Page 119 - 《广西植物》2020年第6期
P. 119

6 期             徐梦璇等: 马尾松细胞分裂素羟化酶基因 PmCYP735A 克隆与表达分析                                      8 6 5

       monooxygenase superfamily. It regulates the content of isoprenyl adenine and trans ̄zeatin in plants through hydroxylation
       reaction and plays an important role in plant growth and development. Up to nowꎬ there were few researches about gene
       cloning and analysis of cytokinin hydroxylase in woody plants. In this studyꎬ one CYP735A homologous gene was firstly
       cloned and identified in Pinus massoniana through the rapid amplification of cDNA ends (RACE). The results were as
       follows: The full ̄length of cDNA of PmCYP735A was 1 744 nucleotidesꎬ including 1 647 bp open reading frame (ORF)ꎬ
       44 bp 5′ ̄untranslated region (UTR) and 53 bp 3′ ̄UTR. PmCYP735A encoded a protein of 548 amino acidsꎬ and its
       secondary structure was rich in alpha helix and random coil. PmCYP735A protein did not contain either transmembrane
       region or signal peptidase cleavage site. But two conserved motifs of P450 superfamily such as ETLRLYP (ExxRxxP)
       and heme ̄binding region FSFGPRKCVG (FxxGxRxCxG) were existed in amino acid sequence of 399-406 aa and 475-
       484 aaꎬ respectively. The phylogenetic tree showed that PmCYP735A was clustered into the same evolutionary branch
       with homologous of Arabidopsis thalianaꎬ Oryza sativa and Zea maysꎬ while CYP735A homologous proteins from
       Theobroma cacaoꎬ Populus trichocarpa and Jatropha curcas were classified in another evolutionary branch. The results of
       qRT ̄PCR showed that PmCYP735A expressed significantly higher in roots and stems than in leaves. Furthermoreꎬ the
       gene responded to exogenous auxin NAA with a increased firstly and then decreased gene expression trend over treatment
       time in all three tissues. These results will be valuable for further study of the biological function of CYP735A homologous
       genes in woody plants and enrich the excellent genetic resources of Pinus massoniana.
       Key words: cytokinin hydroxylaseꎬ RACEꎬ expression patternꎬ Pinus massonianaꎬ phylogenetic analysis


       细胞分裂素( cytokinin) 是一类促进细胞分裂                   径的了解和认知源于几种关键酶及其编码基因的
   与分化的腺嘌呤衍生物ꎬ根据其嘌呤环第 6 位氮                           发现(Takei et al.ꎬ 2004ꎻSakakibaraꎬ2006ꎻ邓岩等ꎬ

   原子(N )上侧链结构ꎬ天然细胞分裂素可分为异                           2006ꎻ李志康等ꎬ2018)ꎮ 异戊烯基转移酶( isopen ̄
          6
   戊二烯类和苯环类ꎬ后者在植物体内含量极微ꎮ                             tenyl transferaseꎬ IPT) 是 细 胞 分 裂 素 合 成 的 限 速
   异戊二烯类是细胞分裂素在植物体内的主要存在                             酶ꎬ可催化磷酸腺苷( ATP / ADP / AMP) 与二甲基
   形式ꎬ包括反式玉米素( trans ̄zeatinꎬtZ)、异戊烯基                 丙烯基二磷酸( dimethylallyl diphosphateꎬDMAPP)

   腺嘌呤( isopentenyl adenineꎬiP)、顺式玉米素( cis ̄          作用 转 化 为 磷 酸 异 戊 烯 基 腺 苷 ( iPRTP / iPRDP /
   zeatinꎬcZ)、二氢玉米素( dihydrozeatinꎬDZ) 以及它           iPRMP)ꎬ继 而 产 生 异 戊 烯 基 腺 苷 ( iP ribosideꎬ
   们的核苷、 核 苷 酸 和 糖 苷 等 ( Takei et al.ꎬ 2004ꎻ         iPR)ꎻ细胞分裂素羟化酶 CYP735A 能将上述磷酸
   Sakakibaraꎬ2006)ꎻ不 同 结 构 形 态 ( iP / tZ / cZ 及 其   异戊烯基腺苷经羟基化转化为反式玉米素核苷
   核苷、核苷酸和糖苷等)的功效组分在不同植物和                            (tZRTP / tZRDP / tZRMP)ꎬ并合成反式玉米素核苷
   同种植物的不同组织器官或发育阶段会有较大差                             (tZ ribosideꎬtZR)ꎮ LONELY GUY( LOG) 基因编码
   异ꎬ同时它们在特定条件下还可以相互转化以维                             的磷酸核糖水解酶可以进一步将 iPR 和 tZR 转化

   持和调节游离态细胞分裂素的活性水平( 张红梅                            为具有生物活性的、自由基形式的 iP 和 tZꎬ与此同
   等ꎬ2003ꎻKieber & Schallerꎬ2018)ꎮ 细胞分裂素的            时ꎬ细胞分裂素的合成代谢还受到细胞分裂素氧
   生物合成有两种方式ꎬ即 tRNA 分解和从头合成ꎮ                         化酶、N ̄葡糖基转移酶、玉米素 ̄O ̄葡糖基转移酶和
   tRNA 通过释放出 cZ 并在顺反异构酶的催化下转                        β ̄葡糖苷酶等的精确调控( 邓岩等ꎬ2006ꎻ李志康
   化成高活性 tZꎬ这条途径是其生物合成的次要途                           等ꎬ2018ꎻKieber & Schallerꎬ2018)ꎮ

   径( Mok & Mokꎬ 2001ꎻ Haberer & Kieberꎬ 2002ꎻ           马尾松(Pinus massoniana) 是松科松属针叶树
   Veach et al.ꎬ 2003)ꎻ以异戊烯基侧链为底物的从                  种ꎬ为多年生常绿乔木ꎬ在苏、皖、浙、湘、赣、闽、云
   头合成是大多内源细胞分裂素产生的主要途径                              贵及两广地区均有分布ꎮ 马尾松长势快、干形通
   (邓岩等ꎬ2006)ꎮ 人们对细胞分裂素从头合成途                         直且耐干旱贫瘠ꎬ是我国南方地区重要的荒山造
   114   115   116   117   118   119   120   121   122   123   124