|
|
|
This article has been:browse 626times Download 103times |
|
|
湄公锥的化学成分及其α-葡萄糖苷酶抑制活性研究 |
但金龙1,2, 李海云1, 王亚凤2, 阳丙媛2, 李桂勤2, 何瑞杰2, 黄永林2*
|
(1. 桂林理工大学 化学与生物工程学院,桂林 541006;2. 广西壮族自治区中国科学院广西植物研究所,广西植物功能物质与资源持续利用重点实验室,桂林 541006)
|
|
摘要: |
为探究湄公锥(Castanopsis mekongensis)叶的化学成分及其α-葡萄糖苷酶抑制活性,该研究以湄公锥叶70%甲醇提取物为研究对象,选用多种现代分离材料对其开展系统的分离纯化,综合运用NMR和MS等波谱分析方法鉴定所得化合物结构,并对分离得到的化合物使用PNPG法筛选其降糖活性。结果表明:(1)从湄公锥叶中分离出17个化合物,分别鉴定为湄公锥A(1)、没食子酸(2)、3,4二羟基苯甲酸(3)、丁香酸(4)、3,4-二羟基苯甲酸甲酯(5)、没食子酸甲酯(6)、鞣花酸(7)、龙胆酸5-O-β-D-木糖苷(8)、3-O-没食子酰基莽草酸(9)、2,3-O-(S)-六羟基二苯基吡喃葡萄糖(10)、木麻黄鞣质(11)、5-desgalloylstarchyurin(12)、芦丁(13)、山奈酚3-O-芸香糖苷(14)、槲皮素-3-O-(6′′-O-没食子酰基-β-D-吡喃葡萄糖苷)(15)、槲皮素-3-O-(6′′-O-没食子酰基-β-D-吡喃半乳糖苷)(16)、quercetin-3-O-β-D-glucopyranoside(3′→O-3′′)quercetin-3-O-β-D-galactopyranoside(17)。其中化合物1为新化合物,所有化合物皆为首次从湄公锥植物中分离得到。(2)药理试验结果显示,化合物3、9、10、11、12、14、17比阳性对照阿卡波糖展示更强的α-葡萄糖苷酶抑制活性。本研究结果丰富了湄公锥的化学成分,明确了其降糖活性成分,为后续降糖相关产品开发提供了理论依据。 |
关键词: 湄公锥,化学成分,α-葡萄糖苷酶,湄公锥A,没食子酸 |
DOI:10.11931/guihaia.gxzw202402036 |
分类号: |
Fund project:国家自然科学基金(82060764, 32060108); 广西科学院基本科研业务费项目(CQZ-C-1901);桂林市创新平台与人才计划项目(20210102-3);广西植物功能物质与资源持续利用重点实验室主任项目(ZRJJ2023-8)。 |
|
Chemical constituents of Castanopsis mekongensis and their inhibitory activity of α-glucosidase |
DAN Jinlong1,2, LI Haiyun1, WANG Yafeng2, YANG Bingyuan2, LI Guiqin2, HE Ruijie2, HUANG Yonglin2*
|
(1. College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, Guangxi, China;2. Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Key Laboratory of Plant Functional Phyochemicals and Sustainable Utilization, Guilin 541006, Guangxi, China)
|
Abstract: |
Castanopsis mekongensis is mainly distributed in southern and southwestern of Yunnan, growing in mountainous areas below an altitude of about 2 000 meters. This plant is also widely distributed in Laos. According to folk records, C. mekongensis has medicinal effects of clearing heat and detoxifying, nourishing the stomach and strengthening the spleen. In order to explore the chemical constituents of C. mekongensis leaves and their α-glucosidase inhibitory activity. Various modern chromatographic separation techniques were used to separate and purify 70% methanol extract of the leaves of C. mekongensis. The structures of all the compounds were determined by comprehensive analysis methods, including mass spectrometry, nuclear magnetic resonance spectroscopy, and literature comparison. At the same time, the compounds were analyzed testing of α-glucosidase inhibitory activity. The results were as follows: (1) Seventeen compounds were isolated from the leaves of the C. mekongensis, which were identified as mekongensis A (1), gallic acid (2), 3,4-dihydroxybenzoic acid (3), syringate (4), protocatechuic acid methyl ester (5), methyl gallate (6), ellagic acid (7), gentisic acid 5-O-β-D-xyloside (8), 3-O-gallic acid (9), 2,3-O-(S)-hexahydroxydiphenyl-β-D-glucopyranose (10), casuariin (11), 5-degalloylstarchyurin (12), rutin (13), kaempferol 3-O-rutoside (14), quercetin-3-O-(6''-O-galloyl)-β-D-glucopyranoside (15), quercetin-3-O-(6''-O-galloyl)-β-D-galactopyranoside (16), and quercetin-3-O-β-D-glucopyranoside(3''→O-3'')quercetin-3-O-β-D-galactopyranoside (17). Compound 1 is a new compound,and all compounds were isolated for the first time from the C. mekongensis. (2) Pharmacological experimental results showed that compounds 3, 9, 10, 11, 12, 14, 17 had strong α-glucosidase inhibitory activity, with IC50 values of (0.36 ± 0.053) mmol·L-1, (0.03 ± 0.398) mmol·L-1, (0.24 ± 0.035) mmol·L-1, (0.41 ± 0.283) mmol·L-1, (0.18 ± 0.154) mmol·L-1, (0.15 ± 0.296) mmol·L-1 and (0.22 ± 0.095) mmol·L-1 [acarbose as the positive control, with IC50 value of (0.91 ± 0.226) mmol·L-1]. Compounds 3, 9, 10, 11, 12, 14, 17, which were isolated from the leaves of C. mekongensis , are considered potential candidates for developing new antidiabetic drugs based on their performance in biological activity assays. This study enriched the chemical constituents of C. mekongensis and further clarified its hypoglycemic active ingredients, providing a chemical structural basis for further development of hypoglycemic related product. |
Key words: Castanopsis mekongensis, chemical constituents, α-glucosidase, mekongensis A, gallic acid |
|
|
|
|
|