ KÖHLER Bꎬ CAO FQꎬ et al.ꎬ 2012b. Rice DUR3
processes of urea metabolism and transport in higher plants
mediates high ̄affinity urea transport and plays an effective
[J]. Chin Bull Botꎬ 44 (3): 273-282. [曹凤秋ꎬ 刘国伟ꎬ
王伟红ꎬ 等ꎬ 2009. 高等植物尿素代谢及转运的分子机理 role in improvement of urea acquisition and utilization when
expressed in Arabidopsis [ J ]. New Phytolꎬ 193 ( 2 ):
[J]. 植物学报ꎬ 44(3): 273-282.]
GROPPA MDꎬ BENAVIDES MPꎬ 2008. Polyamines and abiotic 432-444.
ZAMIN LꎬTOMASI Nꎬ WIRDNAM Cꎬ et al.ꎬ 2014. Isolation
stress: recent advances [J]. Amino Acidsꎬ 34(1): 35-45.
and functional characterization of a high affinity urea
HU Bꎬ JIN JPꎬ GUO AYꎬ et al.ꎬ 2015. GSDS 2.0: an upgraded
transporter from roots of Zea mays [J]. BMC Plant Biolꎬ
gene feature visualization server [ J ]. Bioinformaticsꎬ
14(1): 222.
31(8): 1296-1297.
KOJIMA Sꎬ BOHNER Aꎬ GASSERT Bꎬ et al.ꎬ 2007. AtDUR3 ZHANG TZꎬ HU Yꎬ JIANG WKꎬ et al.ꎬ 2015. Sequencing of
allotetraploid cotton ( Gossypium hirsutum L. acc. TM ̄1)
represents the major transporter for high ̄affinity urea
provides a resource for fiber improvement [ J ]. Nat
transport across the plasma membrane of nitrogen ̄deficient
Biotechnolꎬ 33(5): 531-537.
Arabidopsis roots [J]. Plant Jꎬ 52(1): 30-40.
KOJIMA Sꎬ BOHNER Aꎬ NICOLAUS VON WIRÉN. 2006.
Molecular mechanisms of urea transport in plants [ J]. J (责任编辑 李 莉)