Page 93 - 《广西植物》2024年第5期
P. 93
5 期 王德福等: 两个种源木荷幼苗对干旱-复水的生理生态响应 8 8 1
干旱胁迫ꎻ(2) 两个种源木荷的茎木质部水势、叶
片 RWC、Pro、SOD 以及茎 PLC 对干旱复水的响应
呈一致趋势ꎬ并且茎 PLC 在复水 30 d 后未恢复至
对照水平ꎻ(3)福建种源木荷的光合速率较广东种
源的先下降且复水后恢复至对照水平需要更长时
间ꎻ(4) 福建种源木荷的 NSC 恢复速率高于广东
种源木荷的ꎮ 综上所述ꎬ在未来干旱加剧背景下ꎬ
福建与广东两个种源木荷均不能通过短期复水
(30 d)来修复被栓塞的木质部ꎮ 尽管广东种源木
荷的光合速率能够更快地恢复至对照水平ꎬ但其
光合速率低于福建种源木荷的ꎬ并且其 NSC 的恢
复能力较福建种源的低ꎮ 因此ꎬ在未来干旱加剧
背景下ꎬ广东种源木荷的生长及存活可能受到更
大威胁ꎮ
参考文献:
BARROS FDVꎬ BITTENCOURT PRLꎬ BRUM Mꎬ et al.ꎬ
2019. Hydraulic traits explain differential responses of
Amazonian forests to the 2015 El Niño ̄induced drought
[J]. New Phytolꎬ 223(3): 1253-1266.
BLACKMAN CJꎬ BRODRIBB TJꎬ JORDANꎬ GJꎬ 2009. Leaf
hydraulics and drought stress: responseꎬ recovery and
survivorship in four woody temperate plant species [J]. Plant
Cell Environꎬ 32(11): 1584-1595.
BRODRIBB TJꎬ BOWMAN Dꎬ NICHOLS Sꎬ et al.ꎬ 2010.
Xylem function and growth rate interact to determine recovery
rates after exposure to extreme water deficit [ J]. New
Phytolꎬ 188(2): 533-542.
BRODRIBB TJꎬ POWERS Jꎬ COCHARD Hꎬ et al.ꎬ 2020.
Hanging by a thread? forests and drought [ J]. Scienceꎬ
368(6488): 261-266.
CARDOSO AAꎬ BILLON LAꎬ BORGES AFꎬ et al.ꎬ 2020. New
developments in understanding plant water transport under
drought stress [J]. New Phytolꎬ 227(4): 1025-1027.
图 5 两个种源木荷幼苗光合特征对旱后复水的响应 CHEN MYꎬ LI YCꎬ WANG LBꎬ et al.ꎬ 2019. Photosynthetic
responses to drought and subsequent re ̄watering in seedlings
Fig. 5 Response of photosynthetic traits to rewatering
from two different provenances of Quercus variabilis Bl
of Schima superba seedlings from two provenances
[J]. Chin J Ecolꎬ 38(10): 2950-2958. [陈梦园ꎬ 李迎超ꎬ
王利兵ꎬ 等ꎬ 2019. 2 个种源栓皮栎对干旱及复水的光合
本研究测定了两个种源木荷的生理生态( 光
生理响应 [J]. 生态学杂志ꎬ 38(10): 2950-2958.]
合特征、水力特征、NSC、脯氨酸与超氧化物歧化
COCHARD Hꎬ COLL Lꎬ ROUX XLꎬ et al.ꎬ 2002. Unraveling
酶)在极端干旱( 茎木质部导水率下降 88%左右) the effects of plant hydraulics on stomatal closure during
及复水中的变化情况ꎮ 研究结果表明:(1) 两个种 water stress in walnut [ J ]. Plant Physiolꎬ 128(1):
源木荷均通过关闭气孔与提高脯氨酸含量来响应 282-290.