Page 106 - 《广西植物》2024年第11期
P. 106

2 0 9 0                                广  西  植  物                                         44 卷
                 Abstract: In order to investigate study the influence of microbial agent Bacillus natto on the ability of Dicranopteris
                 pedata to tolerate high temperature stressꎬ we determined the physiological indexes of photosynthesis and resistance to
                 high temperature of annual D. pedata under different temperatures and fertilizer treatments. The results were as follows:
                 (1) Both temperature and fertilizer could significantly affect the photosynthesis and high temperature resistance
                 physiology of D. pedata (P<0.05). (2) The net photosynthetic rateꎬ transpiration rateꎬ stomatal conductanceꎬ and
                 chlorophyll content of D. pedata leaves were significantly reduced (P<0.05) when the temperature was increased to 45
                 ℃. The inhibition of photosynthetic physiology of Dicranopteris pedata by high ̄temperature stress was an non ̄stomatal
                 limiting. To defend the high temperature stressꎬ the superoxide dismutaseꎬ peroxidase activityꎬ prolineꎬ malondialdehyde
                 contentꎬ and relative conductivity of D. pedata were increased significantly (P<0.05). (3) Compared with the control
                 group and the organic fertilizer groupꎬ the fertilizer with microbial agent audition significantly increased the net
                 photosynthetic rateꎬ transpiration rateꎬ stomatal conductanceꎬ chlorophyll contentꎬ and the activities of peroxide
                 dismutase and catalase in leaves of D. pedataꎬ and decreased the intercellular CO concentrationꎬ malondialdehyde
                                                                                2
                 content and the relative electrical conductivity of D. pedata leaves (P<0.05). (4) The evaluation method combining
                 principal component analysis and membership function method was used to evaluate the high temperature resistance of
                 D. pedata. It was found that the D. pedata scored higher in resistance to high temperature under fertilizer ̄added origin
                 manure application. Overallꎬ D. pedata has a certain degree of resistance to high temperatureꎬ and can selectively induce
                 stress resistance physiology to adapt the high temperatures environment according to different stress environments.
                 Bacillus natto can alleviate the photosynthesis inhibition of Dicranopteris pedata by high temperature stressꎬ induce the
                 increase of antioxidant enzyme activities to alleviate cell damageꎬ reduce the pressure of osmoregulationꎬ and effectively
                 improved the resistance of D. pedata induced by high temperature stress. This study provide a reference for the ecological
                 restoration and soil and water conservation in the southern red soil erosion area and similar areas.
                 Key words: Dicranopteris pedataꎬ high temperature stressꎬ Bacillus nattoꎬ photosynthetic characteristicsꎬ stress
                 resistance physiology




                植物的生长发育和扩散对于温度变化十分敏                            究发现ꎬ纳豆芽孢杆菌( Bacillus natto) 是一种耐热
            感 (Wahid et al.ꎬ 2007)ꎮ 全球变暖背景下高温作                 性强且稳定性高的益生菌ꎬ可通过产生许多抗菌
            为非生物胁迫因子ꎬ会损害植物的光合系统ꎬ降低                             物质、维生素类物质和抗氧化物质等来增强机体
            光合效率 (Hayat et al.ꎬ 2009)ꎬ同时打破活性氧的                 免疫力和调节机体肠道菌群环境ꎮ 同时ꎬ纳豆芽
            平衡从而破坏植物细胞质膜ꎬ攻击生物大分子ꎬ阻                             孢杆菌菌剂具有制备低投入、高收益和绿色环保
            碍植物 细 胞 功 能 的 正 常 发 挥 ( Janicka ̄Russak et          等优点ꎬ可辅助有机肥和化肥发挥更佳的施用效
            al.ꎬ 2012)ꎬ最终影响植物的生长发育甚至导致其                        果 (Liu et al.ꎬ 2022)ꎬ符合现代生态环境的可持
            死亡ꎮ 受到高温胁迫后ꎬ植物会做出应激反应ꎬ如                            续发展诉求ꎮ
            诱导抗氧化酶活性以消除过量的活性氧ꎬ积累渗                                  芒萁(Dicranopteris pedata) 是一种广泛生长于
            透调节物质以平衡细胞内外水势等ꎬ减轻高温胁                              我国长江以南地区的多年生蕨类植物ꎬ是南方红
            迫造成的损伤以保护植物细胞 ( 张婷等ꎬ 2023)ꎮ                        壤侵蚀区抑制水土流失和修复生态环境的重要先
            除植物自身能够通过相应机制抵御高温胁迫以                               锋植物 (梁美霞等ꎬ 2021)ꎮ 南方红壤侵蚀区林下
            外ꎬ微生物能够提高植物应答高温胁迫的耐热性                              植被稀疏ꎬ甚至无上层植被覆盖地表 ( 袁再健等ꎬ
            (张春楠等ꎬ 2020)ꎬ特别是一些有益的细菌和真                          2020)ꎬ导致夏季高温时地表温度大幅增长ꎬ因此
            菌能够改善胁迫下植物的生理性能ꎬ增强植物抗                              芒萁容易遭受高温胁迫ꎬ从而限制了其生长和蔓
            逆性ꎬ帮助植物克服非生物胁迫的危害 ( Levy et                        延ꎮ 然而ꎬ高温胁迫下芒萁的光合和抗高温生理
            al.ꎬ 1983)ꎮ 因此ꎬ菌剂应用于诱导植物相关抗逆                       如何应答ꎬ纳豆芽孢杆菌是否能够增强高温胁迫
            生理的表达成为提高植物应答高温胁迫能力的有                              下芒萁的抗高温能力等科学问题相关研究鲜见报
            效措施 ( 沈杰等ꎬ 2016)ꎮ 尹聪和许啸(2011) 研                    道ꎬ成为南方红壤侵蚀区水土保持研究领域的一
   101   102   103   104   105   106   107   108   109   110   111