Page 126 - 《广西植物》2023年第8期
P. 126
1 4 6 8 广 西 植 物 43 卷
and diversity in rhizosphere soils between wild and cultivated A. altaica. The results were as follows: (1) Alpha diversity
analysis showed that the diversity of fungi in the rhizosphere soil of wild A. altaica was significantly higher than that of
cultivated A. altaica (P<0.05)ꎬ while the difference in bacterial diversity was not significant (P>0.05). The non ̄metric
multidimensional scaling ( NMDS) analysis revealed that the fungal community structures of wild and cultivated A.
altaica rhizosphere soils had more significant differences. (2) A total of 9 566 operational taxonomic units (OTUs) of
bacteria belonged to 39 phylaꎬ 127 classesꎬ 315 ordersꎬ 500 families and 886 generaꎬ and 2 670 OTUs of fungi belonged
to 15 phylaꎬ 57 classesꎬ 138 ordersꎬ 293 families and 597 genera. The bacterial phylum Proteobacteriaꎬ Acidobacteriaꎬ
Actinobacteria and the fungal phylum Basidiomycotaꎬ Ascomycotaꎬ Mortierellomycota were the dominant phyla in the
rhizosphere soil between wild and cultivated plantsꎬ but their relative abundance was different under different growth
modes. At genus levelꎬ Candidatus_Udaeobacterꎬ norank_f_Xanthobacteraceae and Rokubacteriales were the dominant
rhizosphere soil bacteria of wild Anemone altaica. Howeverꎬ Candidatus_Udaeobacterꎬ Vicinamibacter and Rokubacteriales
were the dominant rhizosphere soil bacteria of cultivated Anemone altaica. The dominant rhizosphere fungi of wild
A. altaica were Mortierellaꎬ Sebacina and Russulaꎬ while the dominant rhizosphere fungi of cultivated Anemone altaica
were Sebacinaꎬ Mortierella and unclassified_f_Hyaloscyphaceae. (3) The redundancy analysis (RDA) showed that soil
organic matter was the main factor affecting soil bacterial community (P < 0.05)ꎬ and soil pHꎬ alkali ̄hydrolyzable
nitrogen and available phosphorus were the main factors affecting fungi communities ( P < 0. 05)ꎬ while bacterial
community structure were not significantly correlated with soil pHꎬ alkali ̄hydrolyzable nitrogen and available phosphorus
(P > 0.05). In summaryꎬ this study reveales significant differences in the composition and diversity of rhizosphere
microbial communities between wild and cultivated A. altaicaꎬ which may be closely related to the physicochemical
properties of soils under different growing conditions. The results of this study have certain significance for scientific
planting and soil improvement of A. altaica.
Key words: Anemone altaicaꎬ soil microorganismꎬ high ̄throughput sequencingꎬ community structureꎬ species diversity
阿 尔 泰 银 莲 花 ( Anemone altaica) 为 毛 茛 科 发挥着重要作用(Edwards et al.ꎬ 2015ꎻ Hou et al.ꎬ
(Ranunculaceae)银莲花属( Anemone) 多年生草本 2020)ꎮ 此外ꎬ根际微生物可以将有机物分解为无
植物ꎬ又名穿骨七、玄参、九节菖蒲等ꎬ是我国名贵 机物ꎬ为植物提供有效养料ꎬ其分泌的土壤酶、有
中药材( 杨晓东等ꎬ2017ꎻ朱平等ꎬ2021)ꎮ 阿尔泰 机酸、生长刺激素等可促进植物的生长以及提高
银莲花喜凉爽、湿润、遮荫环境ꎬ广泛分布于海拔 植物对环境的适应能力( 史艳财等ꎬ2018)ꎮ 土壤
800 ~ 2 000 m 的山地、林下、沟边等地方( 陈国典 微生物群落的多样性和稳定性有利于维持土壤系
等ꎬ2020)ꎮ 其特殊的生长环境ꎬ加上过度采掘ꎬ阿 统和植物的健康( Fierer et al.ꎬ 2012)ꎮ 张丽芳等
尔泰银莲花野生资源的产量和质量逐年下降ꎮ 近 (2023)研究发现ꎬ不同生境下植物根际微生物的
年来ꎬ阿尔泰银莲花栽培技术逐渐有所突破ꎬ形成 数量和组成是影响其生态适应力的关键因子ꎮ 因
了一定的商品规模ꎬ这在一定程度上缓解了因过 此ꎬ探究生长过程中根际土壤微生物群落结构可
度采集野生阿尔泰银莲花而造成的生态压力( 陈 为研究阿尔泰银莲花种植管理提供新思路ꎮ
国典等ꎬ2020)ꎮ 对阿尔泰银莲花种植来说ꎬ深入 考虑到根际微生物对土壤生物化学过程以及
了解适合种植阿尔泰银莲花的土壤条件对促进阿 植物生长发育的重要作用ꎬ已有研究者推测ꎬ根际
尔泰银莲花的高产、高质与可持续发展具有重要 微生物群落结构的失衡可能导致药用植物土壤质
意义ꎮ 大力开展阿尔泰银莲花发育生物学研究ꎬ 量退化、 产 量 减 少 和 病 害 发 生 ( Claudine et al.ꎬ
摸清其生长机制势在必行ꎮ 2009)ꎮ 同理ꎬ根际微生物群落结构差异也很可能
根际是植物根系与土壤微生物群落发生相互 是野生和栽培阿尔泰银莲花产量与质量差异的关
作用的独特区域(Mendes et al.ꎬ 2013)ꎮ 根际微生 键影响因素ꎮ 目前ꎬ有关阿尔泰银莲花的研究主
物是土壤生态系统的重要组成部分ꎬ在物质和能 要集中于药理作用、化学成分、临床应用、适应生
量循环、土壤结构维持和土壤微生态平衡等方面 境等方面ꎬ其根际微生物群落相关研究却几近空