Page 85 - 《广西植物》2023年第6期
P. 85

6 期                苏桂军等: 花生铝响应类受体蛋白激酶 AhPRK4 的原核表达分析                                      1 0 7 1

            (1. National Demonstration Center for Experimental Plant Science Education/ College of Agricultureꎬ Guangxi Universityꎬ Nanning 530004ꎬ Chinaꎻ
                    2. Guangxi Key Laboratory for Agro ̄Environment and Agro ̄Product Safetyꎬ Nanning 530004ꎬ Chinaꎻ 3. Key Laboratory of
                              Crop Cultivation and Tillageꎬ Guangxi Colleges and Universitiesꎬ Nanning 530004ꎬ China )


                 Abstract: The pollen receptor ̄like protein kinase (PRK) familyꎬ an LRR receptor ̄like protein kinaseꎬ not only plays
                 a role in pollen development and fertilizationꎬ but also plays a role in stress response. Based on the analysis of
                 transcriptome data that generated in our previous studyꎬ we found that AhPRK4 was an aluminum ̄responsive gene. To
                 explore the role of AhPRK4 in response to aluminum stressꎬ we analyzed the expression of AhPRK4 by qRT ̄PCR in
                 ‘ZH2’ ( Al ̄sensitive) and ‘ 99 ̄1507’ ( Al ̄tolerant)ꎬ clarified the protein structure and genetic relationship of
                 AhPRK4 by sequence analysisꎬ phylogenetic tree construction and other genetic analysisꎬ constructed the recombinant
                 plasmid by homologous recombinationꎬ obtained the intracellular domain recombinant protein of AhPRK4 by
                 prokaryotic expression technology and determined the activity of the recombinant protein by incubation with
                 phosphorylated antibodys. The results were as follows: (1) The transcription level of AhPRK4 was up ̄regulated after
                 different aluminum treatments time and different aluminum concentrationsꎬ indicating that AhPRK4 was an aluminum
                 inducible gene. (2) The AhPRK4 protein had 673 amino acids with transmembrane domainꎬ signal peptide and
                 phosphorylation active sitesꎬ belonging to the LRR ̄III protein kinase family. (3) The GST ̄AhPRK4 ̄CD recombinant
                 protein was induced in vitro and verified by Western Blot. And the recombinant protein had phosphorylated on both
                 serine / threonine and tyrosine residuesꎬ but had no significant auto ̄phosphorylation activity. In conclusionꎬ AhPRK4 is
                 an aluminum responsive geneꎬ which participates in the regulation of short ̄term aluminum stress and is phosphorylated
                 in vitro.
                 Key words: peanut (Arachis hypogaea)ꎬ aluminum stressꎬ pollen receptor ̄like protein kinaseꎬ expression analysisꎬ
                 prokaryotic expression



                花生(Arachis hypogaea) 是我国重要的油料和                 递和激活下游信号通路完成胞内外信号转导的酶
            经济作物ꎬ是主要的食用植物油来源ꎮ 在我国ꎬ花                            活性受体(马媛媛等ꎬ2005)ꎬ在植物中广泛存在ꎬ
            生产区可分为南方产区和北方产区ꎮ 但是南方地                             并可分为多个家族( Shiu & Bleeckerꎬ 2001aꎬ b)ꎬ
            区的土壤多为酸性土壤ꎬpH 值在 4.5 ~ 6.0 之间ꎬ                     参与众多生长代谢过程的调控ꎬ如参与植物的生
            Al O 含 量 高ꎬ 交 换 性 Al 占 阳 离 子 交 换 量 的               长发育进程(Nibau & Cheungꎬ 2011)、植物对病虫
                                     3+
              2  3
            20% ~ 80%(李庆逵ꎬ1983)ꎮ 当 pH 低于 5.0 时ꎬ铝               害防御应答( Yang & Ramonellꎬ 2012) 和植物抵抗
            以有毒的形态存在来引起作物毒害ꎬ故酸雨和铝                              非生物胁迫(Osakabe et al.ꎬ 2010) 等ꎮ PRKs 蛋白
            毒被认为是南方地区农作物生长重要的限制因子                              是一类富含亮氨酸重复序列( LRR) 的 RLK 蛋白
            之一(李学垣等ꎬ1995)ꎮ 在我国ꎬ南方产区花生产                         (Duckney et al.ꎬ 2017)ꎬ首个 PRK 激酶是在矮牵
            量低于全国平均水平ꎬ与北方产区相比仍然存在                              牛中被发现ꎬ命名为 PRK1ꎬ特异性分布在花粉中ꎬ
            较大的差距(鲁清等ꎬ2017)ꎬ故通过阐明花生受铝                          并在减数分裂中发挥作用( Mu et al.ꎬ 1994)ꎮ 拟
            毒害的机制ꎬ进而选育耐铝性品种来提高南方花                              南芥中的 6 个 PRK 成员也在花粉中高表达ꎬ并命
            生生产力愈发重要ꎮ 研究表明花生受铝毒害的部                             名为 AtPRK1-6( Chang et al.ꎬ 2013)ꎮ 研究发现ꎬ
            位主要是根尖ꎬ表现为根系生长受抑制、线粒体功                             PRKs 在花粉管发育( Chang et al.ꎬ 2013ꎻDuckney
            能受损、ROS 迸发以及发生细胞程序性死亡等( 詹                          et al.ꎬ 2017)、信号转导( Huang et al.ꎬ 2014) 和细

            洁等ꎬ2008ꎻ徐芬芬等ꎬ2014ꎻHuang et al.ꎬ 2014)ꎮ             胞死亡(Wrzaczek et al.ꎬ 2014) 等方面发挥了重要
            花生响应铝毒害的机制主要包括外部排斥和内部                              的调控作用ꎬ但关于 PRKs 在胁迫中的功能研究很
            耐受两种ꎬ这两种机制中需要众多成员参与来传                              少ꎬ仅在拟南芥的低水势胁迫下研究发现ꎬ相较于

            递信号ꎬ发挥功能ꎬ最终使得花生响应铝毒害ꎮ                              野生型ꎬ突变体 prk1 会积累更多的脯氨酸来响应
                 类受体蛋白激酶( receptor ̄like protein kinasesꎬ       胁迫(Verslues et al.ꎬ 2014)ꎬ而 PRKs 在铝胁迫下
            RLKs)是一种由胞外域接收信号ꎬ后通过激酶域传                           是否有响应还未见报道ꎮ
   80   81   82   83   84   85   86   87   88   89   90